Olivier Bournez
email: olivier.bournez@lix.polytechnique.fr

Daniel S Graça
email: dgraca@ualg.pt

Amaury Pouly
email: amaury.pouly@ens-lyon.fr

Solving Analytic Differential Equations in Polynomial Time over Unbounded Domains

In this paper we consider the computational complexity of solving initial-value problems defined with analytic ordinary differential equations (ODEs) over unbounded domains in R n and C n . We show that the solution can be computed in polynomial time over its maximal interval of definition, provided it satisfies a very generous bound on its growth, and that the function admits an analytic extension over a strip on the complex plane.

Introduction

We consider the following initial-value problem defined by an ODE

x ′ = f (x) x(0) = x 0 (1
)
where f is defined in some (possibly unbounded) domain.

In this paper we show that if f : R n → R n admits an analytic extension over C n and satisfies a very generous assumption about its growth rate, this solution can be computed in polynomial time from f and x 0 over the maximal interval of definition of the solution of (1), defined over R. Actually, our constructions also OB: On comprends pas trop si le domain est maximal, ou si c'est R works when considering solutions over C and assuming f :

C n → C n analytic.
Notice that, as it is well known, Equation (1) covers the case of an ODE of type x ′ = f (t, x), as this latter case can be reduced to (1) by using a new variable x n+1 satisfying x ′ n+1 = 1.

Motivation 1 & Digression: Analog models of computation. We got to this result by trying to understand whether analog continuous-time models of computations do satisfy (some variant) of Church-Turing thesis: as such systems can usually be described by particular classes of ordinary differential equations, understanding whether they can compute more than Turing machines is equivalent to understanding whether they can always be simulated by Turing machines.

For example, the most well known example of analog model of computations is the General Purpose Analog Computer (GPAC) introduced by Claude Shannon in [START_REF] Shannon | Mathematical theory of the differential analyzer[END_REF] as the idealization of an analog computer, the Differential Analyzer [START_REF] Bush | The differential analyzer. A new machine for solving differential equations[END_REF]. Shannon worked as an operator early in its career on these machines.

As it can be proved [START_REF] Shannon | Mathematical theory of the differential analyzer[END_REF][START_REF] Graça | Analog computers and recursive functions over the reals[END_REF] that any GPAC can be described by an ordinary differential equation of the form of (1) with f componentwise polynomial, proving that the GPAC does satisfy the Church-Turing thesis is equivalent to proving that solutions of such an ODE is always computable. It has been proved only recently that this holds for the case of f componentwise polynomial [START_REF] Graça | Computability, noncomputability and undecidability of maximal intervals of IVPs[END_REF], [START_REF] Collins | Effective computability of solutions of differential inclusions -the ten thousand monkeys approach[END_REF]. Hence, the GPAC do satisfy the Church-Turing thesis. Notice that computability of solutions doesn't hold for general computable f [START_REF] Pour-El | A computable ordinary differential equation which possesses no computable solution[END_REF], but in general known uncomputability results can only be obtained when the system is "ill behaved" (e.g. non-unique solutions in [START_REF] Pour-El | A computable ordinary differential equation which possesses no computable solution[END_REF]). These kind of phenomena does not appear in models physically inspired by true machines like the GPAC.

Here, we are dealing with the next step. Do analog models like the GPAC satisfy the effective (in the sense of computable complexity) version of Church Turing thesis: all (sufficiently powerful) "reasonable" models of computations with "reasonable" measure of time are polynomially equivalent. In other words, we want to understand whether analog systems can provably (not) compute faster than usual classical digital models like Turing machines.

Taking time variable t as a measure of time (which is the most natural measure), proving that the GPAC can not compute more than Turing machines would require to prove that solutions of ODE (1) are always computable (in the classical sense) in a time polynomial in t, for f (componentwise) polynomial.

We here don't get exactly this result: for f componentwise polynomial, corresponding to GPACs, f is clearly analytic. But here, in our results, we have to suppose furthermore f to admit an analytic extension over C n . Although this case is stronger that when f is real analytic (it is well known that analyticity in the complex plane implies analyticity over the real line, but that the converse direction does not hold), we believe that our results are interesting on their own and provide a promising step towards the case of the real line.

Remark 1. Somehow, in a quantum world perspective, as analog models of computations can be seen as an intermediate between quantum models (that are analog but working over the complex) and classical models (that are digital), and as the first are known to be able to solve hard problems in polynomial time, we are asking whether this latter phenomenon holds for analog models or, if one prefers, if the hyper-computation in quantum models is due to the fact that such models work over the complex and not only over analog quantities.

Motivation 2: Recursive analysis The results obtained in this paper turn out to be new and not known in a recursive analysis or classical computability or complexity perspective: see related work section.

Being able to compute efficiently solutions of general ordinary differential equations is clearly of interest. Observe that all usual methods for numerical integrations (including basic Euler's method, Runge Kutta's methods, . . .) do not provide the value of x(t) in a time polynomial in t, whereas we do for general analytic functions under our hypotheses. Actually, as all these numerical methods falls in the general theory of n-order methods for some n, this is possible to use this theory (developed for example in [START_REF] Demailly | Analyse Numérique et Equations Différentielles[END_REF]) to prove that none of them produce the value of x(t) in a time polynomial in t. This has been already observed in [START_REF] Smith | Church's thesis meets the N-body problem[END_REF], and claimed possible in [START_REF] Smith | Church's thesis meets the N-body problem[END_REF] for some classes of functions by using methods of order n with n depending on t, but without a full proof. The method proposed here is different from the ideas proposed in this latter paper but prove that this is indeed possible to produce x(t) in a time polynomial in t.

Related work and discussions

Typically the ODE (1) is considered over a subset of R n . It is well-known in mathematics that the solution exists whenever f is continuous (Peano's existence theorem), and is unique whenever f is Lipschitz (Picard or Cauchy-Lipschitz's theorem).

Considering computability, it is previously well-known that solutions of (1) are computable (in the sense of computable analysis) provided f is Lipschitz.

To prove this result one can basically implement an algorithm which simulates Picard's classical method of successive approximations used in the proof of the fundamental existence-uniqueness theorem for [START_REF] Shannon | Mathematical theory of the differential analyzer[END_REF], which assumes the existence of a Lipschitz condition (see e.g. [START_REF] Perko | Differential Equations and Dynamical Systems[END_REF]).

However, assuming f to be Lipschitz often restricts in practice f to be C 1 and defined in a bounded domain, or to have, at most, linear growth in an unbounded domain, which is not really a very satisfactory result.

To avoid the limitations pointed out above, in [START_REF] Graça | Computability, noncomputability and undecidability of maximal intervals of IVPs[END_REF] the authors introduced the idea of effectively Lipschitz functions (functions which are locally Lipschitz and for which the local Lipschitz constants can be computed) and showed that if f is effectively Lipschitz, then the solution of (1) is computable over the maximal interval in which the solution is defined. Another related result can be found in [START_REF] Ruohonen | An effective Cauchy-Peano existence theorem for unique solutions[END_REF] where the author proves computability of solutions of (1) in unbounded domains without requiring the use of Lipschitz constants. However Ruohonen requires a very limiting bound on the growth of f .

In general, if f is continuous, Peano's existence theorem guarantees that at least a solution exists for [START_REF] Shannon | Mathematical theory of the differential analyzer[END_REF]. The problem is that the condition that f is continuous does not guarantee a unique solution. In [START_REF] Collins | Effective computability of solutions of differential inclusions -the ten thousand monkeys approach[END_REF] the authors show that the solution of (1) is computable in its maximal interval of definition if f is continuous and the solution of (1) is unique.

But what about computational complexity? The procedure presented in [START_REF] Collins | Effective computability of solutions of differential inclusions -the ten thousand monkeys approach[END_REF] relies on an exhaustive search and, as the authors mention (p. 11): "Of course, the resulting algorithms are highly inefficient in practice".

In the book [START_REF] Ko | Computational Complexity of Real Functions[END_REF] several interesting results are proved. For instance it is shown (Theorem 7.3) that there are (continuous) polynomial-time computable functions f such that (1) has a unique solution, but which can have arbitrarily high complexity. However this result follows because we do not require that f satisfies a Lipschitz condition. If f satisfies a Lipschitz condition and is polynomial-time computable, then an analysis of Euler's algorithm shows that, in a bounded domain, the solution for (1) is computable in polynomial space. It is also shown that if f satisfies a weak form of the Lipschitz condition and is polynomial-time computable, the solution to (1) is polynomial-time computable iff P = P SP ACE (again in a bounded domain). In [START_REF] Kawamura | Lipschitz continuous ordinary differential equations are polynomial-space complete[END_REF] this result is extended and the author shows that initial-value problems given by a polynomial-time computable, Lipschitz continuous function can have a polynomial-space complete solution.

So it seems that the solution to (1) cannot be computed in polynomial time for Lipschitz functions in general. But what if we require more conditions on f ? In particular, if we require f to be analytic, what is the computational complexity of the solution? Will it be polynomial-time?

Restricting to analytic functions is natural as this is indeed a natural class of functions, and as it is sometimes observed that functions coming from our physical world, are mostly analytic functions.

In [START_REF] Müller | Solving initial value problems in polynomial time[END_REF], [START_REF] Müller | Making big steps in trajectories[END_REF] the authors show that, locally, the solution is polynomial-time computable if f is (complex) analytic. However, Müller's construction relies on the highly non-constructive Heine-Borel theorem. This makes this results less convincing because although it guarantees the solution can be computed in polynomial-time, it gives no algorithm to compute it. Also it gives no insight on what happens in a broader domain, e.g. C n .

In this paper we study computability of (1) when f is analytic. Instead of taking analytic functions f defined over R n , our results will be for analytic functions with extensions over C n (also known as holomorphic functions).The reasons of taking C n and not R n are twofold.

First, C n is a broader domain than R n and it is natural to generalize the results there. When the time variable is defined in the real line, existence and uniqueness results for ODEs defined over R n are translated in the same way for ODEs in C n [START_REF] Birkhoff | Ordinary Differential Equations[END_REF], [START_REF] Coddington | Theory of Ordinary Differential Equations[END_REF], as well as the results we prove here.

Second, some of our results rely on the use of the Cauchy integral formula, which assumes analytic functions over C n which is a stricter condition than being real analytic (holomorphic functions, when restricted to R n , always originate analytic functions, but analytic functions over R n may not have an holomorphic extension defined over the whole complex set C n). Therefore our results, in the case of R n , are not enough to capture the full class of analytic functions (over R n) but are still strong enough to capture ODEs defined with most of the "usual" functions: e x , sin, cos, polynomials, etc. It would be interesting to know if these results can be fully extended to analytic functions defined over R n , but we have not yet obtained any result on this topic. Rather, we see the complex case as a preliminary approach for getting closer to the real case. Indeed, knowing that f is complex analytic is a stronger condition than only knowing that f is real analytic, which gives us more tools to work with, namely the Cauchy integral formula.

Organization of the paper The organization of the paper is as follows. Section 3 presents background material about Computable Analysis, which will be needed in Section 4 to state the main result. We then proceed in the following sections with its proof.

Computable Analysis

Computable Analysis is an extension of the classical theory of computation to sets other than N due to Turing [START_REF] Turing | On computable numbers, with an application to the Entscheidungsproblem[END_REF], Grzegorczyk [START_REF] Grzegorczyk | On the definitions of computable real continuous functions[END_REF], and Lacombe [START_REF] Lacombe | Extension de la notion de fonction récursive aux fonctions d'une ou plusieurs variables réelles III[END_REF]. Several equivalent approaches can be used (equivalence results can be obtained in [START_REF] Weihrauch | Computable Analysis: an Introduction[END_REF]) for considering computability over R n : using Type-2 machines [START_REF] Weihrauch | Computable Analysis: an Introduction[END_REF], using oracle Turing machines [START_REF] Ko | Computational Complexity of Real Functions[END_REF], or using modulus of continuity [START_REF] Pour-El | Computability in Analysis and Physics[END_REF], [START_REF] Ko | Computational Complexity of Real Functions[END_REF], among other approaches.

In this paper we will use the approach of Ko in [START_REF] Ko | Computational Complexity of Real Functions[END_REF], based on oracle Turing machines.The idea underlying [START_REF] Ko | Computational Complexity of Real Functions[END_REF] to compute over R n is to encode each element x ∈ R n as a Cauchy sequence of "simple rationals" with a known "simple" rate of convergence. In [START_REF] Ko | Computational Complexity of Real Functions[END_REF] Ko uses sequences of dyadic rational numbers, i.e. rationals of the type m 2 n for some m ∈ Z and n ∈ N. Then a sequence of dyadic rational numbers {d n /2 n } n∈N represents a real number

x if |x -d n /2 n | ≤ 2 -n for all n ∈ N.
It is easy to represent points in R k using dyadic sequences (use k sequences of dyadic rationals, each coding a component of x). Since C ≃ R 2 , this approach can be used to compute with elements of C. Note that what defines a sequence of dyadic rational numbers {d n /2 n } n∈N is the sequence {d n } N , which is nothing more than a function f : N → N defined by f (n) = d n . Therefore one can define the notion of computable point in R: it is a point which can be coded by a sequence {d n /2 n } N such that the function f : N → N defined by f (n) = d n is computable. By other words, a computable point is a point for which we can compute an arbitrary rational approximation in finite time. Similarly one can define computable points in R k and C k . Ko also deals with complexity: a point x is polynomial time computable if one can compute a dyadic rational which approaches x with precision ≤ 2 -n in time polynomial in n.

Having worked with computability of points in R n and C n , one can also define computability of functions f : R k → R j and g : C k → C j . In essence, a function f is computable if there is some oracle Turing machine that, using as oracles functions which encode the argument x of f and as input a number n ∈ N, it can compute in finite time a rational approaching f (x) with precision 2 -n . Similarly, if this rational approximation can be computed in time polynomial in n, we say that f is polynomial time computable. Precise details of this discussion can be found in [START_REF] Ko | Computational Complexity of Real Functions[END_REF].

Main result

(t) = f (x(t)) x(t 0) = x 0 . (2)
It is well-known that if f is analytic then (2) has a unique solution which is analytic on its maximum life interval. We are interested in obtaining sufficient conditions that guarantee x(t) to be polynomial time computable.

Necessary condition: poly-boundedness

We first observe an easy necessary condition: if x(t) is polynomial-time computable, then x(t) can not grow too fast, as a Turing machine can not write more than t symbols in time t. Formally, we introduce the following concept.

Definition 1 (Poly-bounded function). A function

f : C d → C d ′ is poly- bounded (or p-poly-bounded) iff there is a polynomial p such that ∀x ∈ C d \ {0}, f (x) 2 p(log 2 ⌈ x ⌉) . (3)
Without loss of generality, we can assume that p is an increasing function on R + 0 (replace each coefficient in polynomial p by its absolute value if needed). We then get the following theorem

Theorem 1. If f : C d → C d ′ is polynomial-time computable, then f is poly- bounded.

Sufficient condition: our main result

Our main result can be formulated as follows:

Theorem 2 (Main result). Let x(t) be the solution of the initial-value problem [START_REF] Bush | The differential analyzer. A new machine for solving differential equations[END_REF]. Assume that -f is analytic and polynomial-time computable on C d ; -x 0 is a polynomial-time computable vector of complex numbers -t 0 is a polynomial-time computable real number -function x(t) is poly-bounded over C then function x(t) is polynomial-time computable.

Actually, we can even say more -the transformation is effective, if one adds the hypothesis that f is also poly-bounded.

Theorem 3 (Main result: Effective version). Fix a polynomial p. Keep the same hypothesis, but in addition, restrict to functions f that are p-poly-bounded.

Then the transformation is effective and even polynomial time computable: the functional that maps f , x 0 , t 0 , and t to function x(t) is polynomial time computable.

Remark 2. From Theorem 1, even if f is not assumed poly-bounded, we know it is p-poly-bounded for some p, as it is assumed polynomial-time computable. However, the problem is that we cannot compute in general polynomial p from f , and hence we have to restrict Theorem 3 to functions f with given p.

The whole idea behind the proof of above theorem is to compute the solution of (2) in polynomial time in some fixed neighborhood of x 0 , using Picard's classical method of successive. From this solution we can compute the coefficients of its Taylor series expansion, which allow us to compute the solution on its maximal interval of definition using the hypothesis of poly-boundedness. All the construction can be done in polynomial time. A sketch of proof is presented in the following two sections.

On analytic functions

We first need to state some basic facts about analytic functions in order to be convinced that the complexity of computing an analytic function is the same as the complexity of computing the coefficients of its Taylor series. This is the purpose of the current section.

From the function to the Taylor series

The following theorem is known. Theorem 4 ([START_REF] Ko | Computational complexity of real functions[END_REF], [START_REF] Müller | Uniform computational complexity of taylor series[END_REF]). If f is complex analytic and polynomial-time computable on a neighborhood of x 0 , where x 0 is a polynomial-time computable complex number, then the sequence of its Taylor series coefficients at x 0 is polynomial-time computable.

This holds for one and multi-dimensional functions. We will actually use the following variant of the theorem, obtained by observing that if f is analytic on C d , then f is analytic on a neighborhood of x 0 and if f is polynomial-time computable on C d , then f is polynomial-time computable on a neighborhood of x 0 , and that the proof of [START_REF] Müller | Uniform computational complexity of taylor series[END_REF] is rather effective. Theorem 5. If f is analytic on C d and polynomial-time computable on C d , then the sequence of coefficients {a α } α of its Taylor series at x 0 , where x 0 is a polynomial-time computable complex number, is polynomial-time computable.

Fix a polynomial p, and restrict to functions f p-poly-bounded: The functional that maps f , x 0 , and α to the corresponding coefficient a α is polynomial time computable.

From the Taylor series to the function

Theorem 5 is important because it allows us to go from the function to its coefficients. But it is only interesting if we can have the converse, that is if we can go from the coefficients to the function.

The next theorem gives sufficient conditions so that this can happen. A similar theorem is already proved in [START_REF] Müller | Uniform computational complexity of taylor series[END_REF] for the case of a polynomial-time computable function on a compact. However, since we consider functions defined on unbounded sets over C d , this requires a different proof, which is omitted here for reasons of space. Theorem 6. Suppose f : C d → C is analytic and poly-bounded on C d and that the sequence {a α } of its Taylor series at x 0 , where x 0 is a polynomial-time computable complex number, is polynomial-time computable. Then f is polynomialtime computable on C d .

Even if we can't pinpoint a polynomial p satisfying a poly-boundedness condition for f , the mere knowledge that f is poly-bounded allows us to conclude that f can be computed in polynomial time, by using the previous proof. In this case, we do not know a precise polynomial bound on the time complexity for computing f , but we do know that such bound exists.

6 Proof of main result

The special case of integration

We first state a basic result for the case of integration: observe that integration can be considered as a very specific case of our general theorem. Theorem 7. If f is analytic, poly-bounded on C, polynomial-time computable, and x 0 is a polynomial-time computable complex number, then

g(x) = γx f (z)dz where γ x = [0, 1] → C t → (1 -t)x 0 + tx
is analytic, poly-bounded and polynomial-time computable on C.

Moreover, if one fixes a polynomial p and considers only functions f which are p-poly-bounded, then the transformation is effective and even polynomial time computable: the functional that maps f , x 0 and x to g(x) is polynomial time computable Remark that the previous theorem implies that the transformation which computes g(x) = x 0 f (z)dz for x ∈ R is also computable. Again, we can go to the version where we don't have explicit knowledge of the polynomial which yields poly-boundedness for f .

On Lipschitz constants

We will need a result about analytic functions (mainly derived from multidimensional Cauchy integral formula) that are poly-bounded.

Proposition 1. If f : C d → C e is analytic and p-poly-bounded then for each R > 0 there is a K(R) > 0 such that ∀x, y, x , y R ⇒ f (x) -f (y) K(R) x -y with K(R) 2 q(log 2 ⌈R⌉)
where q(x) = p(2 + 4x) + A d and A d is a polynomial-time computable constant in d.

Proof of Theorem 3

We can now go the proof of Theorem 3. Theorem 2 is clearly a corollary of it, forgetting effectivity. We can assume, without loss of generality, that t 0 = 0 and x 0 = 0. Consider the following operator

W (u)(t) = t 0 f (u(ξ))dξ.
Because z is a solution of (2) we easily have

W (z)(t) = t 0 f (z(ξ))dξ = z(0) + t 0 ż(ξ)dξ = z(t)
Thus z is a fixed point of W . Now consider the following sequence of functions

z 0 (t) = 0 z n+1 = W (z n).
Obviously z 0 is analytic. Furthermore, one can easily show by induction (using Theorem 7) that for all n ∈ N, z n is analytic and polynomial-time computable. More importantly, one can compute effectively z n (t) in polynomial time in n. Indeed, it is just the iteration of the constructive part of Theorem 7.

Now the crucial idea is that z n uniformly converges to z but only on a (really small) compact near 0. Using this result we will use Theorem 4 to extract the coefficients of z and by using the hypothesis on the boundedness of z we will obtain z.

First of all, we need a uniform bound of z n (in n). We already know, by hypothesis, that z(t) 2 p(log 2 ⌈|t|⌉) . Now apply Proposition 1 to f . Let s be a polynomial such that f is s-polybounded and let q be the polynomial of Corollary 1 such that

∀R > 0, ∀x, y ∈ C d , x , y R ⇒ f (y) -f (x) ≤ K(R) x -y (4)
where

K(R) = 2 q(log 2 ⌈R⌉) . Let M = 2 p(0) ,R = 2M , T = 1 2K(R) so that |t| 1 ⇒ z(t) M (5)
We will show by induction that

|t| T ⇒ z n (t) -z(t) 2 -n M. (6)
This is trivial for n = 0 because z 0 (t) = 0 so if |t| T then |t| 1 (we assume, without loss of generality, p(0) ≥ 0 which implies R ≥ 2, and q(0) ≥ 1, which implies T 1) and, by (5) z 0 (t) -z(t) = z(t) M.

For n > 0, suppose that |x| T . Then

z n+1 (x) -z(x) = W (z n)(x) -W (z)(x) = 1 0 (f (z n (tx)) -f (z(tx)))xdt 1 0 f (z n (tx)) -f (z(tx)) xdt.
But now recall that:

-z(x) M R = 2M by definition -z n (x) z(x) + z n (x) -z(x) M + 2 -n M 2M = R
So we can apply (4) and obtain

z n+1 (x) -z(x) 1 0 f (z n (tx)) -f (z(tx)) xdt 1 0 K(R) z n (tx) -z(tx) xdt 1 0 2 -n M 2T xdt T 2 -n M 2T 2 -n-1 M.
Now that we have [START_REF] Pour-El | A computable ordinary differential equation which possesses no computable solution[END_REF], the problem is easy because we can uniformly approximate z on B(0, T) with an arbitrary precision which is exponential on the number of steps. To put it differently, we proved that z is polynomial-time computable on B(0, T). Remark that in B(0, T) both z and z n are bounded by 2M , which can be computed in polynomial time from p. Hence z and z n are polybounded by the same (constant) polynomial in B(0, T) (the behavior outside this interval is irrelevant for our considerations) and from Theorem 7, the same polynomial time bound can be used to compute all the z n and z, thus avoiding the potential problem of having increasing (polynomial) time with n (e.g. doubling in each increment of n) which could yield to overall computing time more than polynomial.

We can now use a mix of Theorem 4 and Theorem 5 to get the fact that we can compute the Taylor series of z in 0 in polynomial time (indeed, we only need to know how to compute z on a open ball around 0). And now, applying Theorem 6, we know that z is polynomial-time computable because we know by hypothesis that it is poly-bounded. Furthermore, the whole process is polynomial-time computable because we gave explicit bounds on everything and then it is just a matter of iterating a function and applying two operations on Taylor series at the end.

In this paper we have studied the computational complexity of solving initialvalue problems involving analytic ordinary differential equations (ODEs). We gave special importance to solutions defined on unbounded domains, where the traditional assumption of numerical analysis -Lipschitz condition for the function defining the ODE -is no longer valid, making the analysis of the system non-trivial.

We have shown that if the solution has a (very generous) bound on its growth rate -poly-boundedness -then the solution of the initial-value problem can be computed in polynomial time as long as f in (2) admits an analytic extension to C d .

Although the poly-boundedness condition is very generous and encompasses "usual" ODEs, it would be interesting to know if we can substitute the polyboundedness condition by a more natural one. Note that some kind of assumption over the polynomial differential equations must be used, since their solutions can be, for example, a function of the type

2 2 ••• 2 x
(see e.g. [START_REF] Graça | Computability with polynomial differential equations[END_REF]) which is not poly-bounded and hence not polynomial-time computable by Corollary 1.

A topic for further work concerns the computational complexity of solving partial differential equations. This is quite interesting since research from Mills et al. suggest that from a complexity point of view, the EAC mentioned in the introduction may beat the Turing machine. It would be a significative hallmark for the EAC if one could decide theoretically if the EAC may or may not have super-Turing power for certain tasks, from a computational complexity perspective. However this problem seems to be quite difficult due to the lack of theoretical tools which might help us to settle the question. For instance, despite huge efforts from the scientific community, no existence-uniqueness theorem is known for partial differential equations, even for certain subsets like Navier-Stokes equations.

 Let f : C d → C d be an analytic function on C d and t ∈ R, x 0 ∈ C d . We are interested in computing the solution of the initial-value problem ẋ

Acknowledgments. This work has been partially supported by the IN-RIA program " Équipe Associée" ComputR. O. Bournez and A. Poulay were supported by ANR project SHAMAN. D. Graça was partially supported by Fundação para a Ciência e a Tecnologia and EU FEDER POCTI/POCI via SQIG -Instituto de Telecomunicações.