
HAL Id: hal-00760919
https://polytechnique.hal.science/hal-00760919

Submitted on 4 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Analytic Differential Equations in Polynomial
Time over Unbounded Domains

Olivier Bournez, Daniel Graça, Amaury Pouly

To cite this version:
Olivier Bournez, Daniel Graça, Amaury Pouly. Solving Analytic Differential Equations in Polynomial
Time over Unbounded Domains. Mathematical Foundations of Computer Science, MFCS’11, 2011,
Poland. pp.170-181. �hal-00760919�

https://polytechnique.hal.science/hal-00760919
https://hal.archives-ouvertes.fr

Solving Analytic Differential Equations in

Polynomial Time over Unbounded Domains

Olivier Bournez1, Daniel S. Graça2,3, and Amaury Pouly4

1 Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France.
Olivier.Bournez@lix.polytechnique.fr

2 DM/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal.
dgraca@ualg.pt

3 SQIG /Instituto de Telecomunicações, Lisbon, Portugal.
4 Ecole Normale Supérieure de Lyon, France. Amaury.Pouly@ens-lyon.fr

Abstract. In this paper we consider the computational complexity of
solving initial-value problems defined with analytic ordinary differential
equations (ODEs) over unbounded domains in R

n and C
n. We show

that the solution can be computed in polynomial time over its maximal
interval of definition, provided it satisfies a very generous bound on its
growth, and that the function admits an analytic extension over a strip
on the complex plane.

1 Introduction

We consider the following initial-value problem defined by an ODE

{

x′ = f(x)
x(0) = x0

(1)

where f is defined in some (possibly unbounded) domain.
In this paper we show that if f : R

n → R
n admits an analytic extension over

C
n and satisfies a very generous assumption about its growth rate, this solution

can be computed in polynomial time from f and x0 over the maximal interval of
definition of the solution of (1), defined over R. Actually, our constructions also OB: On comprends

pas trop si le domain
est maximal, ou si
c’est R

works when considering solutions over C and assuming f : C
n → C

n analytic.
Notice that, as it is well known, Equation (1) covers the case of an ODE of type
x′ = f(t, x), as this latter case can be reduced to (1) by using a new variable
xn+1 satisfying x′

n+1 = 1.

Motivation 1 & Digression: Analog models of computation. We got to this result
by trying to understand whether analog continuous-time models of computa-
tions do satisfy (some variant) of Church-Turing thesis: as such systems can
usually be described by particular classes of ordinary differential equations, un-
derstanding whether they can compute more than Turing machines is equivalent
to understanding whether they can always be simulated by Turing machines.

For example, the most well known example of analog model of computations
is the General Purpose Analog Computer (GPAC) introduced by Claude Shan-
non in [1] as the idealization of an analog computer, the Differential Analyzer
[2]. Shannon worked as an operator early in its career on these machines.

As it can be proved [1, 3] that any GPAC can be described by an ordinary
differential equation of the form of (1) with f componentwise polynomial, prov-
ing that the GPAC does satisfy the Church-Turing thesis is equivalent to proving
that solutions of such an ODE is always computable. It has been proved only
recently that this holds for the case of f componentwise polynomial [4], [5].
Hence, the GPAC do satisfy the Church-Turing thesis. Notice that computabil-
ity of solutions doesn’t hold for general computable f [6], but in general known
uncomputability results can only be obtained when the system is “ill behaved”
(e.g. non-unique solutions in [6]). These kind of phenomena does not appear in
models physically inspired by true machines like the GPAC.

Here, we are dealing with the next step. Do analog models like the GPAC
satisfy the effective (in the sense of computable complexity) version of Church
Turing thesis: all (sufficiently powerful) “reasonable” models of computations
with “reasonable” measure of time are polynomially equivalent. In other words,
we want to understand whether analog systems can provably (not) compute
faster than usual classical digital models like Turing machines.

Taking time variable t as a measure of time (which is the most natural mea-
sure), proving that the GPAC can not compute more than Turing machines
would require to prove that solutions of ODE (1) are always computable (in the
classical sense) in a time polynomial in t, for f (componentwise) polynomial.

We here don’t get exactly this result: for f componentwise polynomial, cor-
responding to GPACs, f is clearly analytic. But here, in our results, we have to
suppose furthermore f to admit an analytic extension over C

n. Although this
case is stronger that when f is real analytic (it is well known that analyticity in
the complex plane implies analyticity over the real line, but that the converse
direction does not hold), we believe that our results are interesting on their own
and provide a promising step towards the case of the real line.

Remark 1. Somehow, in a quantum world perspective, as analog models of com-
putations can be seen as an intermediate between quantum models (that are
analog but working over the complex) and classical models (that are digital),
and as the first are known to be able to solve hard problems in polynomial time,
we are asking whether this latter phenomenon holds for analog models or, if one
prefers, if the hyper-computation in quantum models is due to the fact that such
models work over the complex and not only over analog quantities.

Motivation 2: Recursive analysis The results obtained in this paper turn out
to be new and not known in a recursive analysis or classical computability or
complexity perspective: see related work section.

Being able to compute efficiently solutions of general ordinary differential
equations is clearly of interest. Observe that all usual methods for numerical
integrations (including basic Euler’s method, Runge Kutta’s methods, . . .) do

not provide the value of x(t) in a time polynomial in t, whereas we do for general
analytic functions under our hypotheses. Actually, as all these numerical methods
falls in the general theory of n-order methods for some n, this is possible to use
this theory (developed for example in [7]) to prove that none of them produce
the value of x(t) in a time polynomial in t. This has been already observed in
[8], and claimed possible in [8] for some classes of functions by using methods of
order n with n depending on t, but without a full proof. The method proposed
here is different from the ideas proposed in this latter paper but prove that this
is indeed possible to produce x(t) in a time polynomial in t.

2 Related work and discussions

Typically the ODE (1) is considered over a subset of R
n. It is well-known in

mathematics that the solution exists whenever f is continuous (Peano’s existence
theorem), and is unique whenever f is Lipschitz (Picard or Cauchy-Lipschitz’s
theorem).

Considering computability, it is previously well-known that solutions of (1)
are computable (in the sense of computable analysis) provided f is Lipschitz.
To prove this result one can basically implement an algorithm which simulates
Picard’s classical method of successive approximations used in the proof of the
fundamental existence-uniqueness theorem for (1), which assumes the existence
of a Lipschitz condition (see e.g. [9]).

However, assuming f to be Lipschitz often restricts in practice f to be C1 and
defined in a bounded domain, or to have, at most, linear growth in an unbounded
domain, which is not really a very satisfactory result.

To avoid the limitations pointed out above, in [4] the authors introduced the
idea of effectively Lipschitz functions (functions which are locally Lipschitz and
for which the local Lipschitz constants can be computed) and showed that if f
is effectively Lipschitz, then the solution of (1) is computable over the maximal
interval in which the solution is defined. Another related result can be found
in [10] where the author proves computability of solutions of (1) in unbounded
domains without requiring the use of Lipschitz constants. However Ruohonen
requires a very limiting bound on the growth of f .

In general, if f is continuous, Peano’s existence theorem guarantees that
at least a solution exists for (1). The problem is that the condition that f is
continuous does not guarantee a unique solution. In [5] the authors show that
the solution of (1) is computable in its maximal interval of definition if f is
continuous and the solution of (1) is unique.

But what about computational complexity? The procedure presented in [5]
relies on an exhaustive search and, as the authors mention (p. 11): “Of course,
the resulting algorithms are highly inefficient in practice”.

In the book [11] several interesting results are proved. For instance it is shown
(Theorem 7.3) that there are (continuous) polynomial-time computable func-
tions f such that (1) has a unique solution, but which can have arbitrarily high
complexity. However this result follows because we do not require that f satisfies

a Lipschitz condition. If f satisfies a Lipschitz condition and is polynomial-time
computable, then an analysis of Euler’s algorithm shows that, in a bounded do-
main, the solution for (1) is computable in polynomial space. It is also shown that
if f satisfies a weak form of the Lipschitz condition and is polynomial-time com-
putable, the solution to (1) is polynomial-time computable iff P = PSPACE
(again in a bounded domain). In [12] this result is extended and the author
shows that initial-value problems given by a polynomial-time computable, Lip-
schitz continuous function can have a polynomial-space complete solution.

So it seems that the solution to (1) cannot be computed in polynomial time
for Lipschitz functions in general. But what if we require more conditions on f?
In particular, if we require f to be analytic, what is the computational complexity
of the solution? Will it be polynomial-time?

Restricting to analytic functions is natural as this is indeed a natural class
of functions, and as it is sometimes observed that functions coming from our
physical world, are mostly analytic functions.

In [13], [14] the authors show that, locally, the solution is polynomial-time
computable if f is (complex) analytic. However, Müller’s construction relies on
the highly non-constructive Heine-Borel theorem. This makes this results less
convincing because although it guarantees the solution can be computed in
polynomial-time, it gives no algorithm to compute it. Also it gives no insight
on what happens in a broader domain, e.g. C

n.
In this paper we study computability of (1) when f is analytic. Instead of

taking analytic functions f defined over R
n, our results will be for analytic

functions with extensions over C
n (also known as holomorphic functions).The

reasons of taking C
n and not R

n are twofold.
First, C

n is a broader domain than R
n and it is natural to generalize the

results there. When the time variable is defined in the real line, existence and
uniqueness results for ODEs defined over R

n are translated in the same way for
ODEs in C

n [15], [16], as well as the results we prove here.
Second, some of our results rely on the use of the Cauchy integral formula,

which assumes analytic functions over C
n which is a stricter condition than being

real analytic (holomorphic functions, when restricted to R
n, always originate

analytic functions, but analytic functions over R
n may not have an holomorphic

extension defined over the whole complex set C
n). Therefore our results, in the

case of R
n, are not enough to capture the full class of analytic functions (over R

n)
but are still strong enough to capture ODEs defined with most of the “usual”
functions: ex, sin, cos, polynomials, etc. It would be interesting to know if these
results can be fully extended to analytic functions defined over R

n, but we have
not yet obtained any result on this topic. Rather, we see the complex case as a
preliminary approach for getting closer to the real case. Indeed, knowing that
f is complex analytic is a stronger condition than only knowing that f is real
analytic, which gives us more tools to work with, namely the Cauchy integral
formula.

Organization of the paper The organization of the paper is as follows. Section 3
presents background material about Computable Analysis, which will be needed

in Section 4 to state the main result. We then proceed in the following sections
with its proof.

3 Computable Analysis

Computable Analysis is an extension of the classical theory of computation to
sets other than N due to Turing [17], Grzegorczyk [18], and Lacombe [19]. Several
equivalent approaches can be used (equivalence results can be obtained in [20])
for considering computability over R

n: using Type-2 machines [20], using oracle
Turing machines [11], or using modulus of continuity [21], [11], among other
approaches.

In this paper we will use the approach of Ko in [11], based on oracle Turing
machines.The idea underlying [11] to compute over R

n is to encode each element
x ∈ R

n as a Cauchy sequence of “simple rationals” with a known “simple” rate of
convergence. In [11] Ko uses sequences of dyadic rational numbers, i.e. rationals
of the type m

2n
for some m ∈ Z and n ∈ N. Then a sequence of dyadic rational

numbers {dn/2n}n∈N
represents a real number x if |x − dn/2n| ≤ 2−n for all

n ∈ N. It is easy to represent points in R
k using dyadic sequences (use k sequences

of dyadic rationals, each coding a component of x). Since C ≃ R
2, this approach

can be used to compute with elements of C. Note that what defines a sequence
of dyadic rational numbers {dn/2n}n∈N

is the sequence {dn}N
, which is nothing

more than a function f : N → N defined by f(n) = dn. Therefore one can define
the notion of computable point in R: it is a point which can be coded by a
sequence {dn/2n}

N
such that the function f : N → N defined by f(n) = dn is

computable. By other words, a computable point is a point for which we can
compute an arbitrary rational approximation in finite time. Similarly one can
define computable points in R

k and C
k. Ko also deals with complexity: a point

x is polynomial time computable if one can compute a dyadic rational which
approaches x with precision ≤ 2−n in time polynomial in n.

Having worked with computability of points in R
n and C

n, one can also define
computability of functions f : R

k → R
j and g : C

k → C
j . In essence, a function

f is computable if there is some oracle Turing machine that, using as oracles
functions which encode the argument x of f and as input a number n ∈ N,
it can compute in finite time a rational approaching f(x) with precision 2−n.
Similarly, if this rational approximation can be computed in time polynomial in
n, we say that f is polynomial time computable. Precise details of this discussion
can be found in [11].

4 Main result

Let f : C
d → C

d be an analytic function on C
d and t ∈ R, x0 ∈ C

d. We are
interested in computing the solution of the initial-value problem

{

ẋ(t) = f(x(t))
x(t0) = x0.

(2)

It is well-known that if f is analytic then (2) has a unique solution which is
analytic on its maximum life interval. We are interested in obtaining sufficient
conditions that guarantee x(t) to be polynomial time computable.

4.1 Necessary condition: poly-boundedness

We first observe an easy necessary condition: if x(t) is polynomial-time com-
putable, then x(t) can not grow too fast, as a Turing machine can not write
more than t symbols in time t. Formally, we introduce the following concept.

Definition 1 (Poly-bounded function). A function f : C
d → C

d′

is poly-
bounded (or p-poly-bounded) iff there is a polynomial p such that

∀x ∈ C
d \ {0}, ‖f(x)‖ 6 2p(log

2
⌈‖x‖⌉). (3)

Without loss of generality, we can assume that p is an increasing function on
R

+
0 (replace each coefficient in polynomial p by its absolute value if needed). We

then get the following theorem

Theorem 1. If f : C
d → C

d′

is polynomial-time computable, then f is poly-
bounded.

4.2 Sufficient condition: our main result

Our main result can be formulated as follows:

Theorem 2 (Main result). Let x(t) be the solution of the initial-value problem
(2). Assume that

– f is analytic and polynomial-time computable on C
d;

– x0 is a polynomial-time computable vector of complex numbers
– t0 is a polynomial-time computable real number
– function x(t) is poly-bounded over C

then function x(t) is polynomial-time computable.

Actually, we can even say more – the transformation is effective, if one adds
the hypothesis that f is also poly-bounded.

Theorem 3 (Main result: Effective version). Fix a polynomial p. Keep the
same hypothesis, but in addition, restrict to functions f that are p-poly-bounded.

Then the transformation is effective and even polynomial time computable:
the functional that maps f , x0, t0, and t to function x(t) is polynomial time
computable.

Remark 2. From Theorem 1, even if f is not assumed poly-bounded, we know
it is p-poly-bounded for some p, as it is assumed polynomial-time computable.
However, the problem is that we cannot compute in general polynomial p from
f , and hence we have to restrict Theorem 3 to functions f with given p.

The whole idea behind the proof of above theorem is to compute the solution
of (2) in polynomial time in some fixed neighborhood of x0, using Picard’s clas-
sical method of successive. From this solution we can compute the coefficients
of its Taylor series expansion, which allow us to compute the solution on its
maximal interval of definition using the hypothesis of poly-boundedness. All the
construction can be done in polynomial time. A sketch of proof is presented in
the following two sections.

5 On analytic functions

We first need to state some basic facts about analytic functions in order to be
convinced that the complexity of computing an analytic function is the same
as the complexity of computing the coefficients of its Taylor series. This is the
purpose of the current section.

5.1 From the function to the Taylor series

The following theorem is known.

Theorem 4 ([22], [23]). If f is complex analytic and polynomial-time com-
putable on a neighborhood of x0, where x0 is a polynomial-time computable
complex number, then the sequence of its Taylor series coefficients at x0 is
polynomial-time computable.

This holds for one and multi-dimensional functions. We will actually use the
following variant of the theorem, obtained by observing that if f is analytic
on C

d, then f is analytic on a neighborhood of x0 and if f is polynomial-time
computable on C

d, then f is polynomial-time computable on a neighborhood of
x0, and that the proof of [23] is rather effective.

Theorem 5. If f is analytic on C
d and polynomial-time computable on C

d,
then the sequence of coefficients {aα}α of its Taylor series at x0, where x0 is a
polynomial-time computable complex number, is polynomial-time computable.

Fix a polynomial p, and restrict to functions f p-poly-bounded: The functional
that maps f , x0, and α to the corresponding coefficient aα is polynomial time
computable.

5.2 From the Taylor series to the function

Theorem 5 is important because it allows us to go from the function to its
coefficients. But it is only interesting if we can have the converse, that is if we
can go from the coefficients to the function.

The next theorem gives sufficient conditions so that this can happen. A sim-
ilar theorem is already proved in [23] for the case of a polynomial-time com-
putable function on a compact. However, since we consider functions defined on
unbounded sets over C

d, this requires a different proof, which is omitted here
for reasons of space.

Theorem 6. Suppose f : C
d → C is analytic and poly-bounded on C

d and that
the sequence {aα} of its Taylor series at x0, where x0 is a polynomial-time com-
putable complex number, is polynomial-time computable. Then f is polynomial-
time computable on C

d.

Even if we can’t pinpoint a polynomial p satisfying a poly-boundedness con-
dition for f , the mere knowledge that f is poly-bounded allows us to conclude
that f can be computed in polynomial time, by using the previous proof. In this
case, we do not know a precise polynomial bound on the time complexity for
computing f , but we do know that such bound exists.

6 Proof of main result

6.1 The special case of integration

We first state a basic result for the case of integration: observe that integration
can be considered as a very specific case of our general theorem.

Theorem 7. If f is analytic, poly-bounded on C, polynomial-time computable,
and x0 is a polynomial-time computable complex number, then

g(x) =

∫

γx

f(z)dz where γx =

{

[0, 1] → C

t 7→ (1 − t)x0 + tx

is analytic, poly-bounded and polynomial-time computable on C.
Moreover, if one fixes a polynomial p and considers only functions f which

are p-poly-bounded, then the transformation is effective and even polynomial time
computable: the functional that maps f , x0 and x to g(x) is polynomial time
computable

Remark that the previous theorem implies that the transformation which
computes g(x) =

∫ x

0
f(z)dz for x ∈ R is also computable. Again, we can go

to the version where we don’t have explicit knowledge of the polynomial which
yields poly-boundedness for f .

6.2 On Lipschitz constants

We will need a result about analytic functions (mainly derived from multi-
dimensional Cauchy integral formula) that are poly-bounded.

Proposition 1. If f : C
d → C

e is analytic and p-poly-bounded then for each
R > 0 there is a K(R) > 0 such that

∀x, y, ‖x‖, ‖y‖ 6 R ⇒ ‖f(x) − f(y)‖ 6 K(R)‖x − y‖

with
K(R) 6 2q(log

2
⌈R⌉)

where q(x) = p(2 + 4x) + Ad and Ad is a polynomial-time computable constant
in d.

6.3 Proof of Theorem 3

We can now go the proof of Theorem 3. Theorem 2 is clearly a corollary of it,
forgetting effectivity.

We can assume, without loss of generality, that t0 = 0 and x0 = 0. Consider
the following operator

W (u)(t) =

∫ t

0

f(u(ξ))dξ.

Because z is a solution of (2) we easily have

W (z)(t) =

∫ t

0

f(z(ξ))dξ = z(0) +

∫ t

0

ż(ξ)dξ = z(t)

Thus z is a fixed point of W . Now consider the following sequence of functions

{

z0(t) = 0
zn+1 = W (zn).

Obviously z0 is analytic. Furthermore, one can easily show by induction (us-
ing Theorem 7) that for all n ∈ N, zn is analytic and polynomial-time com-
putable. More importantly, one can compute effectively zn(t) in polynomial time
in n. Indeed, it is just the iteration of the constructive part of Theorem 7.

Now the crucial idea is that zn uniformly converges to z but only on a (really
small) compact near 0. Using this result we will use Theorem 4 to extract the
coefficients of z and by using the hypothesis on the boundedness of z we will
obtain z.

First of all, we need a uniform bound of zn (in n). We already know, by
hypothesis, that

‖z(t)‖ 6 2p(log
2
⌈|t|⌉).

Now apply Proposition 1 to f . Let s be a polynomial such that f is s-poly-
bounded and let q be the polynomial of Corollary 1 such that

∀R > 0,∀x, y ∈ C
d, ‖x‖, ‖y‖ 6 R ⇒ ‖f(y) − f(x)‖ ≤ K(R)‖x − y‖ (4)

where K(R) = 2q(log
2
⌈R⌉). Let M = 2p(0),R = 2M , T = 1

2K(R) so that

|t| 6 1 ⇒ ‖z(t)‖ 6 M (5)

We will show by induction that

|t| 6 T ⇒ ‖zn(t) − z(t)‖ 6 2−nM. (6)

This is trivial for n = 0 because z0(t) = 0 so if |t| 6 T then |t| 6 1 (we assume,
without loss of generality, p(0) ≥ 0 which implies R ≥ 2, and q(0) ≥ 1, which
implies T 6 1) and, by (5) ‖z0(t) − z(t)‖ = ‖z(t)‖ 6 M.

For n > 0, suppose that |x| 6 T . Then

‖zn+1(x) − z(x)‖ = ‖W (zn)(x) − W (z)(x)‖

=

∥

∥

∥

∥

∫ 1

0

(f(zn(tx)) − f(z(tx)))xdt

∥

∥

∥

∥

6

∫ 1

0

‖f(zn(tx)) − f(z(tx))‖xdt.

But now recall that:

– ‖z(x)‖ 6 M 6 R = 2M by definition
– ‖zn(x)‖ 6 ‖z(x)‖ + ‖zn(x) − z(x)‖ 6 M + 2−nM 6 2M = R

So we can apply (4) and obtain

‖zn+1(x) − z(x)‖ 6

∫ 1

0

‖f(zn(tx)) − f(z(tx))‖xdt

6

∫ 1

0

K(R)‖zn(tx) − z(tx)‖xdt

6

∫ 1

0

2−nM

2T
xdt

6 T
2−nM

2T

6 2−n−1M.

Now that we have (6), the problem is easy because we can uniformly ap-
proximate z on B(0, T) with an arbitrary precision which is exponential on the
number of steps. To put it differently, we proved that z is polynomial-time com-
putable on B(0, T). Remark that in B(0, T) both z and zn are bounded by 2M ,
which can be computed in polynomial time from p. Hence z and zn are poly-
bounded by the same (constant) polynomial in B(0, T) (the behavior outside
this interval is irrelevant for our considerations) and from Theorem 7, the same
polynomial time bound can be used to compute all the zn and z, thus avoiding
the potential problem of having increasing (polynomial) time with n (e.g. dou-
bling in each increment of n) which could yield to overall computing time more
than polynomial.

We can now use a mix of Theorem 4 and Theorem 5 to get the fact that
we can compute the Taylor series of z in 0 in polynomial time (indeed, we only
need to know how to compute z on a open ball around 0). And now, applying
Theorem 6, we know that z is polynomial-time computable because we know by
hypothesis that it is poly-bounded.
Furthermore, the whole process is polynomial-time computable because we gave
explicit bounds on everything and then it is just a matter of iterating a function
and applying two operations on Taylor series at the end.

7 Conclusion

In this paper we have studied the computational complexity of solving initial-
value problems involving analytic ordinary differential equations (ODEs). We
gave special importance to solutions defined on unbounded domains, where the
traditional assumption of numerical analysis – Lipschitz condition for the func-
tion defining the ODE – is no longer valid, making the analysis of the system
non-trivial.

We have shown that if the solution has a (very generous) bound on its growth
rate – poly-boundedness – then the solution of the initial-value problem can be
computed in polynomial time as long as f in (2) admits an analytic extension
to C

d.
Although the poly-boundedness condition is very generous and encompasses

“usual” ODEs, it would be interesting to know if we can substitute the poly-
boundedness condition by a more natural one. Note that some kind of assumption
over the polynomial differential equations must be used, since their solutions can
be, for example, a function of the type

22···
2

x

(see e.g. [24]) which is not poly-bounded and hence not polynomial-time com-
putable by Corollary 1.

A topic for further work concerns the computational complexity of solving
partial differential equations. This is quite interesting since research from Mills
et al. suggest that from a complexity point of view, the EAC mentioned in
the introduction may beat the Turing machine. It would be a significative hall-
mark for the EAC if one could decide theoretically if the EAC may or may
not have super-Turing power for certain tasks, from a computational complexity
perspective. However this problem seems to be quite difficult due to the lack
of theoretical tools which might help us to settle the question. For instance,
despite huge efforts from the scientific community, no existence-uniqueness the-
orem is known for partial differential equations, even for certain subsets like
Navier-Stokes equations.

Acknowledgments. This work has been partially supported by the IN-
RIA program “Équipe Associée” ComputR. O. Bournez and A. Poulay were
supported by ANR project SHAMAN. D. Graça was partially supported by
Fundação para a Ciência e a Tecnologia and EU FEDER POCTI/POCI via
SQIG - Instituto de Telecomunicações.

References

1. Shannon, C.E.: Mathematical theory of the differential analyzer. J. Math. Phys.
MIT 20 (1941) 337–354

2. Bush, V.: The differential analyzer. A new machine for solving differential equa-
tions. J. Franklin Inst. 212 (1931) 447–488

3. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals.
J. Complexity 19(5) (2003) 644–664

4. Graça, D., Zhong, N., Buescu, J.: Computability, noncomputability and unde-
cidability of maximal intervals of IVPs. Trans. Amer. Math. Soc. 361(6) (2009)
2913–2927

5. Collins, P., Graça, D.S.: Effective computability of solutions of differential in-
clusions — the ten thousand monkeys approach. Journal of Universal Computer
Science 15(6) (2009) 1162–1185

6. Pour-El, M.B., Richards, J.I.: A computable ordinary differential equation which
possesses no computable solution. Ann. Math. Logic 17 (1979) 61–90

7. Demailly, J.P.: Analyse Numérique et Equations Différentielles. Presses Universi-
taires de Grenoble (1991)

8. Smith, W.D.: Church’s thesis meets the N-body problem. Applied Mathematics
and Computation 178(1) (2006) 154–183

9. Perko, L.: Differential Equations and Dynamical Systems. 3rd edn. Springer (2001)
10. Ruohonen, K.: An effective Cauchy-Peano existence theorem for unique solutions.

Internat. J. Found. Comput. Sci. 7(2) (1996) 151–160
11. Ko, K.I.: Computational Complexity of Real Functions. Birkhäuser (1991)
12. Kawamura, A.: Lipschitz continuous ordinary differential equations are

polynomial-space complete. In: 2009 24th Annual IEEE Conference on Computa-
tional Complexity, IEEE (2009) 149–160

13. Müller, N., Moiske, B.: Solving initial value problems in polynomial time. In: Proc.
22 JAIIO - PANEL ’93, Part 2. (1993) 283–293

14. Müller, N.T., Korovina, M.V.: Making big steps in trajectories. Electr. Proc.
Theoret. Comput. Sci. 24 (2010) 106–119

15. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. 4th edn. John Wiley &
Sons (1989)

16. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations.
McGraw-Hill (1955)

17. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. (Ser. 2–42) (1936) 230–265

18. Grzegorczyk, A.: On the definitions of computable real continuous functions. Fund.
Math. 44 (1957) 61–71

19. Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou
plusieurs variables réelles III. C. R. Acad. Sci. Paris 241 (1955) 151–153

20. Weihrauch, K.: Computable Analysis: an Introduction. Springer (2000)
21. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer

(1989)
22. Ko, K.I., Friedman, H.: Computational complexity of real functions. Theoret.

Comput. Sci. 20 (1982) 323–352
23. Müller, N.T.: Uniform computational complexity of taylor series. In Ottmann, T.,

ed.: 14th International Colloquium on Automata, Languages and Programming.
LNCS 267, Springer (1987) 435–444

24. Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial dif-
ferential equations. Adv. Appl. Math. 40(3) (2008) 330–349

