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Reciprocity Gap Method

13.1. Introduction

The class of problems discussed in this chapter concerns the identification of
sources, cracks, boundary conditions or physical parameters on the inner surfaces of
a body for which we possess overspecified data on the outer surface of the body.

The direct problem is usually defined as the determination of a solution inside
the body from knowledge of its geometry, material data and boundary conditions.
The so-called “primal formulation” describes the physical phenomenon and involves
the “natural boundary conditions” of the problem, which ensures the existence and
uniqueness of the solution. For a given mathematical operator representing the
physical phenomenon under scrutiny, for example electrical or thermal diffusion
or linear elasticity, overspecified data denote pairs of fields, typically representing
Neumann, Dirichlet or Robin boundary conditions when the Laplace operator is
under examination. Let us remark that for a well-defined direct problem, only one
of the specified fields is necessary to ensure the existence of the solution of the direct
problem.

In the case of an elastic problem, knowing both tractions and displacements at the
surface for a given problem setting constitutes an overspecified data pair. A similar
pattern for heat diffusion would be the simultaneous knowledge of the temperature
field and the heat flux on the boundary.

The classic approach to solve this type of problem is to define the unknowns
(cracks, inclusions, etc.) as a finite set of parameters, denoted by a vector x. The
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364 Full-Field Measurements and Identification in Solid Mechanics

overspecified data will be split into an “input” and an “output”. The direct problem
setting will provide now a solution u(x) using the input data and the “output” can
finally be compared with the additional output data. The two output data sets are
compared in almost all cases using a least squares cost functional expressed as
MC(u − um), where u and um are the computed and the measured output data,
respectively. The identification method becomes therefore a minimization algorithm:

arg min
x

MC[u(x)− um] [13.1]

The method is straightforward and can easily be implemented if a solver of the
direct problem is available.

This method requires numerous solutions to the direct problem and does not
usually enable the formulation of identifiability results, that is specifying whether or
not the available data are sufficient to uniquely identify the sought unknowns.

In the particular case where the data are overspecified on the complete outer surface
of the solid, another approach, called reciprocity gap, can be used. This allows us to:

– obtain without solving direct problems an infinite quantity of information
concerning the unknown elements;

– identify explicitly the elements in certain particular configurations.

The reciprocity gap method relies on a simple idea, generally denoted
as reciprocity, which underlines the symmetry of the operator describing the
underlying physics (steady-state diffusion, linear elasticity, etc.). Depending on the
area of application, reciprocity takes different names according to the physical
matter: Maxwell–Betti reciprocity in elastostatics, Rayleigh reciprocity in harmonic
elastodynamics, etc.

This property states that for a solid subjected to two different “loads” C1 and C2

and presenting the different responsesR1 and R2, respectively, the “work” of crossed
solicitations will be equal. More specifically, the “work” defined as the loading C1 in
response R2 equals that of C2 in R1. This fundamental property defines self-adjoined
operators in mathematical theories and leads to symmetric “stiffness” matrices in the
finite element methods.

The idea behind the reciprocity gap method is to analyze the gap in reciprocity
between the actual field in the real solid that provided the measurements and a
fictitious solution field in a fictitious solid in the absence of the unknown elements
(cracks, inclusions, sources, etc.). When comparing the two fields, the property of
reciprocity is not verified; however, the scalar value of this difference provides access
to the “difference” between the real domain and the fictitious solid in the absence
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Reciprocity Gap Method 365

of the unknown elements. This difference will further enable the identification of the
unknown elements.

As a fictitious solid, we can take the homogeneous solid that can be embedded
in an infinite domain, and as such we gain access to an infinite class of closed-form
solutions of the direct problem for the fictitious domain. The reciprocity gap provides
information about the unknowns from a straightforward integral computation on the
boundary.

In several cases, the acquired information can lead to theoretical identifiability
results and provide a convenient reconstruction method based on closed-form
expressions for the unknowns. One such case is the identification of flat (planar) cracks
in electrostatics.

In this chapter, we present three simple examples of identification using the
reciprocity gap: (1) identification of planar cracks in steady-state diffusion (thermal
or electrical conduction), (2) thermal sources and (3) planar cracks in linear
thermoelasticity using only displacement fields for the identification.

13.2. The reciprocity gap method

The Maxwell–Betti reciprocity theorem in elasticity is equivalent to the symmetry
property of the bilinear form a(u,v), describing the weak formulation of the direct
problem. Let us consider the balance of linear momentum of an elastic body Ω, with
a boundary ∂ Ω and unit outward normal n:

a(u,v) = a(v,u) ∀(u,v) ∈ V2 [13.2]

a(u,v) =
Ω

ε[u]:A: ε[v] dΩ [13.3]

where A denotes the fourth-order elastic stiffness tensor and V denotes the set of
displacement fields with finite deformation energy.

Using a similar pattern, we can access a Maxwell–Betti-type reciprocity property
for all operators describing a physical setting, provided the underlying operator has
the previous symmetry. The following list provides a series of examples of symmetric
bilinear operators and the corresponding operators of natural boundary conditions σ:

– harmonic elastodynamics at fixed frequency:

a(u,v) =
Ω

ε[u]: A: ε[v] dΩ− ω2

Ω

ρu · v dΩ [13.4]

σ[u] · n = (A: ε[u]) · n [13.5]
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366 Full-Field Measurements and Identification in Solid Mechanics

where u,v are the real and virtual displacement fields, ε is the small strain operator
and σ is the stress operator.

– steady-state diffusion (electric conduction heat problem):

a(u, v) =
Ω

∇u · k · ∇v dΩ [13.6]

σ[u] · n = (k · ∇u) · n [13.7]

where u, v are the real and virtual potential temperature or electrical potential fields,
respectively, and σ is the operator describing the boundary flux.

– harmonic acoustics (Helmholtz equation):

a(u, v) =
Ω

∇u · k · ∇v dΩ− ω2

Ω

u · v dΩ [13.8]

σ[u] · n = (k · ∇u) · n [13.9]

where u, v are the real and virtual acoustic potential fields, and σ is the acoustic flux
operator.

The general setting is therefore a problem that admits a weak formulation of the
type a(u, v) = l(v), where l(v) is the linear application of the work of surface forces.
The work l(v) is associated with the natural boundary conditions of the problem under
consideration and a is a symmetric bilinear application.

The reciprocity property states that two linear applications l1 and l2, expressing
the work of external forces producing the solutions u1 and u2, respectively, of the
underlying problems:

a(ui, v) = li(v) ∀v ∈ V i = 1, 2 [13.10]

will equate the crossed work of the corresponding solutions:

l1(u2) = l2(u1) [13.11]

The boundary integrals involve the operator σ of the natural boundary conditions
associated with the bilinear application a, defined in the next equation:

∀u ∈ V : a(u, v) =
∂Ω

(σ[u] · n) · v ds ∀v ∈ V [13.12]

The precise definition of σ for a series of physical models was presented in the
previous list.
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Reciprocity Gap Method 367

The identification problems discussed in this chapter can be expressed using this
general framework under the following form:

The measured experiment or the applied load leads to a field u verifying:

a0(u,w) + a1(u,w) = l(w) +
∂Ωext

f · w ds ∀w ∈ V [13.13]

In this expression, the linear application l (denoting sources or boundary
conditions on interior boundaries) and the bilinear application a1 (denoting
material characteristics, inclusions, etc.) are unknown. We possess complete field
measurements of u = U on the complete boundary of the domain.

The inverse problem seeks to determine l and a1 from the overspecified boundary
data (U, f).

13.2.1. Definition of the reciprocity gap

The reciprocity gap is a linear application defined over the space of potentials with
finite energy by the following expression:

R =
∂Ωext

(f · v − Uσ0[v] · n) ds [13.14]

This linear application is computed by integration on the external boundary of the
domain and involves only known quantities. Hence, for its computation, we do not
need to solve any direct problem.

The interest of this definition lies within the fundamental property of the
reciprocity gap, which involves as fictitious fields v of V “in balance” under the known
bilinear form A0 with surface fluxes and tractions on the outside boundary. Let us
further denote this space by Veq

A0
. A complete definition is given by:

Veq
a0

= v ∈ V a0(v, w) =
∂Ωext

(σ0[v] · n) · w ds ∀w ∈ V [13.15]

13.2.2. Fundamental property of the reciprocity gap

For all potential fields, the reciprocity gap can also be expressed using the
following expression:

R(v) = (v)− a1(u, v) ∀v ∈ Veq
a0

[13.16]
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The proof of this property is straightforward. Indeed, taking as a test field w = u
in the characterization of v, and w = v in the equilibrium condition of u, we obtain
only:

a0(v, u) =
∂Ωext

(σ0[v] · n) · u ds [13.17]

and

a0(u, v) + a1(u, v) = (v) +
∂Ωext

f · v ds [13.18]

The sought equality follows from the difference of the previous equation, simple
algebra and the symmetry of the bilinear application a0, which is the essential property
here.

For each equilibrated potential field v, we can obtain, by computing the reciprocity
R(v) directly from its definition, that is a boundary integration, valuable information
about the main unknowns of the problems and a1. The technique of the reciprocity
gap method is reduced essentially to the wise choice of the fictitious potentials v.
This technique leads to either theoretical identification results or constructive partial
or complete reconstruction results. The theoretical identification results answer the
following question: does a unique pair ( , a1) exist? In other words, does there
exist a single set of sources, cracks, inclusions for which the response of the solid
coincides with the measured boundary data? The reconstruction techniques provide
methodologies for completely or partially characterizing inclusions, cracks, sources,
etc., contained in the solid.

The chapter next presents a series of examples of such results. Note that no
direct problem solving is required to apply the reciprocity gap method if analytical
expressions of the auxiliary fields v are available. The calculations are limited to
integrations on the surface of the body under scrutiny. This specificity of the method
gives rise to an extremely fast and efficient identification technique. However, we
should take into consideration its two major limitations: (1) the need for data over
the entire boundary of the solid and (2) the lack of a systematic method for choosing
the fictitious potential fields v.

Some proposals for reducing both limitations have been made, but they are beyond
the scope of this chapter.

13.3. Identification of cracks in electrostatics

In the case of flat planar cracks, it is possible to formulate closed-form expressions
of the normal of the plane containing one or more cracks, the complete position of the
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plane and even the complete extension of the crack in this plane. Let us now analyze
the case of the steady-state heat conduction problem.

In thermal balance, if the heat flux over the boundary is known to be equal to f ,
the partial differential equations of the underlying problem are described for a thermal
conductivity k and a temperature field T as:

div(k∇T ) = 0 in Ω, k∇T · n = f on ∂Ωext [13.19]

If the body under discussion, Ω, contains a crack Γ, its boundary ∂Ω is defined by
the external surface ∂Ωext and the crack lips Γj , j = 1, N (see [13.1]).

Figure 13.1. Flat planar cracks in the interior of a body

Let us assume that on the crack lips Γj , j = 1, N , the boundary conditions are
defined as a nonlinear contact resistivity, that is a relation representing the normal flux
with the temperature jump over the lips: [[T ]].

k∇T ·N j = rj([[T ]])on Γj, ∀j = 1, etc., N [13.20]

Let us finally assume that the temperature is measured on the outer surface of the
body and the field Tm is known.

Under these conditions, the reciprocity gap is defined as:

R(v) =
Ωext

[f · v − (k∇v · n) · Tm] ds [13.21]
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A series of straightforward computations conclude that the fundamental property
of the reciprocity gap is given by:

R(v) =
j=1,N

∇v ·N j [[T ]] ds ∀v such that divk∇v = 0 in Ω [13.22]

13.3.1. Identification formulas for the plane of the crack(s)

Let us suppose that the cracks are situated within the same plane Π of unit normal
N . The choice of linear fictitious auxiliary functions v, more precisely coordinate
projections of the current point x:

xi(x) = xi i = 1, 2, 3 [13.23]

leads to the following formulas defining the unit normal of the plane and the mean
value of the temperature jump over the crack:

N =
L

L
L = R(xi)ei i = 1, 3 [13.24]

and

N

j=1

ej
Γi

[[T ]] ds =
1

k
L , [13.25]

respectively.

Similarly, we can completely determine the plane Π using quadratic fields. In this
case, it is important to be aware of the fact that not all quadratic fields are harmonic
and, therefore, do not satisfy the balance conditions over a homogeneous body, that
is an area without cracks. However, by effecting a change of reference frame xk k =
1, 2, 3 with coordinate x3 directed along the normalN that has just been determined,
the equation for plane Π is given by x3 +C = 0. Constant C is obtained by using the
auxiliary field:

v(x) = x22 − x23 [13.26]

As the normal to the crack plane is oriented toward x3, we obtain:

∇v ·N = −2x3
The integration of reciprocity for the heat equation [13.22] over the plane of the

crack defined by x3 +C = 0, for the particular field v defined previously, leads to the
following value of the constant:

C =
1

2 L
R(x22 − x23) [13.27]
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These formulas show that a single measurement identifies the plane including the
cracks and that its determination requires only four simple calculations:

(i–iii) for i=1,2,3:

R(xi) =
Ωext

[fxi − kniT
m] ds

(iv)

R(x22 − x23) =
Ωext

f(x22 − x23)− k(x2n2 − x3n3)T
m ds

An illustration of an indentified crack plane is shown in Figure 13.3. It is
interesting to note that better accuracy for the plane position is obtained in a finite
element computation when it is quadratic in the calculation of the temperature T and
the auxiliary fields. The error observed for linear elements derives directly from the
approximation error of quadratic fields with such elements.

The identifiability condition derives from the previous arguments:

Γ

[[T ]] ds = 0 [13.28]

This condition is interpreted simply by the requirement that the stress applied
to a solid generally “excites” the cracks. The cracks are detectable only if they are
illuminated by a temperature discontinuity (because the source absence imposes the
continuity of heat flow). If the loading does not lead to these discontinuities, the test
is not relevant. Figure 13.2 shows such a situation.

13.3.2. Complete identification of cracks

Once the crack plane is completely determined, it is possible to choose further
auxiliary fields to completely identify the extension of the crack, and more precisely
to determine their position and shape in the plane. The shape in the plane will be
reconstructed from the Fourier decomposition of the temperature jump in planeΠ. The
reconstruction is based on a mathematical result that ensures that the support of the
cracks coincides with the support of the temperature discontinuities. In other words, it
is physically impossible for the temperature discontinuity to vanish on a measureable
part of the finite field occupied by the cracks (see Figure 13.4).
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372 Full-Field Measurements and Identification in Solid Mechanics

0.

1.

Figure 13.2. Example of a loading that does not enable the identification of
planar cracks. Gray levels are isovalues of the potential u

Quadratic elements TRI6

Linear elements TRI3

0.

1.

Figure 13.3. Identification example of the position of the plane of the crack for
reconstructions using linear or quadratic finite elements for the representation

of the temperature T and the auxiliary function v
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x1

x2

[[ T ]]

Figure 13.4. Extension of the temperature discontinuity [[T ]] with a zero field
in a rectangle R containing the intersection of plane Π with body Ω

By extending the temperature jumps [[T ]] with zero outside the cracks in the
rectangle R = [0, L] × [0, H ], which contains the intersection of plane Π with body
Ω, and by using auxiliary fictitious functions wcc

pq, w
cs
pq, w

sc
pq , which are a combination

of sine and cosine functions, defined as:

wss
pq(X1, X2, X3) =

1

λpq

sin ρπ
X1

L
sin ρπ

X2

H
sinh λpqX3

λpq = π2
p2

L2
+

q2

H2

we obtain the following expression of the reciprocity gap:

R(wss
pq) =

R

[[T ]] sin ρπ
X1

L
sin ρπ

X2

H
dX1dX2 [13.29]

This expression enables us to recover the Fourier expansion of the temperature
discontinuity [[T ]].

Similar results have equally been obtained in linear isotropic elasticity (1) for the
Lamé operator in [AND 92] and (2) for the Helmholtz operator in [BEN 05]. The
result of the reconstruction using the Fourier expansion is shown in Figure 13.5.

13.4. Crack identification in thermoelasticity using displacement measurements

Let us consider a heterogeneous, isotropic and linear elastic body subjected only
to thermal loading. The stress–strain relation is, in this case, expressed as:

σ = A : (ε− αTI2) A
νE

(1 + ν)(1 − 2ν)
I2 ⊗ I2 +

E

1 + ν
I4 [13.30]
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where α is the thermal expansion coefficient, E is the Young’s modulus, ν is the
Poisson coefficient and T is the temperature increase with respect to the reference
temperature of the material. I2 and I4 will denote the fourth- and second-order
identity tensors, respectively.

Exact Reconstructed

Figure 13.5. Multiple cracks and non-convex cracks: temperature
discontinuities, original fields and their reconstructions [BEN 05]

An interesting test case is that of imposed, but not measured, thermal loading on a
traction-free solid. The measurement will imply only the displacement field ur on the
exterior surface.

In the case of small strain and neglecting inertial forces, the thermomechanical
balance equations and the transient heat equation are expressed by the following
expressions:

Thermal evolution Thermoelastic balance

inΩ\Γ ρcṪ − divk∇T = s divσ = 0

onΓ k∇T ·N = rT ([[T ]]) σ · n = r([[u]])

on ∂Ω k∇T · n = Φ σ · n = 0

on ∂Ω u = uD

inΩ\Γ T = T 0

where s is the heat source, Φ is the surface flux, T0 is the initial temperature, rT is the
thermal resistance and r is the contact stiffness of the cracks. All these parameters are
considered to be unknown.

12
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The reciprocity gap in terms of mechanical fields is defined for each time instant
t ∈ (0, D) in the now usual sense for the displacements and traction fields by the
formula:

Rt(v) = −
∂Ω

ur · (A: ε((v)) · n) ds [13.31]

where the traction-free condition at the exterior surface of the body has already been
taken into account.

For auxiliary displacement fields v, with the additional properties of assuring the
balance of forces and zero divergence, the interpretation of the reciprocity gap is given
by the following equation:

Rt(v) =
Γ

[[u]] · (A: ε(v) ·N) ds [13.32]

for all auxiliary displacement fields of the set:

Vdiv = v |
Ω

ε(v): A: ε(w) =
∂Ω

(A: ε(v)) · n ∀wwith divw = 0

[13.33]

The zero divergence property of the auxiliary fields partly erases the coupling with
the thermal problem. As a result, we can exploit only the displacement measurements
at the surface of the body and neglect the information about its thermal state.

Let us define the following auxiliary displacement fields with zero divergence:

vi(x) = 2(3xiei − x) i = 1, 3 [13.34]

w(x) = 2(x3x2e1 + x1x3e2 + x2x1e3) [13.35]

If the cracks are included in the plane Π of normal N , we obtain the following
expressions for the reciprocity gap tensor:

R̂ = devR = R− 1

3
(trR) I2 [13.36]

R =
1

2
(N ⊗U +U ⊗N) [13.37]

U =
Γ

[[u]] ds [13.38]
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The components of the tensor are related to the reciprocity gap as expressed in the
following relations:

– If i = j, then for k different from indices i and j, we have:

R̂ij =
1

8μ
Rt(w,k) k = j k = j

– If i = j, then:

R̂ii =
1

12μ
Rt(vi) (without summing)

The main question is how to retrieve the normal unit vectorN and the vector field
of the displacement dicontinuityU from the knowledge of R̂.

Let us consider the eigenvalues (λ1, λ2, λ3) of R̂, in decreasing order of
corresponding unit eigenvectors (g1, g2, g3). The vectors N and U are in one of
the two cases: they are either (1) colinear or (2) not colinear.

IfN and U are colinear vectors, then we have:

U = UN

and as a necessary condition, we further haveN = g1. Because R = UN ⊗N , the
eigenvalues of R̂ are related to U by the following relations:

λ1 =
2

3
U λ2 = λ3 = −1

3
U

if U > 0.

IfN and U are not colinear vectors, let us note:

U = Udu

Then, we can easily prove that u×N is colinear with g3. As a result, we obtain:

N = n1g1 + n3g3 du = n1g1 − n3g3

A complete discussion of the order of eigenvalues [AND 06] and the assumption
that U > 0 lead to the following relationship for directions 1 and 3:

n1 =

√
λ1 − λ2√
λ1 − λ3

n3 =

√
λ2 − λ3√
λ1 − λ3

14
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It is important to note that it is impossible to distinguish between the directionsN
and U .

In a practical application, it must be considered thatN will stay constant over time
while u varies, in general, with the load and therefore with time.

Finally, the amplitude of the displacement jump U is given by:

U =
Γ

[[u]] ds = λ1 − λ3

Once the normal is known (using the above formulas at least two different time
instants), the following change of coordinates can be performed: the vector E3 is
taken parallel to the normal to plane Π, which is now defined by x · e3 + C = 0.

We only need to identify constantC locating the affine plane containing the cracks.
This follows from the reciprocity gap computation for the auxiliary displacement
field h:

C = − 1

6μ
Γ

[[ux]] ds

Rt(h) with h = 3(x23 − x22)e1 [13.39]

13.5. Conclusions and perspectives

The reciprocity gap technique has a great advantage: that is its simplicity.
A number of identification problems have been solved from a theoretical or numerical
point of view. The identification of planar cracks for different families of auxiliary
fields has been discussed in the following cases:

– scalar diffusion equation, that is steady-state heat equation or electric
conductivity in [AND 92, AND 99, AND 96];

– transient heat equation in [BEN 01];

– transient acoustics (wave propagation with a scalar acoustic potential)
in [BUI 99]:

– elastostatics (diffusion equation with vector potential) in [BAN 97, BAN 99]

– elastodynamics (wave propagation with vector potential) in [BUI 04, BUI 05];

– small strain coupled thermoelasticity in [AND 06];

– damped elastodynamics with Zehner-type viscoelasticity (Helmholtz equation)
in [BUI 10];

– acoustic dispersion (Helmholtz equation with a scalar potential) [COL 05,
BEN 05];

15
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The disadvantage of the method, as indeed for a number of inverse problems, is
the necessity of knowing the measured fields over the complete outer boundary of
the body. The search for suitable ways to overcome this difficulty remains an open
problem for the years to come.
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