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Abstract

Components made of short fibre reinforced thermoplastics are increasingly used in the automotive industry, and more

and more frequently subjected to fatigue loadings during their service life. The determination of a predictive fatigue

criterion is therefore a serious issue for the designers, and requires the knowledge of the local mechanical response. As

the cyclic behaviour of polymeric material is reckoned to behighly nonlinear, even at room temperature, an accurate

constitutive model is a preliminary step for confident fatigue design.

This paper presents an extension of the constitutive behaviour proposed by the authors in a precedent work, in order

to take into account the influence of the local fibre orientation distribution (FOD) on overall anisotropic elastic and

viscoplastic properties. The proposed model is written in ageneral 3D anisotropic framework, and is validated on

tensile samples with various FOD and loading histories: monotonic tensions, creep and/or relaxation steps, cyclic

loadings.

Keywords: PA66 GF35, constitutive model, fibre orientationdistribution, nonlinear behaviour, anisotropic

behaviour

1. Introduction

1.1. Motivations

In order to reduce their environmental impact, carmakers wish to substitute heavy metallic parts by lightweight

composites structures. Short glass fibre reinforced (SGFR)thermoplastics are a cost-efficient solution which combines

sufficient stiffness for many structural components and a large freedom of shapes provided by injection moulding. The

choices of glass fibres and polyamide matrices are usual and motivated by cost and thermal stability respectively.

These materials have long been used by the automotive industry for components which do not undergo much

mechanical loading. They are now increasingly used to make structural parts such as intake manifolds or engine

mounts, which are subjected to complex and repeated mechanical loading as well as environmental conditions such as
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heat and humidity. Therefore, the need for a method to designthose components against fatigue failure has become a

serious issue during the last years, when different authorsbegan adressing the problem. For example, in part II of this

work [1], De Monte’s and Klimkeit’s recent fatigue experiments give the basis for a comparative study of different

fatigue criteria [2, 3].

1.2. Approaches for fatigue design

Fatigue damage, particularly for composite materials, is often considered as a continuous phenomena taking place

all along the lifetime of the structure and sometimes modelled as such. Continuum damage mechanics is an approach

which describes damage as an internal variable in the behaviour with its specific evolution law. Some authors have

developped constitutive equations for reinforced thermoplastics [4, 5]. The damage is zero for the virgin material and

increases until it reaches the value of one which defines failure. Although this approach relies on physical basis, it is

not convenient in an industrial context since it implies thesimulation of every load cycle from the very beginning until

the very end, when a macroscopic crack is initiated. The duration of such computations for automotive components

is prohibitive.

In cases where the cyclic response of the structure reaches asteady state, an alternative approach consists of un-

coupling the damage evolution from the constitutive behaviour. The local response of the material is then considered

to be repeatable after a few cycles, and any relevant mechanical variable can be computed for the steady-state cycle,

once and for all, and related to a number of cycles to failure.This approach has been successfully put into application

in the automotive industry for fatigue design of metallic structures [6, 7] as well as elastomeric components [8] under-

going nonlinear strain mechanisms. Experimental data fromthe literature regarding fatigue of SGFR thermoplastics

[9–11] show that macroscopic quantities (e.g. secant stiffness,hysteresis, cyclic damping, cumulated remanent strain

per cycle. . . ) do not vary much during load-controlled fatigue tests, provided that heat build-up is negligible. This is

the reason why we here adopt the second approach.

1.3. Cyclic behaviour: scale transition method or macroscopic modelling ?

Because of their multiphasic nature, SGFR thermoplastics have been extensively modelled by scale transition

methods. The macroscopic mechanical behaviour of the composite is deduced – through nonlinear homogenization

schemes – from constitutive models of the fibres and the matrix and from a representation of the microstructure [12–

15]. The fibres are usually considered as elastic whereas the matrix is nonlinear, with varying degrees of complexity.

These techniques yield interesting results since they naturally integrate the anisotropy in every aspects of the behaviour

(including inelastic ones). Moreover, they provide statistical information on the mechanical state inside the different

phases. However, they suffer one major drawback: because the process of homogenization must be performed at each

increment, finite element (FE) computations of industrial structures are excessively long. Additionnally, they stilldo

not give a very precise description of the cyclic response, which is required in case of fatigue analysis.
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Phenomenological models consider the material from a macroscopic point of view; they are better suited for

structural analysis. On the other hand, they usually involve numerous material parameters (especially in case of

anisotropy), the identification of which being possibly tricky and fastidious. This approach has thus not been very

applied to SGFR polymers, and works regarding the use of phenomenological models for this kind of material are

often limited to random orientation of the short fibres [16–19]. However, Andriyana et al. [20] have proposed a

phenomenological viscoelastic-viscoplastic model for the nonlinear response, in which the viscoplastic flow is formu-

lated according to the fibre orientation tensor. This work raises the idea of introducing microstructure information1

in a macroscopic model, which combines the advantage of a natural description of the anisotropy with an efficient

computation.

We have proposed in a previous work [21] a strategy for a robust identification of a nonlinear constitutive model

for SGFR polyamides. The method is based on the uncoupling ofthe influence of the different parameters, and

is validated for complex loading histories. Besides, this approach has been demonstrated as suitable for accurate

structural computations [22]. In this work, the same constitutive equations are considered, and are developed in order

to explicitely take into account the influence of the microstructure on the mechanical response.

1.4. Objectives and structure of the paper

Our goal is the estimation of fatigue life of SGFR polyamidesunder multiaxial loadings. The adopted approach

involves two steps: the computation of the cyclic mechanical response, and the suggestion of a local fatigue criterion.

This is the reason why our work is published in two parts. Thisfirst part aims at developing the already-published

constitutive model for the cyclic behaviour [21], since the mechanical response appears to be both nonlinear and highly

anisotropic. Such work is therefore required for an accurate simulation of multiaxial fatigue loadings, and provides

input data for any fatigue criterion relying on the knowledge of mechanical values in steady-state. The second step of

our approach, i.e. the choice of an appropriate fatigue criterion for SGFR polyamides, is the topic of Part II of this

work [1].

The outline of the paper is as follows. Section2 presents the experimental data which are used in this first part of

the work. In Section3, the constitutive equations for the cyclic behaviour are presented, and we focus on modelling the

influence of the microstructure on macroscopic mechanical properties. The proposed constitutive model is validated

in Section4 where numerical predictions are confronted to experimental data for various loading conditions. Section

5 discusses the existence of a steady-state mechanical response and the potential application to the choice of a fatigue

criterion. Eventually, final remarks and perspectives are given in Section6.

1In this work, the word “microstructure” only refers to the FOD; potential fibre clusters, fibre length distribution or matrix properties hetero-

geneities (e.g. cristallinity gradient) are neglected andwill not be further considered.
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2. Experimental data

2.1. Material of the study

The material of the study is an injection-moulded polyamide66 reinforced with 35 wt% of short glass fibres,

provided by DuPont de Nemours (DuPont™ Zytel® 70G35 HSLX). In the process of injection, the fibres are oriented

according to the viscous flow of the melted material, resulting in an inhomogeneous, anisotropic structure, as repre-

sented in Fig.1. In shell-like structures (the case of most industrial components), the mechanical properties are then

likely to vary both across the section thickness and along the spatial location on the shell, in addition to depend on the

material direction.
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Figure 1: Schematic representation of the skin-core microstructure resulting from the injection moulding process of a

fibre reinforced thermoplastic.

The polyamide matrix is also a source of complexity since itsmechanical response is highly inelastic, dependent

on the strain rate and on environmental conditions such as temperature and water content. The behaviour of the

resulting composite thus exhibits both the features of the polyamide and those induced by the distribution of the

fibres. Table1 recalls microstructural and elastic parameters of both matrix and fibre phases of the studied material

[21].

Polyamide 66

Environmental conditions Young modulus Poisson coef.

23○C, DAM 3064 MPa 0.38

23○C, RH50 1987 MPa 0.40

Glass fibres

Volume fraction Young modulus Poisson coef. Aspect ratio

19.5 % 72000 MPa 0.22 25

Table 1: Physical and mechanical properties of the studied PA66 GF35 at room temperature, in dry-as-moulded state

(DAM), or conditioned with air containing 50% of relative humidity (RH50).
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Figure 2: Injection simulation of the ISO527-2-1A tensile specimen withMOLDFLOW, and display of the average

fibre orientation over the thickness⟨a1⟩ = ∫ 4

0
a1(z) dz. 4242 triangular shell elements with 21 Gauss points through

the thickness are used for the numerical computation (“Fusion analysis”).

2.2. Experimental conditions and samples

In this paper (part I), the material is always considered at room temperature (T=23○C) and in conditioned state

(RH50). Two kinds of tensile specimens are studied:

• ISO527-2-1A injection-moulded specimens (see Fig.2), which have been used for the investigation of the

nonlinear cyclic response in a previous work [21];

• IOS527-2-5A specimens milled out of plates, at different anglesα = 0,30,45,60,90○ (see Fig.3). Moreover,

when the tensile specimen is parallel to the moulding flow direction (α = 0○), it may be milled out of the plate

in the central part or near the edge, where short fibres are aligned with more intensity.

A first description of the local FOD of each specimen is the second-order orientation tensor2, which is averaged

through the thickness and expressed in the global axes as:(e
1
, e

2
, e

3
):

aψ
ISO527-2-1A

=
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.916 −0.004 0.

−0.004 0.064 0.

0. 0. 0.020

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, aψ
plate, center

=
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.589 −0.004 0.

−0.004 0.402 0.

0. 0. 0.009

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, aψ
plate, edge

=
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.899 −0.102 0.

−0.102 0.084 0.

0. 0. 0.017

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

One should notice in Figs.2 and3 that the FOD in the gauge length of the tensile specimens is quite homogeneous.

3. Modelling the cyclic response of the composite

The mechanical response of SGFR thermoplastics, and especially of the studied PA66 GF35, is highly nonlinear.

The designer thus needs a constitutive model in order to describe the local mechanical variables, such as the dissipated

2See Sec.3.2.1for the meaning of notations regarding orientation tensors.
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Figure 3: Injection simulation of the plate withMOLDFLOW, and display of the average fibre orientation over the

thickness⟨a1⟩ = ∫ 2

0
a1(z) dz. The plate dimension is100× 100× 2 mm3 whereas the ISO527-2-5A tensile specimen

length is 75 mm (gauge length 20 mm, section4 × 2 mm2). 5476 triangular shell elements with 21 Gauss points

through the thickness are used for the numerical computation (“Fusion analysis”).

energy, the cumulated plastic strain, etc. A phenomenological approach for the cyclic behaviour has been proposed

by the authors [21].

The ability of the proposed model to describe complex loading histories has been demonstrated on a specific

grade of PA66 GF35 in DAM as well as RH50 conditions, at room temperature [21]. Loading rate dependency of

the apparent stiffness, long-term creep or relaxation effects have been successfully reproduced at low stress levels

thanks to Kelvin-Voigt elements. At higher stress levels, nonlinear viscoplastic mechanisms are activated, along with

nonlinear kinematic hardening. At last, a cyclic stiffnesssoftening has been depicted as a function of the viscoplastic

dissipated energy. The model has been identified and validated for one specific tensile sample geometry. In the

following, the proposed model is extended in order to take into account other microstructures.

3.1. Constitutive equations

The constitutive equations developed and physically justified in [21] are briefly recalled. We here emphasize the

link between the local fibre orientation and the overall mechanical properties.

The model lies in the framework of the generalized standard materials (GSM) [23, 24]. Five tensorial and one

scalar state variables are needed to define the current mechanical state, as well as their associated thermodynamic

forces:

• the overall strainε, external control variable, associated to the overall stress tensorσ;

• the long-term viscoelastic strainε
v1

, associated to the thermodynamic force for long-term viscoelasticityA
v1

;

• the short-term viscoelastic strainε
v2

, associated toA
v2

;

• the viscoplastic strainε
vp

, associated toA
vp

;
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• the hardening variableα, associated to the center of the pseudo-viscoplastic surfaceX;

• the cyclic stiffness softening variable, calledβ, and associated toAβ .

The overall strain is decomposed into :

ε = ε
e
+ ε

v1
+ ε

v2
+ ε

vp
(1)

whereε
e

is the instantaneous elastic strain. The state equations define the thermodynamic forces as functions of the

state variables:

σ = C
e(β) ∶ ε

e
(2)

A
v1
= σ −Cv1 ∶ ε

v1
(3)

A
v2
= σ −Cv2 ∶ ε

v2
(4)

A
vp
= σ (5)

X = −2C
3
α (6)

Aβ = −1
2
ε
e
∶ ∂Ce
∂β
∶ ε
e

(7)

whereCe andCvi stands for the fourth-order elastic tensor, used for the instantaneous elasticity or viscoelasticity.Ce

is anisotropic and depends on the microstructure (see Sec.3.2.2), whereasCv1 andCv2 are assumed to be isotropic

[20].

The softening depends on the variableβ according to the following equations:

C
e(β) = g(β) Ce(0) (8)

with g(β) = 1 − a(1 − exp(−β
b
))

The determination of the initial elastic tensorCe(0) in the general anisotropic case is discussed in Section3.2.2.

We define a yield functionf . Its formulation abides by the GSM framework [16, 24]:

f (σ,X,α) = Jvp + 3γ

4C
(X ∶ (2

3
P) ∶ X − 4C2

9
α ∶ (2

3
P) ∶ α) (9)

Jvp is the equivalent stress built on the tensorA
vp

centered onX:

Jvp =√(A
vp
−X) ∶ P ∶ (A

vp
−X) (10)

P is a fourth-order tensor introduced to generalize the von Mises (isotropic) equivalent stress to anisotropic microstruc-

tures (see Sec.3.2.3). The evolution equations describe the state variable rates as functions of the thermodynamic
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forces:

ε̇
v1
= 3

2η1
dev (A

v1
) (11)

ε̇
v2
= 3

2η2
dev (A

v2
) (12)

ε̇
vp
= A [sinh(Jvp

H
)]m ⋅ P ∶ (Avp −X)Jvp ≡ ṗ ⋅ n

vp
(13)

α̇ = −ṗ(n
vp
+
2

3
γP ∶ α) (14)

β̇ = ε̇
vp
∶ C

e(β) ∶ ε
e
−
2C

3
α̇ ∶ α (15)

Let us remark that Eq.13 does not explicitely involve a plastic threshold. The formulation with an hyperbolic sine is

similar to the model of Delobelle et al. [25]. According to the GSM framework, the instantaneous dissipated energy

density equals the sum of the rates of each state variable multiplied by its associated thermodynamic force:

D = A
v1
∶ ε̇
v1
+A

v2
∶ ε̇
v2
+A

vp
∶ ε̇
vp
+X ∶ α̇ +Aβ ⋅ β̇ (16)

3.2. Taking into account the influence of the microstructure

3.2.1. Local microstructure and orientation tensors

The microstructure of a sample made of SGFR thermoplastics is defined by the local fibre orientation distribution

ψ. As this quantity cannot be computed for a whole structure, injection simulation softwares usually predict the statis-

tical moments of this distribution. These moments are called orientation tensors, according to Advani and Tucker III

[26]. aψ andAψ denote the second and fourth-order orientation tensor respectively. More specifically, onlyaψ is

computed by injection simulation softwares;Aψ is extrapolated fromaψ with a closure approximation.

In this work, we adopte the smooth orthotropic closure equation, suggested by Cintra and Tucker III [27]. If we

call ui the 3 eigenvectors ofaψ, associated to the eigenvaluesai (with a1 ⩾ a2 ⩾ a3, and∑i ai = 1), the fourth-order

orientation tensor is supposed to be orthotropic in the basis (ui)i=1,2,3. Its components are linear combinations ofa1

anda2,detailed in [27].

3.2.2. Influence of the microstructure on elastic properties

Overall elastic properties of a SGFR composite with any kindof microstructure (not necessarily random or uni-

directional) can be estimated by linear homogenization schemes. For example, the two-step homogenization method

has been proposed by Camacho et al. [28] and has been widely used in the literature [29–32].

The first step is the determination of an equivalent unidirectional composite, with for example the Mori-Tanaka

scheme. The overall mechanical elastic tensorCUD is transversely isotropic.CUD is characterized by five elastic

constantsKi. The second step is an orientation average of these elementary UD composites, according to their

orientation. A stiffness averaging is often suggested in the literature, which consists in a Voigt upper bound:

C
e(0) = ∫

Ω

C
UD(p)ψ(p) dω (17)
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This integral can be analytically determined if one knows the second and fourth-order orientation tensors:

C
e(0) =K1A

ψ
+K2(aψ ⊗ 1 + 1⊗ aψ) +K3D(aψ ,1) + 3K4J + 2K5I (18)

We recall the expression of the five independant constants ofa transversely isotropic stiffness tensor, as proposed by

Tandon and Weng [33]:

K1 = CUD
1111 − 2C

UD
1122 +C

UD
2233 − 4C

UD
1212 + 2C

UD
2323 (19)

K2 = CUD
1122 −C

UD
2233 (20)

K3 = CUD
1212 −C

UD
2323 (21)

K4 = CUD
2233 (22)

K5 = CUD
2323 (23)

In Eq. 18, we use the classical decomposition of the fourth-order unity tensor into spherical and deviatoric projectors

I = J + K. At last,D is an operator on second-order tensors defined by its components asDijkl(aψ,1) = aψikδjl +
a
ψ

il
δjk + a

ψ

jl
δik + a

ψ

jk
δil.

3.2.3. Influence of the microstructure on viscoplastic properties

The local fibre orientation distribution also affects the viscoplastic properties [20]. When loading a composite in

the direction where many fibres are aligned, it is obvious that the mechanical response is stiffer, but also less ductile

than when loading in a direction where few fibres are aligned.This explains why the viscoplastic equivalent stress

Jvp must therefore be built according to an anisotropic tensorP.

According to Hill [34]’s theory,P is orthotropic in local material axes(ui)i=1,2,3. Physically,P should lead to the

isotropic von Mises norm in the case of a random microstructure (isotropic case):

aψ = 1

3
1 ⇒ P ∝

3

2
K

In the general case, its components in directions with few aligned fibres must be greater, so that the equivalent vis-

coplastic stressJvp is more important, and the viscoplastic mechanisms are moreeasily activated. Hence, we propose

the following expression forP:

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2B D − (B +C) C − (B +D) 0 0 0

D − (B +C) 2C B − (C +D) 0 0 0

C − (B +D) B − (C +D) 2D 0 0 0

0 0 0 2E 0 0

0 0 0 0 2E 0

0 0 0 0 0 2E

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦(u

i
)

(24)

with 2B = (1 − a1)k, 2C = (1 − a2)k, 2D = (1 − a3)k and2E = (2
3
)k−1. k is an additional material parameter in-

troduced to describe the sensitivity of the viscoplastic mechanisms on the orientation distribution. We experimentally
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observed that a small variation of the orientation degree around a highly oriented microstructure (a1 close to 1) has a

greater effect on the overall mechanical properties, than asmall variation around a poorly orientation microstructure

(a1 equals1/3 for a random distribution). With help of Fig.4, one can conclude that this observation should lead to

values ofk between 0 and 1.

ai

P iiii

0 1

1

k = 1

0 < k < 1

k > 1

Figure 4: Evolution of the componentsiiii of tensorP (expressed in material axes) according to the eigenvalueai of

the second-order orientation tensor.

4. Numerical results

4.1. Monotonic tensile tests

The proposed model for the nonlinear anisotropic mechanical response has been validated on ISO527-2-5A ten-

sile samples milled out of injected plates (see Fig.3). The comparison between experimental data and numerical

predictions on monotonic tensions at two different loadingrate is displayed in Fig.5.

Let us remark that all material parameters are those identified on injected tensile specimen ISO527-2-1A, as

presented in [21]. The parameterk is additionally estimated by a least-square method from experimental results; its

value is 0.53, which is consistent with its physical interpretation (see Sect.3.2.3).

4.2. Complex loading histories

In Fig. 6, the same comparison between experimental data and numerical predictions is made for complex loading

cases:

• anhysteretic curves, which are a strain-controlled tensile tests interrupted by relaxation steps of 15 minutes;

• cyclic creep-recovery tests, which are stress-controlled tensile tests with creep and recovery steps of 15 minutes.

The imposed stress is increasing at each creep step, whereasthe stress during recovery steps is always null.

These tests are convenient to illustrate the highly nonlinear mechanical response and are full validation cases. The

compromise between modelling complexity (only one additional parameter,k – previously identified on monotonic

10
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Figure 5: Numerical predictions (continuous lines) versusexperimental data (symbols) on specimen milled out of

injected plates at different angles, for monotonic tensiletests.

tensions) and the accuracy of the mechanical prediction is fairly good. The proposed constitutive model is thus able

to reproduce complex loading histories on various microstructures.

One should notice that we implicitely made the hypothesis ofisotropic viscoelasticity in the model, since no

influence of the microstructure affects both long- and short-term viscoelastic responses. A possible improvement of

the model would consist in either suggesting a phenomenologic expression of the anisotropic viscoelastic moduliCvi

andHvi (3D anisotropic generalization of scalar parameterηi) or using homogenization schemes developed for linear

viscoelastic composites [15]. Such a work could improve the numerical predictions of creep steps (for example)

when the fibres are poorly oriented along the mechanical loading direction. However, the identification strategy

may be more complex or the computation time may be harshly increased. As the initial stiffness is well predicted

at 2.5 MPa/sas well as 250 MPa/s for all material orientations (see Fig.5), the hypothesis of isotropic short-term

viscoelasticity is mainly justified. The above-mentioned improvement would thus essentially regard the long-term

viscoelastic response. In view of the current extend of our work, we consider that the proposed model stands for a

good compromise.

4.3. Cyclic loading

Figure7 displays the application of the proposed constitutive model to cyclic loading. An injection moulded

ISO527-2-1A tensile sample is subjected to a sinusoidal stress signal at frequencyf = 1Hz, at amplitudeσa = 54

MPa, and at load ratioR = 0. The numerical response fits well the experimental data over the first 20 cycles (after

which the mechanical evolution is steady – see Sec.5); the residual strain evolution as well as the hysteretic area are

especially fairly predicted.

The constitutive model is thus suitable for the descriptionof cyclic loading in the nonlinear domain (where ir-
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Figure 6: Numerical predictions (continuous lines) versusexperimental data (symbols) on specimen milled out of

injected plates at different angles, for complex loading histories.

recoverable strains are activated). Additional experimental data regarding cyclic loadings for different orientation

distributions or multiaxial loadings would be yet interesting.

5. Discussion on the existence of a steady-state mechanical response

Our approach for fatigue design relies on the uncoupling between the determination of the cyclic mechanical

response and the application of a local fatigue criterion. Such an approach is justified since the response of the material

reaches a steady-state under fatigue loading. As depicted in Fig. 8, the experimental response may be interpreted as

the superposition of a cyclic partε(t) − ε and a static evolution of the mean strainε. This result is very similar to the

observations made by Bernasconi et al. [35]. Besides, Klimkeit et al. [9], as well as De Monte et al. [36], showed that

the static evolution depends on the load ratio and may be attributed to creep-fatigue coupling.

Figure9adisplays the evolution of the hysteretic area∆Wtot = ∫cycleσ dε according to the number of cyclesN .

It is shown that this mechanical value reaches a stabilized value after a few number of cycles, estimated at 20 in our

case. We consider that the cyclic part of the mechanical response has then reached a steady-state; in that case, the

hysteretic area equals the dissipated energy density per cycle,∆Wdiss= ∫cycleD dt. In the same manner, the evolution

of the residual strain, which is an indicator of cumulated viscoplastic strain, reaches an asymptotic linear evolution

after 20 cycles: the residual strain increment is then nearly constant.

The numerical simulation of load-controlled fatigue testsover 20 cycles gives access to some mechanical values

which are constant during fatigue life (e.g. stress components or stress invariants, provided that stress redistributions

are negligible), which reach a steady-state (e.g. dissipated energy density per cycle, plastic strain increment per cycle),

or which may continue to evolve (e.g. maximum strain, cumulated plastic strain). With help of Fig.7, it is clear
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Figure 7: Numerical predictions of the proposed constitutive model versus experimental data on injection moulded

ISO527-2-1A tensile specimen under sinusoidal stress-controlled loading.
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(a) Stress-strain response during fatigue test
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Figure 8: Evolution of the mechanical response during fatigue life (expressed in percentage of lifetime) of an injection

moulded ISO527-2-1A sample under stress-controlled sinusoidal loading. The centered strain is defined asε(t) − ε,
whereε is the mean strain over the current cycle.
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Figure 9: Evolution of the hysteretic area and the residual strain during tensile-tensile cyclic loadings on injection

moulded ISO527-2-1A samples at various stress amplitude (f = 1 Hz,R = 0).

that the numerical computation over 20 cycles gives fairly confident values for the determination of the mechanical

characterizing the steady-state: dissipated energy density, visplastic strain increment, stress or strain amplitudes, etc.

At last, one must be aware that the uncoupling between the simulation of the cyclic response and the application of

a fatigue criterion is fully justified regarding constant orstabilized mechanical values, but should be considered with

caution regarding still-evolving ones. This point will be deepened in Part II of this work [1].

6. Conclusions

This paper deals with the mechanical behaviour of short glass fibre reinforced polyamides under static and cyclic

tensile load. Constitutive equations proposed and validated in a previous work for one specific fibre orientation distri-

bution are generalized in order to take into account the influence of the microstructure on the mechanical properties.

A classical two-step homogenization scheme is used for the elastic tensor, whereas an original form of the Hill-like

equivalent viscoplastic stress is suggested, relying on the second-order orientation tensor. The proposed model is val-

idated for different load histories and different fibre orientations; only one additional material parameter is identified

to capture the anisotropy of the mechanical response in the nonlinear domain.

The proposed model is applied to stress-controlled cyclic tensile tests. It is shown that the numerical prediction,

calibrated on static and stepped static tensile histories,displays a good agreement with the experimental data. The

existence of a steady-state is discussed, and it is shown that 20 cycles are sufficient to observe a stabilization of some

macroscopic quantities, such as the dissipated energy density or the viscoplastic strain increment. However, cyclic
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loadings on tensile samples with different fibre orientations would be interesting in order to generalize these first

results to various microstructure.

Part II of this work will regard the application of the proposed constitutive model to multiaxial fatigue tests

published in the literature about SGFR polyamide [2, 3]. The goal is the choice of a criterion to estimate their fatigue

life under multiaxial fatigue loading which are representative of actual loadings encountered during the service lifeon

vehicules.
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