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Abstract: We present a new cost-effective terahertz linear polarizer
made from a stack of silicon wafers at Brewster’s angle, andevaluate
its performances. We show that this polarizer is wide-band, has a high
extinction ratio (> 6× 103) and very small insertion losses (< 1%). We
provide measurements of the temporal waveforms after linearly polarizing
the THz beam and show that there is no distortion of the pulse. We compare
its performances with a commercial wire-grid polarizer, and show that the
Brewster’s angle polarizer can conveniently be used to control the power of
a terahertz beam.
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1. Introduction

The Terahertz (THz) band of the electromagnetic spectrum experienced major breakthroughs
in the past two decades, thanks to the availability of ultrafast femtosecond lasers, and the de-
velopment of down-conversion elements such as photo-switch antennas or optical rectifica-
tion devices, which allow the production of single-cycle THz pulses [1, 2]. Much interest has
been applied to characterizing and manipulating the THz beams, but polarization handling is
still challenging, in particular due to the inherent broadband spectrum of the single-cycle THz
pulses [3]. The key elements of polarization control are polarizers and wave-plates and many
improvements emerged in recent years [4–7].

As terahertz polarizers, wire-grid polarizers adapted from microwave technology are readily
available [8] and can even be made by using a general-purpose printer [9], but they are not
inherently achromatic, and suffer from non-negligible losses. Glan-type polarizers are very
difficult to design in the terahertz range due to the lack of transparent birefringent crystals.
Other polarizers with good performance have been designed, such as double-grating polarizers
[10], layered media [11], wire-grid with Al gratings [12], carbon nanotubes [13] or polarizing
beam splitters [14]. However, they experience Fabry-Pérot-like echoes at interfaces, which alter
the shape of the THz pulses and are troublesome in time-domain imaging techniques [15].
Brewster’s effect in the terahertz region has also been investigated in parallel-plate waveguides
[16].

We present a new linear polarizer working in the THz range, based on a silicon wafer stack
arranged at Brewster’s angle, building a Brewster’s Polarizer (BP). Inexpensive industry-grade
silicon wafers have quasi-constant refractive index of 3.41 and relatively low absorption coef-
ficient that can be neglected due to the thinness of the wafers [1].

Our experiment provides a textbook example of what is happening inside such a Brewster
polarizer. Moreover, the fine control of the polarization gives the ability to precisely modulate
the power of the THz beam, an interesting feature when it comes to analyzing the linearity of
THz setups [17] or using non-linear effects [18].

2. Theoretical background

The Fresnel coefficients for transmission and reflection in amplitude for both transverse electric
(s-) and transverse magnetic (p-) polarizations at the interface between air and plate, are given
by [19] under an incidence angleθ1 (see Fig. 1):

ts
12(θ1,θ2) =

2cosθ1sinθ2

sin(θ1+θ2)
rs
12(θ1,θ2) =−

sin(θ1−θ2)

sin(θ1+θ2)
(1)

t p
12(θ1,θ2) =

2cosθ1sinθ2

sin(θ1+θ2)cos(θ1−θ2)
r p
12(θ1,θ2) =

tan(θ1−θ2)

tan(θ1+θ2)
(2)

whereθ2 is the refracted angle given by Snell-Descartes law as sinθ1 = nsinθ2 andn is the
refractive index of the plate. Therefore, the total amplitude transmissions through the plate
of thicknesse, taking into account Fabry-Pérot effects, are easily calculated, for both s- and
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Fig. 1. Schematic of the transmission through parallel plates, for s- and p-polarizations.
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Fig. 2. Fresnel reflection coefficients for a single air-silicon interface (black) and transmis-
sion coefficients through a full silicon wafer (red), both for s- (solid) and p-polarization
(dashed). The lines are theoretical calculations, and the dots are the corresponding experi-
mental terahertz measurements.

p-polarizations, as

T = n
t12(θ1,θ2)t21(θ2,θ1)eiβ e−iα

1+ r12(θ1,θ2)r21(θ2,θ1)e2iβ
with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α =
2π

λ

cos(θ1−θ2)

cosθ2
e

β =
2π

λ
cos(θ2)ne

. (3)

At Brewster’s angle given by [19]

θB = arctan(n), (4)

the reflection coefficient for the p-polarization coefficientr p
12 vanishes to zero, while reflection

coefficient for the s-polarization is stronger than for normal incidence. The p-polarized com-
ponent of the impinging wave is then fully transmitted, while the s-polarized component is
partially reflected (see Fig. 2, solid lines). This induces a partial polarization of the light, and it
has been used as a polarizer in the visible range since the 19th century [20]. Most importantly,
there is no stray reflection at both interfaces and the wave is fully transmitted, meaning that
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Fig. 3. Theoretical propagation of a terahertz pulse (black) through a silicon plate, for
p-polarization (red) and s-polarization (blue), with a plate thicknesse= 540µm and an
incidence angle at Brewster’s angle, forn= 3.41.

there is no Fabry-Ṕerot effect into the plate when lit at Brewster’s angle. This is particularly
important when dealing with THz pulses since no echoes are expected. Figure 3 illustrates the
theoretical transmissions of a terahertz pulse, with respect to incident polarization, at Brew-
ster’s angle (θ1 = θB). The p-polarized pulse is fully transmitted, while the s-polarized pulse
exhibits many oscillations.

Finally, the light going through the plate is delayed by the additional optical path

Δt =
e

ccosθ2
[n−cos(θ1−θ2)] , (5)

the beam undergoes a small walk-off calculated as

w= e
sin(θ1−θ2)

cos(θ2)
= e

[

sinθ1−
cos2 θ1

√

n2−sin2 θ1

]

(6)

and the traveld in the wafer is
d =

ne
√

n2−sin2 θ1

. (7)

Finally, the extinction ratio is defined as

ρ =
Tp

Ts
. (8)

Since a single wafer at Brewster’s angle still transmits somes-component, relatively low
extinction ratio is obtained by only one plate. In order to improve the extinction ratio, it is
necessary to use a stack of wafers. SinceTp = 1 at Brewster’s incidence,

ρk = 1/Tk
s (9)

with k the number of wafers forming the complete polarizer. Figure 4 shows the number of re-
quired wafers to achieve a 102 (20 dB) extinction ratio in amplitude (or 104,40dB in intensity),
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Fig. 4. Number of wafer required to get an amplitude extinction ratio of at least 102 (20 dB
amplitude, 40 dB intensity) versus the refractive index of the wafer.

with respect to the refractive index. We observe that the number of plates strongly diminishes
for high refractive index. Therefore, only four silicon plates are required to achieve the targeted
extinction ratio, sincenSi= 3.41 [1]. For common THz-compliant materials with low refractive
index such as polyethylene or Teflon (n ≈ 1.5), the total number of plates would exceed 20,
which make the use of a pile a plate rather difficult, since these materials exhibit non negligible
absorption in the terahertz range.

Furthermore, the stacking of wafers potentially gets rise to echoes between wafers, charac-
terized by a lateral shiftΔ and time delayτ, given by

Δ =
hsin2θ

cosθ
and τ =

2L
c

with L =
h

cosθ
. (10)

Thanks to the lateral shift, these echoes can easily be canceled out by the exit aperture of the
polarizer.

3. Experimental setup

To generate the THz signal, we used a classical THz-TDS setup [1], composed of a photo-
conductive antenna Tx‖ lit by a 12 fs, Femtolaser Ti:Sa laser, that generates an almost linearly
polarized sub-single cycle THz pulse, centered around 1 THz, at a repetition rate of 76 MHz.
The pulse is then collimated with an off-axis parabolic mirror (OAPM) onto the system under
study. Then, the THz beam is split into two parts using a 3 mm-thick silicon wafer beam split-
ter at 45◦ (Si-BS,Tp = 0.82, rs = −0.65), and both sides are focused with OAPMs. The two
polarization components of the THz wave are finally detected by two orthogonal photoswitch
antennas Rx‖ and Rx⊥, each detecting only one component of the THz wave (see Fig. 5). A
main delay lineτ1 allows scanning the waveform of the pulse, while a second oneτ2 allows
finely tuning the optical path between the two detecting antennas which must be equal. The
gain reception antenna perpendicular to the emission antenna is calibrated so as to match with
the gain of the other. The whole system is placed into a box filled with dry nitrogen to get rid of
water vapor absorption (< 1.2% residual relative humidity). A mechanical chopper and lock-in
detection are used to increase the signal-to-noise ratio of the system.
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Fig. 5. Experimental setup. Tx: photoconductive emitter; OAPM: off-axis parabolic mirror;
P: polarizer; Si-BS: silicon beam splitter; Rx and Rs: receivers.

4. Single wafer measurements

First, we studied the behavior of a single wafer under rotation. We used a standard industry-
grade circular wafer having a diameterD = 100 mm and thicknesse= 525µm±25µm, with a
constant refractive index ofn= 3.41, leading to a Brewster’s angle ofθB = 73.6◦. We placed the
wafer on a rotating mount and recorded the full waveform of the THz pulse for each incidence
angle. This lead to two sets of measurements, for the determination of the s- and p- polarization
transmission coefficients. We used only one detector (Rx(‖)) for the measurement since the
second one would detect no signal for the emitted THz pulse assumed to be linearly polarized.
The aperture of the system isA= ecosθ , that is 28 mm atθB, what is sufficient for most THz
experiment. Since we used a diaphragm smaller than the OAPM aperture, this detected signal
level does not sensibly suffer from walk-off (0.45 mm forθB in silicon).

We can see on Fig. 6 that the main transmitted pulse amplitude for thes-component de-
creases, while it increases for thep-component, alongside with a decrease of the Fabry-Pérot
effect, when the angle of incidence is increased all the way to Brewster’s angle. There is an in-
creasing time-delay for both polarizations due to the increased optical path. As can be seen, the
experimental data (dots) match very well with theory (lines), where the reference pulse with-
out wafer has been applied the theoretical transfer function (Eq. (3)). The measured relative
transmission amplitudes also compare very well with theory, as can be seen in Fig. 2 (dots).

5. Multiple wafers polarizer measurements

Considering a linearly polarized THz electric field propagating through a perfect linear polar-
izer rotating around the optical axis with an angleα, the two transmitted amplitude components
E‖ andE⊥ are given by

[

E‖

E⊥

]

=

[

cosα −sinα
sinα cosα

][

1 0
0 0

][

cosα sinα
−sinα cosα

][

E0

0

]

=
E0

2

[

1+cos(2α)
sin(2α)

]

(11)

Attentive reader will observe that the derived equation [Eq. (11)] differs from Malus’ law
[21], which concerns the power detected by a polarization-insensitive detector when a linear
polarizer cancels out a linearly polarized light. Indeed, the amplitudeE⊥ is counter-intuitively
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Fig. 6. Experimental terahertz waveforms of s- (black) and p- (red) polarization compo-
nents after the propagation through a silicon wafer for two incidence angles of 30◦ (A) and
Brewster’s angle at 73◦ (B), for experimental data (dots) and theoretical calculation using
Eq. (3) (lines).

dephased and allowed to be negative,i.e. the polarity of the THz pulse can potentially be re-
versed by the linear polarizer.

We now consider a more complex polarizer made from a stack of 4 silicon wafers. We used
4 mm spacing in our Brewster’s polarizer (see Fig. 7). The 4 silicon wafers are mounted tightly
together with spacers on a square holder, fixed perpendicularly to a motorized rotating stage.
The direction of polarization is then given by the plane of the wafers. The two orthogonal elec-
tric field components of the THz pulse transmitted through the 4-wafer polarizer are shown in
Fig. 8. First, we observe no distortion in the pulse traveling through the polarizer. The polarizer
delays the reference pulse, but demonstrates very good transmission efficiency (> 99%) forE‖

(Fig. 8(A) black lines). Transmission at 90◦ (blue line in Fig. 8(A)) shows a crossed-polarized
extinction factor of 78 (18.9 dB) in amplitude corresponding to 6× 103 (37.8 dB) in power,
and shows better results that with wire-grid polarizers [8] The expected phase inversion is also
found in the orthogonal component (Fig. 8(B), green line). Details of the transmitted pulse on
longer time delays are depicted in Fig. 9 for the parallelE‖ and orthogonalE⊥ components.
The echo observed at a delay of about 70 ps is due to the 3 mm-thick silicon beam splitter. Inset
shows an expansion ofE⊥ for clarity. Residual oscillation originates from echoes inside the
silicon wafers, corresponding to a time delayτ ≈ 12 ps (see Eq. (10)).
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Fig. 7. Picture of the 4-wafer silicon polarizer.
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Fig. 8. Parallel (A) and orthogonal (B) components of the THz pulse after propagation
through the 4-wafer silicon polarizer at several orientations. Reference pulse (thin black
line) is shifted by+20 ps. Orientationsα are 0◦ (thick black), 45◦ (red), 90◦ (blue) and
135◦ (green).

The last measurement is done by rotating the 4-wafer silicon polarizer to check the angular
response. Figure 10 plots the relative amplitude maximums of the transmitted THz pulse, as a
function of the relative angleα for E‖ andE⊥. It shows a very good agreement between the data
(dots) and the theoretical calculations (solid lines). To avoid residual cross-polarization signal
in the detectors, additional polarizers were used in both emitter and detectors. Similar results
are obtained in the frequency domain using Fourier transform of the time domain data, but
phase information are lost. Time domain data allow a full description of Brewster’s polarizing
effect.
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Fig. 9. ParallelE‖ (black) and orthogonalE⊥ (red) components of the THz pulse after
propagation through the 4-wafer silicon polarizer. Inset is an expansion ofE⊥.
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Fig. 10. Detected maximum amplitude for various angle of the 4-wafer silicon polarizer
mounted on a rotation stage, for parallelE‖ (black) and orthogonalE⊥ (red) electric field
components. Dots are experimental data and solid lines are theoretical calculations.

6. Conclusion

We showed that the Fresnel coefficients at dielectric interface can be very efficiently put in
practice for the design of a low-cost, low insertion loss and high extinction ratio linear polarizer.
Using four industrial grade silicon wafers, we obtained a power extinction ratio of more than
6× 103, that outperforms most of the conventional wire-grid polarizer. Higher performances
can easily be obtained using more silicon wafers.
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