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The use of a fast temperature jump (T-jump) is a very powerful experiment aiming at studying protein

denaturation dynamics. However, probing the secondary structure is a difficult challenge and rarely

yields quantitative values. We present the technical implementation of far-UV circular dichroism in a

nanosecond T-jump experiment and show that this experiment allows us to follow quantitatively the

change in the helical fraction of a poly(glutamic acid) peptide during its thermal denaturation with

12 ns time resolution. © 2011 American Institute of Physics. [doi:10.1063/1.3592331]

I. INTRODUCTION

The use of a temperature jump (T-jump) is a very

popular technique aiming at investigating rapid dynamics of

unfolding processes in peptides or proteins.1 The principle of

this technique is quite simple: The water solvent is heated up

with a nanosecond laser pulse by a few degrees, modifying

instantaneously the thermodynamic conditions experienced

by the protein. In order to adapt to these new conditions,

proteins undergo conformational changes, usually a denatu-

ration process. Thanks to the instantaneous temperature rise,

one can follow these unfolding processes in time with very

good time resolution, allowing very fundamental steps to be

unraveled.2 However, optical signals capable of probing the

conformation of molecules are not so common and much

work has been devoted to this issue. Two main ideas have

been pursued. First, it is possible to use fluorescence tech-

niques on the condition that it is possible to introduce “tricks”

to render fluorescence measurements sensitive to the protein

conformation. Such tricks include fluorescence quenching

by adjacent chromophores3 or fluorescence transfer such as

FRET.4 Second, it is well known that the IR-Amide I’ band is

sensitive to the secondary structure of proteins.5 This feature

has been extensively studied in conjunction with T-jumps

to investigate unfolding dynamics of model polypeptides6–8

or small proteins.9, 10 However, these techniques suffer from

a lack of quantitative information. For example, due to the

width of the optical transitions in the IR, it is difficult to

estimate the variation of the α-helix content in a polypeptide

from the variation of absorption.11 Other techniques have

been implemented, such as Optical Rotatory Dispersion12 or

UV resonance Raman.13 This latter method can yield quan-

titative structural characterization14, 15 but it is not well fitted

for time-resolved acquisitions. On the other hand, circular

dichroism (CD) is known to present characteristic features in

the far UV which can be confidently assigned to secondary

structures in proteins.16, 17 This is particularly true for the CD

a)Author to whom correspondence should be addressed. Electronic mail:
francois.hache@polytechnique.edu.

feature which shows up at 220 nm and which is commonly

used to estimate the α-helical content of proteins. Another

advantage of CD is that measurements can be carried out in

water instead of heavy water, which makes the experiment

more accessible and closer to physiological conditions. In this

article, we present an experimental set-up which combines a

T-jump experiment with UV-CD detection and allows us to

obtain quantitative information on the ultra-rapid dynamics

in denaturation processes. In order to achieve a precision

sufficient to observe changes in the CD despite the smallness

of such signals, we had to address several technical points

that will be presented in this article. First, we had to set-up

synchronized laser sources in the IR and in the UV. Second,

we had to characterize the temperature jump accessible from

our experiment. Then, the detection scheme to access CD

has been thoroughly investigated and several methods were

tested. Finally, results on the temperature-induced unfolding

of a poly(glutamic acid) sample will be presented. To the

best of our knowledge, this is the first demonstration of

probing of a T-jump-induced denaturation process by

time-resolved circular dichroism in the far UV.

II. EXPERIMENTAL TECHNIQUES

A. Laser sources

Two laser sources are needed to carry out a CD/T-jump

experiment. On the one hand, one needs a nanosecond IR

source to induce the temperature jump, hereafter called the

“pump.” On the other hand, a UV source compatible with the

detection of the CD is necessary (the “probe”). Finally, elec-

tronic synchronization of the two sources and of the various

detection apparatus is necessary.

Nanosecond pump sources usually rely on Nd:YAG

lasers which can deliver intense nanosecond pulses. In order

to heat up water with nanosecond pulses, two strategies can

be employed. One can use indirect heating where a dye10

excited by the second harmonic of the laser serves as heat

transducer. Alternatively, one can directly heat the water

solvent using IR laser pulses. The latter method yields less
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cavitation problems,8 but demands a nanosecond IR source.

Most T-jump experiments based on an IR probe necessitate

the use of deuterated water and require IR pulses at 1.9 µm.

Such is not the case here, where we deal with a UV probe

and our samples are dissolved in H2O. In that case, the IR

wavelength necessary to heat up water is about 1.5 µm,

which corresponds to the excitation of the ν1+ν3 overtone

mode of H2O. Absorption at this wavelength is 32 cm−1, a

weak absorption which allows uniform heating of the sample.

Our set-up is based on a nanosecond Nd:YAG laser

operating at 30 Hz (GCR4, Spectra-Physics). In order to

reach IR wavelengths, we use a commercial nanosecond OPO

(GWU, Spectra-Physics) which delivers up to 8 mJ pulses at

1.454 µm (idler) with a duration of 5 ns. Because we did not

have an IR spectrometer, we took advantage of the fact that

the OPO delivers two complementary wavelengths (signal

and idler). Precisely tuning the signal wavelength to 839 nm

ensures that the idler wavelength is tuned to 1.454 µm.

The probe pulse must be tunable in the far UV, especially

around 220 nm where the ratio CD/absorption is the greatest.

We use a sub-picosecond source that we have developed,18

based on a 1 kHz amplified Titanium-Sapphire system fol-

lowed by several stages of BBO-based optical parametric am-

plification and frequency mixing. This source delivers 40 nJ

pulses tunable between 220 and 350 nm. It would be interest-

ing to go to shorter wavelengths, especially in the 205–220 nm

range to better probe the helicity of the samples. This would

be easily feasible by frequency quadrupling an amplified Ti-

Sapphire laser tunable between 820 and 880 nm. Note, how-

ever, that experiments are more difficult further in the UV due

to the very large absorption of peptides and proteins in this

region. Nevertheless, going towards 200 nm is very appealing

and work in this direction will be undertaken in the future.

B. Experimental set-up

The experimental set-up corresponds to a classical pump-

probe experiment. Both pump and probe pulses are focused

onto the sample with 100 mm focal length lenses. At the fo-

cus, the pump diameter is about 500 µm and the probe diam-

eter 80 µm, ensuring that the probe sees a transversely uni-

form temperature profile. Precise overlap of the two beams is

achieved with a 200 µm pinhole placed at the sample position.

In order to measure CD, the probe beam is sent through

a polarizer and a longitudinal KD*P Pockels cell (Gsänger

LM8) whose axes are oriented at 45◦ with respect to the inci-

dent polarization.19 We apply an alternate voltage (±600 V) to

the Pockels cell to transform the linear probe polarization into

right or left circular polarization. After a preliminary align-

ment of the Pockels cell with the help of the isogyre pattern

(Maltese cross), fine alignment as well as adjustment of the

applied voltage is carried out by inserting a quarter-waveplate

and a crossed analyzer after the Pockels cell and optimizing

the contrast between the two circular polarizations. The trans-

mitted probe intensity is measured with a photomultiplier tube

(PMT, Electron Tubes 9402) and a Boxcar analyzer (Stanford

SR250). In order to reduce the effects of laser fluctuations,

we carry out normalization of the signal by a reference signal.

The signals are processed with a personal computer which

controls all the experimental parameters.

The experiment has been carried out with a poly(glutamic

acid) (PGA) sample. The peptide was purchased from Sigma-

Aldrich and dissolved in water without further purification.

The molar weight in this sample is 64 000, correspond-

ing to about 500 residues per peptide. The concentration is

20 mg/mL, which corresponds to 0.155 M in terms of glu-

tamic acid residues.

The pH needs to be carefully controlled. Indeed, depend-

ing on the pH, PGA can be completely folded into α-helices

or display a random coil structure.20–22 Because we want to

have a sample whose conformation changes with temperature,

we chose a pH of 4.8, which was adjusted by careful addition

of acetic acid and sodium acetate (Sigma-Aldrich). The final

acetate concentration is about 0.3 M. As will be seen later,

at this pH, absorption and circular dichroism display a strong

temperature dependence which is a signature of a change in

the helical content of the sample. The peptide is placed into

a 100 µm path length quartz cuvette (Hellma). This cell can

be thermalized by external water circulation. Furthermore, in

order to avoid cumulative effects due to the pump, the cell is

continuously rotated (300 rpm).

III. ELECTRONIC SYNCHRONIZATION AND
DETECTION SCHEMES

A. Electronic synchronization

A major issue of this experimental set-up is the electronic

synchronization of the lasers and of the detection devices.

We have therefore developed sophisticated synchronization

electronics based on a complex programmable logic device

(CPLD – Lattice). We have designed an electronic board

whose behavior is described in VHDL, using the 82 MHz

Titanium-Sapphire laser oscillator as external clock. The

parameters for the timing of the various signals are dynami-

cally transferred through the RS232 interface of the personal

computer which controls the acquisition processes and data

analysis. Five triggering signals are generated, which are

depicted in Fig. 1. First, two 30 Hz signals are used to trigger

the Nd:YAG laser. The first one triggers the laser flash lamps,

probe polarization
left right

Boxcar output

time

135 ms

FIG. 1. (Color online) Triggering signals generated by the synchronization

electronics. Two variable delays are generated: the Q-switch delay and the

adjustable pump-probe delay. The inset schematically describes the Boxcar

output signal when the Pockels cell voltage is modulated at 3.7 Hz.
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whereas the second one triggers the Q-switch. The delay

between these two pulses is chosen equal to 210 µs for an

optimum functioning of the laser. Then, a 1 kHz trigger is

provided to the Titanium-Sapphire amplifier. The delay be-

tween the Q-switch trigger and this 1 kHz signal is the crucial

point of the device. It allows us to vary the pump-probe delay

for the experiment up to 1 ms. Longer delays can be easily

accessed thanks to the probe pulse train where pulses are

separated by 1 ms. As depicted in Fig. 1, we can pick out of

the 1 kHz probe pulse train a 30 Hz pulse train impinging on

the sample with a fixed delay that we can chose negative or

positive with a resolution of 12.1 ns. Two other triggers are

generated by the synchronization electronics. First, we create

a 30 Hz signal in perfect synchronization with the probe pulse

train relevant for the experiment. This signal is used to trigger

the boxcar gate for signal detection. Second, we divide the

30 Hz signal by 8 in order to obtain a 3.7 Hz signal that

we use to modulate the Pockels cell voltage (not shown in

Fig. 1). As a result, four probe pulses have right circular

polarization followed by four pulses with a left polarization.

The output of the boxcar is schematically depicted in the

inset of Fig. 1.

B. Measurement of the circular dichroism

Once the polarization-modulated probe beam passes

through the sample, its intensity becomes modulated due to

the CD:

I± = K e−(α0±δα)L ≈ K e−α0 L [1 ∓ δαL]. (1)

In this equation, α0 is the mean absorption coefficient, L

the path length, and δα describes the CD: absorption coeffi-

cient for a left (resp. right) polarization is α0 + δα (resp. α0

– δα) and the CD is equal to 2δαL. K is a constant. From this

expression, one obtains:

CD =
I− − I+

(I+ + I−)/2
. (2)

The (I+ + I−)/2 term is directly accessible through the

PMT signal. The problem is to measure I− − I+. We have

developed three complementary manners to measure this in-

tensity difference. The first idea is to use a lock-in ampli-

fier (LI) locked on the Pockels cell modulation. This is the

most straightforward technique and from the LI signal, one

measures CD as 2.2 LI/PMT (the 2.2 factor being due to the

square modulation imposed on the signal). However, due to

the weakness of the modulation and the small modulation fre-

quency (3.7 Hz), sorting out the signal from noise requires

extensive averaging. Another possibility is to measure I+ and

I− independently and to calculate the difference with the com-

puter after averaging. Identification of these two intensities is

made possible by sending the 3.7 Hz modulation signal to

the acquisition card. Finally, we have also tried to perform

Fast Fourier Transform of a series of 4096 data. The resulting

spectrum clearly displays a peak corresponding to the modu-

lation frequency, whose amplitude gives the magnitude of the

CD.

We have implemented these three techniques in the

same software and performed simultaneous measurements

with the three techniques. For a given acquisition time,

the three techniques yield very similar results (see inset of

Fig. 8 where the raw data obtained with the three techniques

are displayed). Having the three results together allows us

(i) to confirm the reality of the signal and (ii) to improve our

signal-to-noise ratio.

Before concluding this section, we would like to address

another issue. In some previous works, we had implemented

a very original manner to measure time-resolved CD by

utilizing a linearly polarized probe and measuring the pump-

induced ellipticity with a Babinet-Soleil compensator.23 We

have tried to implement this technique here, but it turned

out to be impossible. The reason for this is that in this latter

technique, some artifacts can occur in presence of birefrin-

gence. Usually, birefringence is not pump sensitive and does

not preclude using this technique. However, in our T-jump

experiment, it appears that the very rapid temperature change

in the cell provokes a transient birefringent feature on the few

microsecond timescale which completely masks the CD sig-

nals. The polarization modulation technique that we employ

here has the great advantage that it is insensitive to sample

birefringence to a large extent. This insensitivity is due to the

absence of any polarization device between the sample and

the detection.19 As soon as a polarizer or any other polarizing

device is introduced, birefringence becomes a crucial issue.

IV. TEMPERATURE JUMP MEASUREMENTS

A. Simulation of the temperature jump

In order to be able to predict and understand the evo-

lution of temperature inside our cell, we have performed a

MATLAB simulation based on simple heat transfer theory fol-

lowing Ref. 24. The principle of the calculation is to divide

our cell in small ring cells indexed by (i,j) for the r and z

directions, where z corresponds to the direction of the pump

beam (see Fig. 2), and compute the thermal flux between cells

and the temperature T of the cell at each calculation step.

Using the Fourier law: j = −λ∇T = −λ(∂T/∂rer

+ ∂T/∂zez), where j is the thermal flux and λ is the heat con-

ductivity, we can write the heat energy exchanged during time

interval dt along the r and z directions between cells i and

i + 1 and between cells j and j + 1, respectively, as

Qri, j = −λ2π idrdzdt
Ti+1, j − Ti, j

dr
, (3)

Qzi, j = −λπ (2i − 1)dr2dt
Ti, j+1 − Ti, j

dz
. (4)

R

r

0
z

Silica
window

Silica
window

Solution

z
r

r = (i-1) dr
z = j dz

FIG. 2. Sketch of the elementary cell used in the temperature jump

simulation.
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FIG. 3. (Color online) (a) Evolution of the mean temperature with time for a 100 µm pathlength cell with silica windows, assuming an instantaneous initial

T-jump of 5 ◦C in the first layer of the sample from an initial temperature of 20 ◦C. The temperature remains constant for about 100 µs and cools on the time

scale of 10 ms. (b) Temperature profile in the sample (and adjacent window volume) along the beam path for different delays after the T-jump.

The temperature after a time dt can be written using the

first principle of thermodynamics applied to a cell (i,j) :

Ti, j = Ti, j +
Qri−1, j + Qzi, j−1 − Qri, j − Qzi, j

Cπ (2i − 1)dr2dz
, (5)

where C is the volumetric heat capacity of the material of

cell (i,j). In our calculations, we used the thermal parameters

of our cell: λwater = 0.5984 W K−1 m−1, Cwater = 4.136

× 106 J m−3 K−1, λsilica = 1.4 W K−1 m−1, Csilica = 1.408

× 106 J m−3 K−1. When the heat transfer takes place between

a water cell and a silica one, we use the average value of

λ.We have considered a 500 µm pump beam, a 100 µm path

length cuvette, 0.5 mm of silica for the cuvette windows and

a 5 ◦C T-jump starting at 20 ◦C. Absorption of the pump light

in water was also taken into account (α = 32 cm−1).

In order to see if the temperature remains constant on

a long enough time scale for the peptide dynamics to be

seen after a pump pulse, we have performed a calculation for

0.1 s following a single pump pulse. The results are shown in

Fig. 3(a). The average temperature along the z axis in the so-

lution decreases only slightly in the first millisecond, whereas

cooling takes place between 1 and 100 ms. Figure 3(b) dis-

plays the temperature profile within the cell. As expected,

cooling of the water is due to heat exchange with the cell win-

dow. We see that this cooling effect is efficient on timescales

larger than 100 µs, a very long time compared to our peptide

dynamics (see below).

Finally, we have studied the cumulative heating of the

solution due to the 30 Hz pump repetition rate. Calculating

the time evolution of the temperature for 3 s with a pump

period of 30 ms, we found that the background temperature

in the middle of the cell can increase by more than 5◦ after 2

s of irradiation with the pump beam. To avoid this cumulative

heating up of the solution, we continuously rotate the cuvette

as explained in Sec. II B.

B. Temperature jump measurement

Measuring in situ the temperature increase of the sam-

ple is a crucial issue for this experiment. Such a measurement

is usually obtained by monitoring the absorption change of

water in the infrared.2, 6–9 However, we do not have this pos-

sibility here since we work with a probe delivering pulses in

the visible or in the UV. We have therefore developed another

technique allowing the precise measurement of the tempera-

ture jump and its dynamics in our experimental set-up. Similar

techniques have been proposed in Refs. 25 and 26.

Because absorption in the visible or the UV is usually not

very sensitive to temperature, we have to use some interme-

diate temperature-dependent process. One such process is the

strong dependence of some buffers on temperature. This ef-

fect, which is a source of problems for chemists, is very well

documented and we have chosen the Tris-HCl buffer. At a

pH of 7.2 at room temperature, the pH changes by –0.028/◦C

with temperature.27 Such pH changes are easily observable

with colored pH indicators. In our case, we expect the pH to

change from 7.2 to 6.7 when temperature increases from 21 to

41 ◦C. We have therefore utilized the pH indicator Bromothy-

mol Blue, whose pH sensitivity is in the 6.2–8.2 range. We use

a saturated solution of Bromothymol Blue in TrisHCl buffer

(100 mM, pH = 7.2). The absorption spectra of the solution

as a function of the temperature are displayed in Fig. 4. The

temperature dependence is very strong and we have tuned our

probe wavelength to 623 nm to monitor the T-jump dynamics.

T

A
b
so

rb
an

ce

Wavelength (nm)

FIG. 4. (Color online) Absorption spectrum of a saturated solution of Bro-

mothymol Blue/Tris HCl mixture 100 µm pathlength cell as a function of

temperature. The temperature ranges from 22 to 41 ◦C, with the arrow in-

dicating increasing temperatures. The inset shows the chemical structure of

Bromothymol Blue.
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FIG. 5. (Color online) Short and long timescale evolution of the temperature in a rotating 100 µm pathlength silica cell following an IR laser pulse induced

T-jump, measured using the transient absorbance of a saturated solution of Bromothymol Blue/Tris HCl at 623 nm, calibrated using the spectra shown in Fig. 4.

Note that the T-jump amplitude is lower on the left-hand side figure because of a lower pump power.

At this wavelength, we measure for the absorbance

changes

1

A623

d A623

dT
= (−0.0169 ± 0.0025)T/◦C. (6)

We have performed T-jump experiments on the solu-

tion of Bromothymol Blue in TrisHCl buffer at 20 ◦C and

followed in time the change in transmission of the solution

at 623 nm and deduced the temperature increase. The pump

conditions corresponded to the conditions of the CD exper-

iment described below with a pump energy of 8 mJ/pulse

and a 100 µm path length quartz cell continuously rotated at

300 rpm. Figure 5 shows the temperature change as a function

of time for two relevant timescales. One observes that the

temperature jump remains constant on the time scale of a few

hundred microseconds, ensuring that the dynamics that we

can observe on this timescale come from the peptide and not

from the cooling of the water solvent. On the other hand, the

temperature increase completely relaxes between two pump

pulses separated by 33 ms, discarding any cumulative effect.

This feature confirms the efficiency of rotating the cell in our

experiment. Finally, we measure a maximum temperature

jump of 5 ◦C with our experimental conditions, a convenient

value for carrying out unfolding experiments.

We would like to stress two interesting characteristics

of our set-up. We utilize a silica cell instead of a CaF2 cell,

as usually used in IR-detected T-jump experiments, since we

have no need for infrared transparence. Because silica has a

lower heat conductivity, we observe a slower decay of the

water temperature. As seen in Fig. 5, the temperature re-

mains constant over more than 800 µs, much longer than

the 200 µs timescale observed for cells of comparable path-

length with CaF2 windows.8 This can be an advantage for

measuring longer processes. Furthermore, we did not observe

any cavitation effects, a convenient feature for experiments.

We think that this is a consequence of the direct heating

(using IR laser pulses), which allows measurements in the

absence of dye molecules which tend to aggregate and act

as nucleation sites for cavitation,8 and of the smooth pump

beam profile employed here, which prevents the occurrence

of hot spots leading to the onset of cavitation. Under these

conditions, cavitation can be avoided, even at elevated base

temperatures.6–8, 24, 28

V. T-JUMP EXPERIMENT ON POLY(GLUTAMIC ACID)

We present in this section the results we have obtained

for poly(glutamic acid) (PGA). Prior to the dynamics mea-

surements, we carried out steady-state absorption and CD

measurements as a function of temperature in order to choose

the best starting conditions and to be able to quantify our

dynamic measurements. Note that, as reported in Ref. 29, we

observed full reversibility of peptide folding upon re-cooling.

The T-jump experiments with IR detection described below

also show that PGA returns to the original state within

100 ms of sample cooling.

A. Steady-state temperature-dependent absorption
and CD measurements

Figure 6 shows the absorption spectra of PGA for 17 tem-

peratures ranging from 11 to 52 ◦C. The interesting feature is

enlarged in the inset and one clearly observes a decrease of

1
0.50

0.51

0.52

A
bs

or
ba

nc
e

0

10 20 30 40 50 60

0.49

A
b

Temperature (°C)

A
b
so

rb
an

ce

T from 11 to 45 °C

T

200

Wavelength  (nm)

300250

FIG. 6. (Color online) UV absorption spectrum of PGA (20 mg/mL, pH 4.8,

100 µm pathlength) for different temperatures ranging from 11 to 52 ◦C. The

inset displays the dependence of the absorbance at λ = 225 nm on tempera-

ture.
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FIG. 7. (Color online) Circular dichroism (= 2δαL) in absolute values (dots,

left scale) and the corresponding helical fraction [squares, right scale, calcu-

lated as described in Eq. (8)] of PGA (20 mg/ml, pH 4.8, 100 µ pathlength)

measured at 225 nm as a function of the temperature. The inset displays the

total CD spectrum (in mdeg) measured at the SOLEIL Synchrotron facility

(France).

absorption at 225 nm. This feature is consistent with the ex-

pected unfolding of PGA with increasing temperature as ob-

served in Refs. 11 and 21.

The inset in Fig. 7 shows the steady-state CD spectrum

of our PGA sample at 25 ◦C. This spectrum was measured at

the DISCO line of the SOLEIL synchrotron facility (France).

It displays the well-known double minimum structure which

is characteristics of a high-helicity sample. The main part of

Fig. 7 shows the steady-state CD of our PGA sample mea-

sured at 225 nm with our UV laser pulses upon varying

the temperature of the cell. Here again, the decrease of CD

(in absolute values) with temperature is a signature of the

unfolding of the peptide. We can estimate the helical fraction

of the peptide from its CD value following Ref. 17:

fH =
[θ ]222 − [θ ]c

[θ ]H − [θ ]c

, (7)

where [θ ]c = 2220 − 53 T is the random coil ellipticity for

temperature T expressed in ◦C and [θ ]H = −44 000 + 250 T

is the ellipticity of an infinite alpha helix. Ellipticities are

expressed in deg cm2 dmol−1 per residue. The conversion of

our measured value, CD, to ellipticity is given by

[θ ] =
3298

ln 10

CD

cL
, (8)

where c is the residue concentration (M) and L the cell

thickness (cm). With our experimental parameters, this yields

[θ ] = 925 000 CD Note that in order to reduce the laser

fluctuations, we chose to work at 225 nm instead of 222 nm.

Given the shape of the CD curves (see the inset in Fig. 7),

the slight discrepancy between these two wavelengths yields

a negligible error. The helical fraction of PGA as a function

of the temperature is also displayed in Fig. 7 (right scale). It

decreases from 0.55 at 19 ◦C to 0.19 at 50 ◦C.
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FIG. 8. (Color online) Transient UV absorption (squares, left scale) and CD

(= 2δαL) in absolute values (dots, right scale) at 225 nm following a T-jump

of 4 ◦C in a sample of PGA (20 mg/ml, pH 4.8, 100 µm pathlength) at an

initial temperature of 28 ◦C. The dashed line is an exponential fit common to

the two data sets. The change in CD is translated to helical fraction, calculated

as described in Eq. (7), on the far right scale. Also shown is the change of IR

absorption at 1632 cm−1 (solid line, far left scale) in a 10 mg/ml PGA sample

in D2O, pD ∼ 5.6, after a T-jump of 5 ◦C from 28 ◦C. The inset shows the CD

data obtained with the lock-in amplifier (squares), the direct measurement of

I− − I+ (dots) or the Fast Fourier Transform technique (triangles).

B. T-jump experiment

We have carried out T-jump experiments with T-jumps

of 4 ◦C from two starting temperatures: 21 and 28 ◦C.

Figure 8 displays the time-resolved absorption (black) and

CD (red) changes measured in our PGA sample following

heating of the water by a 8 mJ infrared pulse for Tinitial =

28 ◦C. Both measurements are carried out for λ = 225 nm.

The CD curve is the average of the three curves displayed in

the inset after a 12-h-long acquisition. The two curves can be

very well fitted by a simple exponential with a time constant

of 0.6 ± 0.1 µs. This time increases to 1.5 ± 0.3 µs for Tinitial

= 21 ◦C. As expected, the helical relaxation time gets larger

as temperature decreases.

For absorption as well as for CD, the changes are con-

sistent with an unfolding of PGA after the T-jump: absorp-

tion and CD decrease. Comparing the measured changes in

absorption or CD to the steady-state temperature-dependent

data (Figs. 6 and 7), we find that the changes correspond to

a temperature increase by 4 ◦C, in agreement with the size of

the T-jump determined from the IR pump power we used, cal-

ibrated as described above. For the two temperatures studied,

we observe a drop of the CD of about 0.002. This is con-

sistent with Fig. 7, where a constant slope is observed for

temperatures ranging between 20 and 35 ◦C. This agreement

between the CD changes observed in the time-resolved and

the steady-state measurements indicates that the peptide sec-

ondary structure fully equilibrates on the microsecond time

scale.

The dynamic CD results can be directly converted to the

absolute helical content using the above equation (see Fig. 8,

right scale) which is the main advantage of CD measurements

over measurements using other spectroscopic techniques

for following protein folding dynamics. For any attempt to

theoretically describe helix folding dynamics (or protein

folding dynamics in general), e.g., using statistical mechanics
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models30 or molecular dynamics simulations,31 quantitative

knowledge of the helical content and its change during

equilibration at the higher temperature will provide important

additional experimental information compared to the usual

kinetic experiments which only yields the relaxation time

constant without giving any insight into the actual structural

changes of the peptide. In terms of helical fraction, a T-jump

of 4 ◦C leads to a reduction from 41% at 28 ◦C to 36% at 32 ◦C

and from 46% at 21 ◦C to 42% at 25 ◦C for PGA in H2O at

pH 4.8.

C. Comparison with IR results

The unfolding dynamics and time constants observed

using CD measurements are in good agreement with those

measured by IR detection. For verification of our results,

we performed T-jump experiments detected at 1632 cm−1

using a setup which has been described in detail before.8

Briefly, the solvent (D2O) was heated using ns-laser pulses

at 1970 nm, generated by a Nd:YAG/dye laser system with

IR difference frequency generation. Absorbance changes at

1632 cm−1 were probed using the continuous IR beam from

a tunable lead-salt diode laser and a fast HdCdTe photodiode

with 50 MHz bandwidth, yielding an overall signal rise

time of 14 ns. Due to the different strength of hydrogen and

deuterium bonds, the pK value of the PGA side chain and the

transition midpoint of pH/pD-induced helix unfolding curves

are different in D2O compared to H2O, so that the sample

needs to be adjusted to a higher pD for obtaining the same

helical content. We found that a pD of ∼5.6 was required

for PGA in D2O to have a helical content (as determined by

CD) of ∼0.5 at room temperature, and thus to have similar

structural behavior as the sample in H2O on which dynamic

CD experiments were performed.

Figure 8 shows (solid line) absorbance changes measured

on a 10 mg/mL PGA sample in D2O, pD ∼ 5.6, after a T-jump

of 5 ◦C from 28 ◦C at 1632 cm−1, i.e., near the maximum of

the helical amide I′ band. At this wavelength, there is a sig-

nificant contribution from the solvent which appears instanta-

neously and remains constant on the ns to µs-time scale (Ref.

8). In addition, the amide I′ absorbance decreases in paral-

lel to helix unfolding, yielding dynamic information on this

process. Within the uncertainty of the experiments, the dy-

namics are very similar to those observed by UV-absorbance

and by UV-CD. An exponential fit of the IR data yields a

time constant of 0.79 ± 0.04 µs after a T-jump from 28 ◦C

to 33 ◦C, which is close to the time constant of 0.6 ± 0.1 µs

observed by CD after a T-jump from 28 ◦C to 32 ◦C, although

the IR results, which are the average of 25 000 individual mea-

surements and consequently have very high signal-to-noise,

also show some deviation from a single exponential behavior

which is not visible in the CD results due to noise. It has to be

noted that the two samples most likely did not agree perfectly

in their structural behavior/helical content, which is expected

to be the major reason for any remaining differences in the

dynamics observed by IR and CD.

VI. CONCLUSION

We have presented a complete set-up allowing for the first

time the measurement of far UV-CD changes in a T-jump ex-

periment. The experiment is based on the use of a nanosec-

ond Nd:YAG-pumped OPO to generate an infrared pulse to

heat up the water solvent whereas the probe is a far UV pulse

generated by a 1 kHz, Titanium-Sapphire based laser system.

A full synchronization device has been developed to trigger

the two laser sources with a delay that is controllable with a

12.1 ns time step. Several detection schemes have been pro-

posed and implemented. It is shown that three different tech-

niques yield equivalent results, providing a good flexibility to

the acquisition system.

The measurement of the temperature increase during the

T-jump experiment with the help of visible pulses has also

been addressed. A solution mixing a temperature-dependent

buffer (Tris HCl) and a pH indicator (Bromothymol Blue)

has been proven to be very efficient and has allowed us

to fully characterize our T-jump apparatus. A temperature

increase of 5 ◦C can be achieved with 8 mJ IR pump

pulses.

We have carried out steady-state and time-resolved ab-

sorption and CD measurements on a PGA sample at initial

temperatures of 21 and 28 ◦C. The time-resolved measure-

ments are consistent with a 4 ◦C jump and yield a decrease

of the CD by 0.002. The relaxation time is measured to be

1.5 µs at 25 ◦C and 0.6 µs at 32 ◦C, in agreement with mea-

surements using IR detection. Unlike IR detection, however,

the CD experiment also allows quantitative monitoring of

the thermal denaturation: we measure a drop of the helical

fraction from 41% to 36% when the temperature jumps from

28 to 32 ◦C and from 46% to 42% when it goes from 21 to

25 ◦C.
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