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Abstract: We thoroughly analyze the linear propagation effects that
affect polarization-resolved Second Harmonic Generation imaging of thick
anisotropic tissues such as collagenous tissues. We develop a theoretical
model that fully accounts for birefringence and diattenuation along the
excitation propagation, and polarization scrambling upon scattering of
the harmonic signal. We obtain an excellent agreement with polarization-
resolved SHG images at increasing depth within a rat-tail tendon for
both polarizations of the forward SHG signal. Most notably, we observe
interference fringes due to birefringence in the SHG depth profile when
excited atπ/4 angle from the tendon axis. We also measure artifactual
decrease ofρ = χxxx/χxyy with depth due to diattenuation of the excitation.
We therefore derive a method that proves reliable to determine bothρ and
the tendon birefringence and diattenuation.

© 2010 Optical Society of America
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1. Introduction

Second Harmonic Generation (SHG) microscopy is an efficient imaging technique to visu-
alize the three-dimensional (3D) distribution of fibrillar collagen in biological tissues [1, 2].
Incident circular polarization is usually used since it enables imaging of fibrils independently
of their orientation in the focal plane. This approach is particularly relevant for quantitative
biomedical studies such as fibrosis scoring [3, 4]. However, fibrillar collagen exhibits a struc-
tural anisotropy that may be interesting to characterize for many applications. For that purpose,
polarization-resolved SHG provides complementary information about the 3D distribution of
nonlinear dipoles within the focal volume [5, 6, 7, 8]. The usual approach is to measure the
ratio ρ of the two main tensorial components of the nonlinear response, considering a cylin-
drical symmetry for fibrillar collagen [9, 10, 11, 12, 13, 14]. This ratio depends on the orienta-
tional distribution of the collagen triple helices and on the orientation of the nonlinear dipoles
(along the peptidic bonds) within the triple helix.ρ therefore provides information about the
ordering of collagen molecules or fibrils within the focal volume. It has been measured in
various collagenous tissues and showed a wide dispersion of values (1.2 to 2.6). Comparison
of healthy and pathological tissue however requires to characterize the accuracy ofρ measure-
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ments and their sensitivity to various artifacts. In particular, the anisotropy of many collagenous
tissues may affect polarization-resolved SHG experiments as reported in tendons [10, 15, 16].
Polarization-resolved image processing improved when taking into account diattenuation [15]
and birefringence [10, 16]. Furthermore, polarization scrambling due to scattering has been
shown in tendons and other biological tissues [17].

The aim of this paper is therefore to thoroughly characterize the linear propagation effects
that affect polarization-resolved SHG experiments in anisotropic tissues and to develop a reli-
able method to determineρ in collagenous tissues. For this purpose, we first develop a theoreti-
cal model that fully accounts for birefringence, diattenuation and polarization scrambling upon
scattering. We then record polarization-resolved SHG images in rat-tail tendons that is a model
tissue composed of aligned collagen fibrils. We finally compare simulated and experimental
data that show an excellent agreement and give insight into the linear and nonlinear optical
properties of the tendon. Most notably, we observe interference fringes in the SHG depth pro-
files when excited atπ/4 angle from the tendon axis, and artifactual decrease ofρ with depth
due to diattenuation of the excitation. We conclude that the correction for these effects enables
a reliable determination ofρ.

2. Experimental setup

2.1. Tendon preparation

Tendons were extracted from Sprague-Dawley rat-tails (female,≈ 300g), centrifugated at 4700
rpm and stored at 4◦ in phosphate buffer saline (PBS). Imaging was performed within a few days
using a water-immersion objective. Tendons were first labelled with fluorescent latex beads
to enable precise location of the tissue surface (1µm diameter, L1030, Sigma-Aldrich). After
rinsing, they were fixed at both extremities and streched to get rid of the crimps and facilitate
alignment of the fibrillar pattern along thex direction of the microscope stage. They were kept
in PBS on a glass coverslip that maintained them in the focal plane of the microscope.

2.2. Imaging setup

Multiphoton imaging was performed using a custom-built laser scanning microscope [18] as
depicted in fig. 1.a. Excitation was provided by a femtosecond Titanium-sapphire laser tuned
at 860 nm and scanned in thexy directions using galvanometric mirrors. It was focused in the
tendon using a water-immersion 20x, 0.95 NA objective that resulted in typically 0.4 µm lateral
and 1.6 µm axial resolution near the sample surface. Power was adjusted to 10-15 mW at the
focus using a rotating half waveplate and a Glan prism that filtered outy-polarization before
entering the microscope setup. Nonlinear optical signals were detected using photon-counting
photomultiplier tubes and appropriate spectral filters to reject the laser excitation (FF01-680SP,
Semrock) and select two-photon excited fluorescence (2PEF) signal (GG455 high-pass filter,
Schott) or SHG signal (HQ430/20 interferential filter, Chroma). 2PEF was detected in the back-
ward direction and SHG in the forward direction. Multimodal images were recorded using 100
to 200 kHz pixel rate, 0.4 to 0.8 µm pixel size and 1 to 2 µmz-step. They were combined using
Matlab and ImageJ softwares as shown in fig. 1.c. Note that there is a slight index mismatch
between the tendon (n = 1.5) [20] and water (n = 1.33), so that the depthz within the tendon is
related to the lens displacementdzlens by: z = dzlens ntendon/nwater.

2.3. Polarization-resolved measurements

The laser polarization at the back pupil of the objective was approximately along thex direction
but exhibited a 14% ellipticity due to the optical components within the microscope (9% ellip-
ticity without the dichroic mirror for epi-detection). We therefore inserted an infrared polarizer
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Fig. 1. Experimental setup. (a) Laser scanning multiphoton microscope showing
polarization-resolved detection of forward SHG signal and epi-detection of 2PEF signal
and possibly of SHG signal. The insert displays the incident electric field relative to the
tendon geometry in the focal plane. (b)x- andy-polarized forward 2PEF signal from a flu-
orescent slide for variable incident polarization angles. The ratio of the 2 maxima is used
for calibration of polarization-resolved SHG signals. (c) Combined 2PEF (red) and SHG
(green) image of a tendon labeled with fluorescent latex beads. The image is the summation
of 15 images acquired 2µm apart from the tendon upper surface, with enhanced contrast.
The yellow box shows a typical Region of Interest used for plotting depth-polar diagrams
as in fig. 5. Scale bar: 50µm.

and achieved an ellipcity less than 1% with small scanning angles. This linear polarization was
tuned from−2π/3 to 2π/3 (usually withπ/12 steps) by rotating an achromatic half wave-
plate (MWPAA2-22-700-1000, CVI-Melles Griot) placed just before the objective (see fig.
1.a). Forward SHG signals were analyzed using a polarizing beamsplitter cube (BBPC-550,
CVI- Melles Griot). To improve the extinction ratio of thex- andy-polarized detection chan-
nels, linear polarizers (03FPG021, CVI- Melles Griot) were set in front of the detectors. The
relative transmission of these two channels was calibrated using a fluorescent slide (Chroma):
we took advantage of the isotropy of the setup within thexy plane and compared thex-polarized
signal to they-polarized one excited with polarizations shifted byπ/2 angle (see fig.1.b). The
ratio of both channels was typically 1.1. Calibration was performed before every experiment
and enabled quantitative comparison betweenx- andy-polarized signals.

3. Theoretical background

3.1. Polarization-resolved SHG

Let’s consider the nonlinear optical interaction of the incident laser beam with a rat-tail tendon.
The polarization induced in the medium by the elecric fieldE is given by:

Pi = χ (1)
i j E j + χ (2)

i jk E jEk (1)
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where we considered only the first- and second-order electric susceptibility tensorsχ (1),(2). Rat-
tail tendon is commonly assumed to have a cylindrical symmetry (C6v symmetry) [9, 10, 7],
which reduces the number of independent nonvanishingχ (2) components. Moreover, we as-
sume that the Kleinman symmetry is valid as usually considered because of the nonresonant
character of the interaction. Within these approximations, there are only 2 independent non-
vanishingχ (2) tensorial components:χxxx andχxyy = χxzz = χyxy = χzxz = χyyx = χzzx, where
x represents the main axis of the tendon [19]. Considering a laser beam propagating in thez
direction with a linear polarization at angleα to the tendon lying in thexy plane (see fig. 1.a),
the electric fields reads:Eω

x = E0cosα andEω
y = E0sinα near the focus and induces a SH

polarization:

P2ω
x ∝

(

χxxx cos2α + χxyy sin2α
)

E2
0

P2ω
y ∝ (χxyy sin2α )E2

0

(2)

which radiates at frequency 2ω. In this paper, we are interested in ratiometric measurement
of the second-order response and we consider the ratio of the two independent tensorial com-
ponents of the second-order susceptibility:ρ = χxxx/χxyy. This ratio provides insight into the
orientational distribution of the collagen molecules within the focal volume. It is taken to be
real in the Kleiman approximation. The SH intensity detected for each polarisation then reads:

I2ω
x = K

∣

∣ρ cos2α +sin2α
∣

∣

2
(3a)

I2ω
y = K |2sinα cosα |2 (3b)

where K is a constant merging various parameters such as setup geometry and squared incident
beam intensityI2

0 . Polar diagrams of eq. (3) are displayed in fig. 2.a and b usingρ = 1.4. A
common method to determineρ from polarization-resolved SH experiments is to fitI2ω

x using
eq. (3a).

In the following, we propose a more general method. SinceI2ω
x andI2ω

y are even functions of
α and contain only even powers of trigonometric functions, they can be represented as a sum
of cos2nα functions:

I2ω
x = Acos4α +Bcos2α +C (4a)

I2ω
y =

K
2

(−cos4α +1) (4b)

where

A =
K
2

(

ρ −1
2

)2

(5a)

B = 2K

(

ρ −1
2

)(

ρ +1
2

)

(5b)

C =
K
2

(

ρ −1
2

)2

+K

(

ρ +1
2

)2

(5c)

In that framework, one can notice that:

ρ2 =
A+B+C
A−B+C

(6)

This expression enables the determination ofρ from polarization-resolved SH data by fitting
I2ω
x using eq. (4a). The advantage of this method is that it can take into account various phys-

ical effects that appear to modify the expression ofI2ω
x but not its representation as a sum of

cos2nα functions. These physical effects will be presented in the following sections and the
new expressions of theA,B andC parameters will be derived.
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Fig. 2. Simulated polar diagrams of polarization-resolved SH intensity generated by a ten-
don aligned alongx axis. The angle represents the direction of the excitation polarization to
the tendon direction (see fig. 1.a). (a)I2ω

x and (b)I2ω
y in a non-birefringent, non-scattering

medium without diattenuation (see eq. (2)). (c)I2ω
x and (d)I2ω

y at 24µm depth considering
birefringence (∆n = 0.0066), diattenuation (∆la = 175µm) and polarisation cross-talk due
to scattering (ηxy = 0.13) (see Eq. (11)).ρ = 1.40 in all simulations.

3.2. Tendon birefringence

In the former derivation ofI2ω, we have assumed that the electric field propagation takes place
in an isotropic medium. Nevertheless, the tendon is considered to exhibit aC6v symmetry,

so that the permittivity tensorε0

(

1+ χ (1)
i j

)

has two different components and the tendon is

analogous to a uniaxial birefringent crystal. Indeed, it has been reported that birefringence
∆n = ne −no attains 5·10−3 [20, 21] in tendon. As a consequence, thex (extraordinary wave)
andy (ordinary wave) excitation field components undergoes a relative phase retardation when
propagating within the tendon. SH intensity then reads:

I2ω
x (z) = K

∣

∣

∣
ρ cos2α ei∆φ +sin2α

∣

∣

∣

2
= K

(

∣

∣ρ cos2α +sin2α
∣

∣

2
+

ρ
2

sin22α (cos∆φ−1)
)

(7a)

I2ω
y (z) = K

∣

∣

∣

∣

sin2α ei 2π(ne+no)
λ z

∣

∣

∣

∣

2

= K |sin2α |2 (7b)

where∆φ = 4π(ne−no)z
λ accounts for the birefringence in the excitation propagation (SHG

intensity is unaffected by birefringence in the harmonic propagation). Note thatz represents
the depth in tendon at which SH takes place: due to index mismatch,z = dzlens ntendon/nwater,
wheredzlens is the microscope lens displacement from the tendon upper surface.

These expressions show thatI2ω
y is unaffected by birefringence, whileI2ω

x has a supplemen-
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tary term compared to eq. (4). DecomposingI2ω
x in the cos2nα basis, we get:

Abiref = K

[

1
2

(

ρ −1
2

)2

+
ρ
4

(1−cos∆φ)

]

(8a)

Bbiref = 2K

(

ρ −1
2

)(

ρ +1
2

)

(8b)

Cbiref = K

[

1
2

(

ρ −1
2

)2

+

(

ρ +1
2

)2

−
ρ
4

(1−cos∆φ)

]

(8c)

One observes thatBbiref = B andAbiref +Cbiref = A+C, so thatρ can be determined using eq.
6 as in section 3.1. To get better insight into the effect of birefringence, we have plotted in fig.
3 the variation ofI2ω

x andI2ω
x as a function of the incident polarization angleα for increasing

depth within the tendon. Comparison of model calculations with and without birefringence
shows that birefringence results in interference fringes in thex-polarized SH intensityI2ω

x when
excited with a linear polarization atπ/4 from the tendon axis, as shown by the cos∆φ term in
eq. 7a (seez-profiles in 3.k and 3.n).

3.3. Polarization cross-talk

We have assumed yet that propagation occurs in an optically perfect medium. However, tendon
is a scattering medium like most biological tissues. It results in the decrease of the excitation
intensity since scattered light is not intense enough to induce a nonlinear response. This effect,
that may be different forx- andy-polarized incident light, will be considered in the next sec-
tion. Here, we are interested in the effect of light scattering on the harmonic beam polarization.
When propagating in an anisotropic scattering medium, a wave with well-defined polarization
accumulates scrambling over its polarization direction since scattering processes slightly rotate
the polarization direction. As a consequence, a small amount of SH light that is initially polar-
ized alongy is detected in thex-polarized channel and vice versa. LetηXY (resp.ηY X ) be the
amount of that polarization ”cross-talk” fromy detection channel tox detection channel (resp.
from x to y), soI2ω reads:

I2ω
x (z) = K

∣

∣ρ cos2α +sin2α
∣

∣

2
+ηXY K |sin2α |2 (9a)

I2ω
y (z) = ηY X K

∣

∣ρ cos2α +sin2α
∣

∣

2
+K |sin2α |2 (9b)

DecomposingI2ω
x in the cos2nα basis, we obtain:

Apol = K

[

1
2

(

ρ −1
2

)2

−
ηXY

2

]

(10a)

Bpol = 2K

(

ρ −1
2

)(

ρ +1
2

)

(10b)

Cpol = K

[

1
2

(

ρ −1
2

)2

+

(

ρ +1
2

)2

+
ηXY

2

]

(10c)

Once again,Bpol = B andApol +Cpol = A+C, andρ can be determined as before. Fig. 3.b and
g show that the angular profiles ofI2ω

x andI2ω
y are slightly modified by polarization cross-talk.

3.4. Diattenuation in tendon

Multiphoton microscopy uses near-infrared excitation which minimizes absorbance and scat-
tering in biological tissues. Nevertheless, light scattering and spherical aberrations cause focal
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volume deterioration upon propagation within the tendon, which results in smaller excitation
intensity and weaker SH signal. For simplicity, we assume that the excitation intensity under-
goes exponential attenuation with depth. Due to the tendon anisotropy, the effective attenuation
lengths forIω

x andIω
y are different and the excitation light experiences diattenuation. These at-

tenuation lengths will be noted asle
a andlo

a to account for the uniaxial symmetry of the tendon.
We assume that diattenuation of the SH signal is negligible because signal forward-detection in
multiphoton setups is not much sensitive to light scattering and aberrations.I2ω

x,y then reads:

I2ω
x (z) = K

∣

∣

∣
ρ cos2α e

− z
lea +sin2α e

− z
loa

∣

∣

∣

2
= Ke

− 2z
loa

∣

∣

∣
ρe−

z
∆la cos2α +sin2α

∣

∣

∣

2
(11a)

I2ω
y (z) = K

∣

∣

∣
sin2α e

− z
2loa e

− z
2lea

∣

∣

∣

2
= Ke

− 2z
loa e−

z
∆la |sin2α |2 (11b)

where 1
∆la

= 1
le
a
− 1

lo
a
. The expression of theA,B andC parameters are the same as in eq. 5 with

the modified parameters:K → Ke
− 2z

loa andρ → ρe−
z

∆la . Consequently, once∆la is known,ρ can
be determined in a similar way as in section 3.1. Note that this approach can be generalized to
an arbitrary diattenuation profilefa(z) = f x

a (z)/ f y
a (z) by using the transformationρ → ρ fa(z)

in eq. 6. Fig. 3.c, h and m show the modifications ofI2ω
x and I2ω

y induced by diattenuation.
In particular,z-profiles for an incident polarization parallel (resp. perpendicular) to the tendon
exhibit ale

a (resp.lo
a ) exponential decay.
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Fig. 3. Numerical calculation of polarization-resolved SH intensity as a function of incident
polarisation angleα (see fig. 1) and depthz within tendon for different parameters. (a)-(e)
I2ω
x , (f)-(j) I2ω

y and (k)-(o) z-profiles ofI2ω
x for α = 0 (green dotted line),α = π/4 (blue

dashed line) andα = π/2 (red dash-dot line). (a), (f), (k) tendon with uniform depth-
attenuation:la

x = la
y = 190µm. (b), (g), (l) tendon with polarization cross-talk:ηxy = 0.13,

ηyx = 0.2 (constant with depth). (c), (h), (m) tendon with diattenuation:le
a = 91µm and

lo
a = 190µm. (d), (i), (n) tendon with birefringence∆n = 0.0066. (e), (j), (o) tendon with

diattenuation, birefringence and polarisation cross-talk (same parameters).ρ is equal to
1.40 for all calculations.
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3.5. Combined effects of birefringence, polarization cross-talk and diattenuation

When taking into account all the effects introduced above, we obtain the following expression:

I2ω
x (z) = Ke

− 2z
loa

(

∣

∣

∣
ρe−

z
∆la cos2α ei∆φ +sin2α

∣

∣

∣

2
+ηXY e−

z
∆la |sin2α |2

)

(12)

Fig. 2.c and d display the polar diagrams of this expression along with the similar expression
for I2ω

y . They clearly look very different from the polar diagrams a and b plotted from the
simplified model (eq. 3). It shows that determination ofρ using eq. 3a is hazardous. Conversely,
I2ω
x can still be decomposed as a sum of cos2nα functions as in eq. 4a: the parametersAeff,Beff

andCeff are obtained by combining the effects of birefringence (eq. 8) and polarization cross-

talk (eq. 10) only, and considering the modified parameters:K → Ke
− 2z

loa , ρ → ρe−
z

∆la and
ηxy → ηxye−

z
∆la . In that framework,ρ can be determined as follows:

ρ2e
−2z
∆la =

Aeff +Beff +Ceff

Aeff −Beff +Ceff
(13)

given thatz-profiles ofI2ω
x for α = 0 andπ

2 can be used to determinele
a andlo

a (or fa(z) in a
more general case).

The right hand side of fig. 3 displays thex- andy-polarized SH signal given by eq. 12: diat-
tenuation is revealed by differences inz attenuation for incident polarization parallel and per-
pendicular to the tendon axis, birefringence by oscillations in thez-profile atπ/4 polarization
angle from the tendon axis and polarization cross-talk by deformation of the angular profiles.
In order to better evidence the latter two effects, we introduce the parameter∆ that sorts out the
contributions of∆φ andηXY to Aeff andCeff:

∆(z) =
C−3A−

√

(A+C)2−B2

2(A−B+C)
(14a)

∆(z) = fa

[

ηXY −
ρ
2

(1−cos∆φ)
]

(14b)

At a given depth, contributions of birefringence and polarization cross-talk are intrinsically
mixed, but information on these effects can be obtained by analysis of∆ depth variation.

4. Results

Fig. 4 displays typicalx- andy-polarized SHG images obtained at various depths within a ten-
don for an incident beam polarized atπ/4 from the tendon axis. Transverse profiles show that
the SHG signal is higher at the tendon edges as expected because of the cylindrical shape of
the tendon: attenuation of the excitation beam is more effective in the center of the section
when the incident light propagates along a larger distance within the tendon. However, thex-
andy-polarized SHG transverse profiles exhibit different behaviour as a function of the depth
from the tendon upper surface. In fig. 4.a and b, thex-polarized SHG image is more attenu-
ated than they-polarized SHG image at the tendon center, whereas it is not the case in fig.
4.c and d. Moreover, thex-polarized SHG image at 57µm (fig. 4.c) displays more signal at the
center than at intermediate positions along the transverse profile. This complex behaviour is
characteristic for birefringence effects. Thex andy components of theπ/4-polarized incident
beam experience different optical indices when propagating within the tendon and accumulate
a relative phase shift. The tensorial components of the nonlinear response excited by thex and
y components of theπ/4-polarized incident beam then interfere in a constructive or destructive
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way, depending on the propagation distance within the tendon. It results in interference fringes
in the depth profile of the SHG signal for incident excitation mixing upx andy-polarization
components. These fringes appear only inx-polarized SHG images because they result from
the coherent summation of two tensorial components excited alongx andy polarizations re-
spectively (see eq. 2). Conversely,y-polarized SHG images are not sensitive to birefringence
because they probe only one tensorial component.

(a) (b)z = 39 µm z = 39 µm

(d)(c) z = 57 µm z = 57 µm(d)(c) µ µ

Fig. 4. Polarization-resolved SH images of a tendon upon excitation polarized atπ/4 from
the tendon axis. (a)-(c)x- and (b)-(d)y-polarized SH images and transverse profiles of a
tendon aligned alongx axis at (a)-(b) 39 µm depth and (c)-(d) at 57 µm depth from the
tendon upper surface.x-polarisation images shows dark fringes (red arrows), whereasy-
polarisation has almost uniform intensity profile in the tendon center. Scale bar: 50 µm.

To get a better insight into the physics of polarization-resolved SHG images, we carried out
SHG experiments at increasing depth within the tendon. Fig. 5.a and b display typicalx- and
y-polarized SHG signals in 28 x 20µm regions of interest such as the one depicted in fig. 1.a.
The depth profile of the 2PEF signal from the latex beads is also displayed in fig. 5.c. It enables
the location of the tendon surfacez0 that corresponds to the maximum of the 2PEF peak. The
specific patterns observed in the SHG images were consistently observed in all our samples
provided that the ellipticity of the incident polarization was negligible. Practically, experiments
performed without a linear polarizer at the back pupil of the objective lens exhibited a non
symmetrical pattern relative to the tendon axis (α = 0).

Fig. 5.f displaysz-profiles of thex-polarized SHG signal for various incident polarization
angles. Interference fringes characteristic for birefringence in the excitation propagation are
clearly observed for an incident polarization atπ/4 angle to the tendon axis. The distance be-
tween the two maxima isδz ≈ 47µm. In a first approximation, it is related to the birefringence
phase shift by∆n = λ /2δz. It gives:∆n ≈ 0.008 (after index mixmatch correction), in qual-
itative agreement with reported birefringence in tendon[20, 21]. It will be determined more
precisely later on. Diattenuation of the laser excitation is suggested by thez-profiles of thex-
polarized SHG signal at 0 andπ/2 angles. Exponential fitting gives the following attenuation
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lengths forx andy incident polarizations :le
a = 91µm andlo

a = 190µm (see fig. 6.a).
Finally, fig. 5.d and e displayI2ω

x andI2ω
y at the surface of the tendon (z = z0) where birefrin-

gence and diattenuation effects do not apply. We therefore fit our data using eq. 9 that accounts
only for polarization cross-talk due to light scattering (or equivalently, using eq. 12 withz = 0
and∆φ = 0). We observe that the experimental data are better fitted using eq. 9 than in the sim-
plified approach (eq. 3). It shows that polarization cross-talk due to light scattering significantly
distorts the polarization pattern at the tendon surface.
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Fig. 5. Experimental polarization-resolved SH intensity from a tendon. (a)I2ω

x and (b)I2ω
y

as a function of incident polarisation angleα (see fig. 1) and lens displacement. (c)z-profile
of fluorescence signal from latex beads, peaking at the tendon surfacez0. (d) I2ω

x (α ) and
(e) I2ω

y (α ) at the tendon surface (black dots), along with fits using the simplified approach
(eq. 3, red line) or accounting for polarization cross-talk (eq. 9, blue line). (f) experimental
z-profiles ofI2ω

x for α = 0 (green dotted line),α = π/4 (blue dashed line) andα = π/2
(red dash-dot line).

Altogether, these experimental observations show that the usual approach with eq. 3 does not
satisfactorily account for polarization-resolved SHG imaging in thick tendons. Birefringence,
diattenuation and polarization cross-talk due to scattering must all be taken into account to
explain experimental data. Accordingly, we used eq. 4 with parametersAeff,Beff andCeff to fit
our data. Note that we introduced an angular shiftα0 to account for possible slight misalignment

of the tendon axis fromx direction (−2◦ < α0 < 2◦ for all our data). We then calculatedρe
−z
∆la

by use of eq. 13. This value was subsequently corrected for diattenuation usingle
a = 91µm

andlo
a = 190µm obtained from exponential fitting ofI2ω

x (α = 0) andI2ω
x (α = π/2). Both the

raw and corrected values ofρ are depicted in fig. 6.b. Diattenuation correction successfully
removes the artifactual variation ofρ with depth and enables the reliable determination of
this parameter:ρ = 1.40± 0.03. Moreover, as already stated, this approach is applicable to
any attenuation profilefa(z). To fully characterize the optical response of our sample, we also
calculated the parameter∆(z) from eq. 14a and plotted its depth profile in fig. 6.c. Eq. 14b shows
that the values at the maxima (∆φ = 2πk with k integer) reduce toηxy. The first maximum is
obtained at the tendon surface:ηxy = 0.13. The second maximum is zero which shows that
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e
−z
∆la ηxy is negligible≈ 60µm deep within the tendon. We then consider thatηxy diminishes

exponentionally from 0.13 to 0 within the first 40µm from the surface and we get∆n = 0.0066
by fitting our data using eq. 14b (∆n = 0.0074 without any index mismatch correction).

Finally, to verify the consistency of our data processing, let’s compare our experimental data
(fig. 5.a and b) to the simulations using our experimentally determined parameters for bire-
fringence, diattenuation and polarization cross-talk (fig. 3.e and j). The theoretical and exper-
imental intensity maps are in excellent agreement which proves that our theoretical approach
satisfactorily reproduces polarization-resolved SHG experiments in tendons.
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Fig. 6. Determination of tendon characteristic parameters from experimental SH depth-
profiles. (a)I2ω

x (α = 0) (blue dots) andI2ω
x (α = π/2) (red squares) showing diattenuation:

the solid lines correspond to exponential fitting withle
a = 91µm andlo

a = 190µm. (b)ρ de-
termined from polarization-resolved SHG measurements with (black) and without (green)
correction for diattenuation. (c)∆ parameter evidencing birefringence (oscillations), po-
larization cross-talk due to scattering (non-vanishing value at the tendon surface) and di-
attenuation (exponential attenuation with depth). The solid line represents fitting with the
following parameters:∆n = 1.40,ηxy = 0.13 near the surface and∆la = 134µm.

5. Discussion

In this paper, we developed a method to account for linear propagation effects affecting the
polarization when determiningρ by polarization-resolved SHG experiments. Previous works
studied the effects of diattenuation [15] and birefringence [10, 16] separately, but they did not
propose an approach accounting for both effects and enabling the determination ofρ at any
depth. Our model considers birefringence and diattenuation along the excitation beam propa-
gation and polarization cross-talk due to scattering of the SHG signal. Our experimental results
show that this model perfectly fits our data on rat-tail tendons and enables the reliable deter-
mination ofρ. We also observed interference fringes in the SHG depth profiles which show
unambiguously that birefringence affects polarization-resolved SHG microscopy. Our model
may be refined by numerical simulations of the field distribution within the focal volume using
a vectorial approach to properly describe the polarizations [22]. Such a calculation would ac-
count for polarization mixing through the high numerical aperture objective lens [22, 23] and
for deformation of the focal volume due to birefringence. The description of the polarization
may also be further refined by using Mueller matrices and tracking Stokes vectors through the
tendon [24]. The advantage of our model however is to include all the characteristic features of
the biological sample in a phenomenological approach, including light scattering or depolariz-
ation. It presumably explains why it shows an excellent agreement with our experimental data
and proves relevant to determine optical parameters of rat-tail tendon.

Our data gives insight into both the linear and nonlinear optical response of the tendon. It
first enables the determination of the tendon birefringence at the excitation wavelength. We
obtain ∆n = 6.6 10−3 in good agreement with recently reported values measured in a more
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direct way using Optical Coherence Tomography (OCT) (∆n = 5.3 10−3) [20, 21]. We also
measure the diattenuation at 860nm, ∆la = 175µm, and the polarization cross-talk due to scat-
tering,ηxy = 13%. Our measured values seem reasonable considering usual optical properties
in biological tissues. Previous work also reported polarization scrambling in tendon that could
be reduced by optical clearing [17]. Our phenomenological parameterηxy = 13% amounts
to an average SHG polarization rotation of about 20◦. It shows that the SHG polarization is
reasonably well preserved in the forward direction although propagation to the detector takes
place over several scattering lengths. Indeed, forward detection picks up mainly quasi-ballistic
photons and the polarization of these photons is not strongly modified. Similarly, the meas-
ured attenuation lengths (le

a = 91µm andlo
a = 190µm) are in good agreement with our previous

measurements in rat-artery [26] and the diattenuation shows qualitative agreement with previ-
ously reported measurements in rat-tail tendon using OCT (∆la = 125µm[20, 21]) or in horse
flexor tendon using SHG microscopy (∆la = 480µm [15]). Note that the precise determination
of these parameters depends on the tendon index considered for index mismatch correction. Fi-
nally, as intended from these polarization-resolved SHG experiments, they determine the ratio
ρ of the two main tensorial components of the tendon second-order susceptibility. We obtain
ρ = 1.40±0.03 from the experimental data displayed in fig. 5. Similar values in the range 1.3
to 1.5 were consistently obtained in all our samples. The reproducibility of these measurements
is excellent considering the dispersion of tissue properties in biological samples. Slight differ-
ences from one tendon to the other may moreover be attributed to differences in the tendon
preparation, particularly in the tendon stretching, that could affect the 3D distribution of fibrils
at a submicrometric scale.

Most importantly, our measurements show that the raw value ofρ varies a lot with depth
as depicted in fig. 6.b. It decreases from 1.40 at the surface of the tendon to 0.8 at≈ 90µm
depth within the tendon. These data proves that correction for diattenuation is essential for
reliable measurements ofρ in thick anisotropic tissues and that our model provides an efficient
correction along the full stack of data. We expect that the determination ofρ deeper in the tissue
would be hampered because of the low signal to noise ratio. When possible, the most reliable
method is to perform polarization-resolved measurements at the sample surface to get rid of
diattenuation and birefringence effects.

Finally, note that this method is also applicable to epidetected SHG signals. In that configura-
tion, the infrared polarizer set before the half waveplate at the back pupil of the objective has to
be replaced by a quarter waveplate set at a suitable angle to correct for incident ellipticity with-
out rejecting some epi-SHG signal (see fig. 1.a). Polarization analysis of this epidetected SHG
signal is a complex task because of the presence of the waveplates. Furthermore, backward-
detected SHG is highly affected by scattering and related polarization distortion [25, 17]. How-
ever, SHG polarization analysis was required here for properly characterizing the different lin-
ear optical effects that may affect the determination ofρ. Once this study is completed, the total
SHG intensity can be fitted like thex-polarized component as a sum of cos2nα functions, using
an expression similar to eq. 12. Favourably, this configuration does not require the alignment
of the tendon axis relative to polarization analysis.

6. Conclusion

In this paper, we combined model calculation and experiments in rat-tail tendon to characterize
linear optical effects that affect the polarization in polarization-resolved SHG experiments. We
evidenced that birefringence, diattenuation and polarization scrambling upon scattering signif-
icantly distort the SHG response for tunable incident linear polarizations. In particular, bire-
fringence results in interference fringes in the depth profile of the SHG signal excited with
polarization atπ/4 angle from the tendon axis. Most importantly, diattenuation results in an ar-
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tifactual decrease ofρ with the depth within the tendon. To address these problems, we derived
a method to process polarization-resolved SHG data and we successfully retrieved relevant op-
tical parameters in rat-tail tendon. This method is applicable to any anisotropic sample that
exhibits SHG signals, including other collagenous tissues and presumably skeletal muscles. It
may also be generalized to other nonlinear optical processes, that is 2PEF, THG, CARS or SRS
polarization-resolved microscopies. Altogether, our work proves unambiguously that uncor-
recting for polarization distortion results in misleading determination of the tensorial nonlinear
response in anisotropic thick tissues.
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