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ABSTRACT We propose a Bayesian method to extract the diffusivity of biomolecules evolving freely or inside membrane

microdomains. This approach assumes a model of motion for the particle considered, namely free Brownian motion or confined

diffusion. In each framework, a systematic Bayesian scheme is provided for estimating the diffusivity. We show that this method

reaches the best performances theoretically achievable. Its efficiency overcomes that of widely used methods based on the

analysis of the mean-square displacement. The approach presented here also gives direct access to the uncertainty on the

estimation of the diffusivity and predicts the number of steps of the trajectory necessary to achieve any desired precision. Its

robustness with respect to noise on the position of the biomolecule is also investigated.

INTRODUCTION

Single-molecule tracking is a powerful technique that has

been extensively used to obtain individual trajectories of

biomolecules in vitro or in cellular environments. These

trajectories are then analyzed to determine the motion

characteristics (Brownian motion, anomalous, directed, or

confined diffusion) and the parameters governing this

motion. Recent improvements in labeling methods based

on different types of nanoparticles, as well as in spatial and

temporal resolution, have led to the availability of long

trajectories in large numbers with high spatial or temporal

resolution containing an impressive amount of information.

To extract the parameters underlying the molecule motion,

the mean-square displacement (MSD) is traditionally

computed as a function of lag time (1). Alternatively, the

cumulative distribution of square displacements for a fixed

lag time has been analyzed (2,3) or correlation techniques

have been applied (4,5), which is particularly well suited

for short trajectories and large numbers of single molecules.

However, by focusing solely on one (second-order) moment

of the distribution of displacements, much information on

the dynamics remains unexploited. Other approaches

involve analysis of first-passage times (6), of the spot size

in microscopy images (7), of higher-order moments of the

displacement distributions (8), or of radial particle density

distributions (9). To extract additional information from

the trajectories, comparisons with Monte Carlo simulations

in different experimental situations have been used (10) and

specific algorithms have been developed to detect temporary

confinement (11,12) directed motion (13,14), diffusion

barriers, confinement, and biomolecule interactions (15).

The common feature of these approaches is that they

exploit only a subset of the full information available in the

trajectory. In contrast, we have recently shown that a new

approach based on Bayesian inference (16) fully exploits

the information hidden in a single-molecule trajectory (17).

This approach was applied to the case of Brownian diffusion

inside a potential to extract the forces acting on the molecule

and the diffusion coefficient (17). A similar approach based

on a maximum likelihood estimator had been used for free

diffusion, a situation where the result is identical to that of

the MSD estimator, except in the presence of position noise,

and was applied to identify diffusivity changes (18).

Another major issue in these approaches is the ability to

determine the uncertainty and the bias of the parameter

estimation. Qian et al. (19), and Saxton (20) have evaluated

the uncertainty in diffusivity estimations based on the MSD

analysis by generating a large number of simulated trajecto-

ries. In the case of confined motion, the bias in the extracted

parameters has attracted considerable attention (21–24).

Recently, information theory elements, in particular the

Fisher information, have been used to determine the limit

of localization accuracy for a single molecule (25), the limit

of distance accuracy between two single molecules (26), and

the minimum variance of the diffusivity determination from

a Brownian diffusion trajectory (18). Furthermore, the effect

of the experimental position noise on the extraction of

parameters needs to be addressed (18,27).

The test ground for most of these approaches has been

biomolecule diffusion in model and live cell membranes.

The initial fluid mosaic model (28), assuming free Brownian

motion of membrane proteins in a sea of lipids, was supple-

mented by different models of membrane compartmentation

dictated by experimental observations. The existence of lipid

microdomains enriched in cholesterol, sphingolipids, and

saturated lipids, called lipid rafts, has been put forward

(29,30) and various techniques have been used to characterize

their properties (31–39). The cytoskeleton has also been

shown to play an important role by creating diffusion barriers

either by hindering the motion of the intracellular part of

transmembrane proteins or through the action of membrane
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proteins anchored to the cytoskeleton by adaptor proteins

(picket and fence model) (40–46). In addition, clusters of

membrane proteins have been shown to exist due to homo-

philic protein-protein interactions (47). Although the diffu-

sion of membrane proteins tethered to the cytoskeleton can

be well described by a model of Brownian motion in the

presence of a potential (9,17), diffusion inside compartments

delimited by cytoskeleton fences is most probably best

described by Brownian motion inside a domain with purely

reflective barriers (i.e., absence of forces inside the domain)

(48). Similarly, in the case of lipid rafts, provided the transition

range to the nonraft phase is negligible, the same model of

Brownian motion in a box potential appears as the most suit-

able. We therefore focus on this particular case in this work.

In this article, we present a theoretical approach based on

Bayesian inference to extract the diffusivity of a single

biomolecule diffusing either freely or in a confined environ-

ment. This approach uses the posterior probability distribu-

tion to estimate the diffusivity, examine the effect of the

uncertainty on the estimation, and then give a sense of the

validity of the model used to describe the motion. Such

methods have already proven useful to analyze trajectories

of biomolecules confined in membrane microdomains

providing maps of forces acting on the diffusive biomolecule

(17). Here, confinement results from bounces on the

boundary of a domain of given geometry rather than from

the action of a confining potential. We first introduce a few

Bayesian concepts and describe how, from a model of

motion, one can build an estimator of the diffusivity using

the posterior probability distribution. Criteria to test the val-

idity of an estimator are provided using basic tools of infor-

mation theory (49). The Bayesian estimator and estimators

using an analysis of the MSD are then compared in the

frameworks of free Brownian motion and confined diffusion

with strictly reflective boundary conditions. Finally, the

effect of a Gaussian position noise on the accuracy of these

estimators is investigated.

METHODS

Simulations

To simulate two-dimensional free Brownian motion, the length of each step

was taken from a Gaussian distribution of width
ffiffiffiffiffiffiffiffiffiffiffi

4DDt
p

. The angle between

two successive steps is distributed homogeneously over [0, 2p]. When

motion is confined, a bounce occurs when the generated displacement would

lead to a position outside of the domain boundaries. The position of the

particle after the bounce was obtained according to Snell’s law of reflection.

Steps were subdivided into a few hundred substeps to avoid multiple boun-

ces. Noise on the position was generated by displacing the particle by a

random direction step whose length obeys a Gaussian distribution of width
ffiffiffiffiffiffiffiffi

2s2
p

. When motion was confined, the resulting position was allowed to be

outside of the domain boundaries.

Inference procedures

Given the set of data points ð~r0; t0Þ; ð~r1; t1Þ;.; ð~rN ; tNÞgf and for a particular

value of the diffusivity D, the transition probability for each individual step

is calculated according to the model of motion considered. We then calcu-

lated the probability of the realization using Eq. 1 (or Eq. 27, in presence

of noise), which gives the posterior probability of this value of D via Bayes’

rule (Eq. 2). This was repeated for a whole range of diffusivity values to give

posterior probability curves such as those in Fig. 4. This procedure can be

used for both simulated and experimental trajectories. To generate proba-

bility density function curves like those in Figs. 1, 6, and 7, the maximum

of the posterior probability function was obtained using an iterative Simplex

method adapted from Press et al. (50) and the whole process was repeated

for a large number (~105) of different realizations. We considered that

convergence of the iterative Simplex method toward the extremum was

achieved when the relative difference between two successive iterations

was <10�14. The time needed to generate one realization of the diffusive

process and to estimate the diffusivity via the different estimators did not

exceed a few seconds on a 1.9 GHz PowerPC G5.

Application to experimental data

For experimental trajectories, one should first choose a model of motion. In

cases of long trajectories, which are now commonly available thanks to

different types of nanoparticles, the membrane molecule fully explores the

confining domain and its geometry is clearly visible from the experimental

trajectory. In the Supporting Material, the sensitivity of the method to the

geometry of the confining domain is studied and can be used to compare

the accuracy of different models of motion using Bayesian analysis tools

(16). Ideally, after having loaded an experimental trajectory and experi-

mental parameters such as the level of noise, a software adequate to the

task could perform estimations of the diffusivity via different Bayesian

estimators corresponding to different models of motion (i.e., free diffusion,

diffusion confined in domains of different geometries, diffusion within

a potential (17)) and their corresponding accuracy.

A BAYESIAN ESTIMATOR

In most single particle experiments, the position ~r of

the particle is detected with time interval Dt. We denote

as ~ri the position of the particle after i time steps. After

N time steps, the detected trajectory can be written

FIGURE 1 Normalized distribution of the estimates D*, common to the

MAP and MSD estimators, for free Brownian motion. Trajectories of

500 steps were generated with a time interval Dt ¼ 1 a.u. and an actual

diffusivity ~D ¼ 1 a.u. The vertical black line is positioned at the mean value

of the estimates of diffusivity which is equal to the input value for the gener-

ation of the numerical trajectories. Both estimators are unbiased.
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RN ¼ ð~r0; t0Þ; ð~r1; t1Þ;.; ð~rN; tNÞgf . The approach that we

describe here assumes that the observedmotion is a realization

R of a stochastic process depending on a set q of parameters.

We denote byW(Rjq) the likelihood of the trajectory accord-
ing to the stochastic model. We also define Pð~r; tj~r0; t0Þ as the
transition probability to arrive at the space-time point ð~r; tÞ
conditional to the initial space-time position ð~r0; t0Þ. This
transition probability is a function of the set of parameters q.

For a Markovian process, the probability of a realization after

N time steps (RN) can be factorized,

WðRNjqÞ ¼ Wð~r0; t0Þ
Y

N

i¼ 1

Pð~ri; tij~ri�1; ti�1Þ; (1)

where Wð~r0; t0Þ is the absolute probability of finding the

particle initially at space-time position ð~r0; t0Þ.
Bayes’ rule links the probability of having a set of param-

eters q given a trajectory realization R, P(qjR) (the posterior
probability of the set of parameters), to the likelihood of the

trajectory as

PðqjRÞ ¼ WðRjqÞ � P0ðqÞ
PðRÞ ; (2)

where P(R) is a normalizing constant and P0(q) is the prior

probability that is taken as uniform. Then, one may estimate

the set of parameters governing the motion as the set for

which the posterior probability reaches its maximum. The

corresponding estimator is called the maximum a posteriori

(MAP) estimator and is denoted here as TMAP. For a realiza-

tion R, the estimation of the parameters via this estimator is

then written qMAP ¼ TMAP (R).

Criteria to compare estimators

Other estimators may also be used. For diffusive processes,

an estimation of the diffusivity is often made using the

MSD. It is then necessary to establish criteria to decide

which estimator is preferable. The choice of a given esti-

mator should be driven by its behavior over the whole set

of possible realizations. Indeed, a valid estimator should

provide estimations that, when averaged over the whole set

of possible realizations, give the actual value of the param-

eter. Such estimators are said to be unbiased. Another impor-

tant criterion to evaluate the quality of an estimator T is its

standard deviation s(T), equal to the standard deviation of

the estimations (over the set of all possible realizations)

made using this estimator. The Cramér-Rao inequality states

that the standard deviation of any unbiased estimator Tu is

lower-bounded (49),

sðTuÞRJ�
1
2ðqÞ; (3)

with the equality holding for efficient estimators. J(q) is the

Fisher information, defined as (49)

JðqÞ ¼
�

ðvqlnPðqjRÞÞ2
�

; (4)

the average being performed over the set of all possible

realizations. Estimations made using an unbiased and effi-

cient estimator are then guaranteed to provide the best esti-

mates of the set of parameters q. One should then seek

such estimators.

For a Markov process, the Fisher information for N-step

realizations can be written in terms of the Fisher information

for one-step realizations (49), JN(q) ¼ NJ1(q).

The standard deviation of the estimations made via any

unbiased and efficient estimator T* based on N-step realiza-

tions of a Markov process, thus reads

sNðT�Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NJ1ðqÞ
p ; (5)

where

J1ðqÞ ¼
Z

R1˛R1

DR1 PðqjR1ÞðvqlnPðqjR1ÞÞ2: (6)

R1 is the set of all possible displacements during one time

step. Note that the error of the estimation decreases as the

inverse of
ffiffiffiffi

N
p

, which is as expected from a central limit

argument.

FREE BROWNIAN MOTION

In this section, we compare the MAP estimator and the MSD

estimator when the underlying process is free Brownian

motion. The only parameter on which the movement

depends is the diffusivity D and the transition probability

obeys the diffusion equation,

vtP ¼ DDP; (7)

whose fundamental solution reads

Pð~r; tj~r0; t0Þ ¼ 1

ð4pDðt � t0ÞÞ
d
2

e
�
ð~r �~r0Þ2
4Dðt � t0Þ; (8)

where d is the space dimension. Because the process is

Markovian, we obtain the posterior probability of a diffu-

sivity D given an N-step trajectory RN via Eqs. 1 and 2,

PðDjRNÞf
1

D
Nd
2

e

� 1

4DDt

X

N�1

i¼ 0

ð~riþ 1 �~riÞ2;
(9)

whose maximum is reached for

DMAP ¼ 1

2Dt

1

Nd

X

N�1

i¼ 0

ð~riþ 1 �~riÞ2 ¼ DMSD: (10)

We see that for any realization of the Brownian motion,

the estimations of the diffusivity via the MAP estimator

and the MSD estimator are equal, as was also found in

Montiel et al. (18). We call D* the common estimate of
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the diffusivity. Using the Markov property again, one gets

hD*i ¼ D and s2D�;N ¼ hD�i � hD�i2 ¼ 2D2=Nd, the

average being performed over the set of all possible N-step

realizations. Furthermore, the Fisher information for one-

step realizations is

J1ðDÞ ¼ d

2D2
; (11)

thus, the equality in Eq. 3 holds and bothMAP andMSD esti-

mators are unbiased and efficient. This means that a better

estimate of the diffusivity for free Brownian motion cannot

be found. In Fig. 1, we show the distribution of the common

estimatesD* for numerical trajectories of 500 steps generated

with a time stepDt¼ 1 a.u. and an actual diffusivity ~D ¼ 1 a.u.

Note that the distribution both here and in figures following is

normalized so that its maximum value equals one.

CONFINED DIFFUSION

The equivalence between MAP and MSD, valid for free

diffusion, does not hold for diffusion confined in a domain

as we show here. We consider two-dimensional diffusion

confined in a domain of area S defined by its boundary S

with strictly reflective boundary conditions during the time

of the experiment. As in the case of free Brownian motion,

we are interested in comparing the accuracy of the estima-

tions of the diffusivity made using MAP and MSD estima-

tors. Between two successive detections of the particle, the

typical displacement kd~rk is ~
ffiffiffiffiffiffiffiffiffi

DDt
p

. When kd~rk is compa-

rable to the typical length
ffiffiffi

S
p

of the domain, the particle will

frequently bounce on the domain boundary. We thus intro-

duce a dimensionless parameter, u, that provides a qualitative

sense of the level of confinement of the motion,

u ¼ DDt

S
: (12)

When u x 1, the particle is likely to bounce at the domain

boundary during one time step whereas, when u << 1, the

chances for encountering the boundary during one time

step are low and the particle will seem to undergo free diffu-

sion on sufficiently short timescales. Fig. 2 gives examples

of displacements obtained for u ranging from 10�4 to 1 in

a square domain.

Evaluation of the transition probability

In the case of confined diffusion, the transition probability

Pð~r; tj~r0; t0Þ to arrive at the space-time point ð~r; tÞ condi-

tional to the initial space-time position ð~r0; t0Þ still obeys

the diffusion equation (Eq. 7), but it must also verify the

boundary conditions,

~VPð~r; tj~r0; t0Þ$~njS ¼ 0; (13)

~n being the vector normal to the boundary. If one looks for

solutions by separating spatial and temporal variables,

fð~rÞcðtÞ, the problem appears as an eigenvalue problem

for functions c and f (51),

vtc ¼ �g2Dc;Df ¼ �g2f; (14)

g being a real constant. The general solution for c reads

cðtÞ ¼ cð0Þe�g2Dt. For spatial variables, the general solution

is expressed as the superposition of the different eigenfunc-

tions fg, i of the Laplace operator D for the eigenvalue g2.

Note that the index i of the eigenfunctions corresponds to

the case where the eigenvalue, g2, is degenerate. Thus, the

transition probability can be written

Pð~r; tj~r0; t0Þ ¼
X

g;i

Ag;ið~r0; t0Þfg;ið~rÞe�g2Dt: (15)

Boundary conditions then lead to the quantification of

the possible values of constant g and Ag;ið~r0; t0Þ is given

by the initial condition limt/t0 Pð~r; tj~r0; t0Þ ¼ dð~r;~r0Þ. In
the Supporting Material, we expose the transition probabili-

ties corresponding to most of the geometries that may be

encountered in applications (square, rectangular, circular,

and elliptic).

FIGURE 2 A random walk confined in a square domain. The parameters

D, L, and Dt were chosen so that u ¼ 10�4. The total number of steps is 104.

The start position is represented as a red triangle. The first 102 steps are

colored in purple (the last point is shown as a purple circle), the next

900 steps are colored in green (last point shown as a green circle), and

the rest of the trajectory is colored in yellow with the very last point depicted

as a red circle. The displacements connecting the red triangle to the purple,

green, and red circles thus illustrate displacements that would be observed

for 100Dt (u ¼ 10�2), for 103Dt (u ¼ 0.1), and for 104Dt (u ¼ 1),

respectively. These levels of confinement could correspond to experiments

where, for instance, D ¼ 0.05 mm2.s�1, L ¼ 100 nm, and, respectively,

Dt ¼ 0.02 ms (u ¼ 10�4), Dt ¼ 2 ms (u ¼ 10�2), Dt ¼ 20 ms (u ¼ 0.1),

and Dt ¼ 200 ms (u ¼ 1).
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Evaluation of the lowest achievable uncertainty

Once the transition probability is known, it is possible to

derive the Fisher information, J1(D). We can write this

quantity in terms of the dimensionless parameter u, as

J1ðDÞ ¼ D2

u2
J1ðuÞ: (16)

Then, for any unbiased and efficient estimator of the diffu-

sivity T*, the standard deviation of the estimations over the

set of N steps realizations RN is

sNðT�Þ ¼ s� ¼ D

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NJ1ðuÞ
p : (17)

The lowest achievable relative uncertainty of the estimations,

which we shall denote as h, can be expressed as

h ¼ s�

D
¼ 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NJ1ðuÞ
p : (18)

J1(u) is obtained by an averaging process over all the

possible displacements during one time step and therefore

depends only on the geometry of the confining domain.

For high confinement, J1(u) is well approximated by the

asymptotic expression

J1ðuÞfe�bu: (19)

For square domains, b ¼ 2p2. For rectangular domains of

size L � W with L > W, u is defined by DDt=L:W and

b ¼ 2W
L
p2. For circular domains of radius a, u ¼ DDt=pa2

and b ¼ 2k21;1p, k1, 1 being the first zero of the first derivative

of the Bessel function of order one (k1, 1 z 1.841). For

elliptic domains with major axis a and minor axis b,

u ¼ DDt=pab and b ¼ 4k
xa
0;1;cp

ab
a2�b2

with k
xa
0;1;c defined in the

Supporting Material. For high confinement, the number of

data points necessary to achieve a given precision grows

dramatically with u.When confinement is low, the free Brow-

nian diffusion approximation is reasonable and J1ðuÞ � 1
u2

(d ¼ 2 in Eq. 11), giving

h � 1
ffiffiffiffi

N
p : (20)

For intermediate confinement, J1(u) should be computed

numerically. It is important to note that J1(u) is nonzero

for all u. Thus, h is finite, which means that there are no theo-

retical limitations to achieve any precision provided one is

able to collect a sufficient amount of data points. The number

of points necessary, however, grows dramatically with u for

high confinement as shown in Fig. 3.

MAP estimations of the diffusivity

Knowing the transition probability also allows the estimation

of the diffusivity via the MAP estimator. For the sake of

simplicity, we will focus here on the square geometry but the

same behavior was observed for all other geometries studied.

For a square domain of size L� L, the confinement parameter

previously introduced is u ¼ DDt=L2. The posterior proba-

bility of the diffusivityD given an N-step realization RN reads

PðDjRNÞ ¼ 1

L2

Y

N

i¼ 1

Pð~ri; tij~ri�1; ti�1Þ: (21)

Pð~ri; tij~ri�1; ti�1Þ is calculated according to the results

exposed in the Supporting Material. We generated an

N-step random walk RN with diffusivity ~D ¼ 1 arbitrary

unit (a.u.), L ¼ 1 a.u., and Dt was chosen according to the

desired value of the confinement parameter u. It is then

possible to plot the posterior probability as a function of

D. The MAP estimate DMAP of the diffusivity is the value

of D for which the maximum is reached. Fig. 4 A shows

some of these plots for different levels of confinement and

a fixed number of steps (N¼ 103). For sufficiently low levels

of confinement, DMAP is close to the actual diffusivity ~D,

whereas the estimation becomes less accurate as u

increases—which is as expected from the evolution of h in

Fig. 3. For the case u ¼ 0.5, we see that no maximum of

the posterior probability is found. The MAP estimator can

be considered biased for this set of parameters (u ¼ 0.5

and N ¼ 103) and no accurate estimation of the diffusivity

can therefore be achieved. For such parameters, J1(0.5) x

0.01 and 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Nu2J1ðuÞ
p x 0.63. Therefore, according to Eq. 18,

no estimation can be performed with <63% error. Neverthe-

less, if the number of steps increases sufficiently, the poste-

rior probability will eventually exhibit a maximum, thus

allowing a proper estimation of the diffusivity. Indeed,

extensive simulations strongly support the assumption that

the MAP estimator is unbiased and efficient, provided a

FIGURE 3 Representation in log-log scale of the evolution of the lowest

achievable relative uncertainty h (solid red line) with respect to the confine-

ment u for a square domain and N ¼ 1. The figure also shows asymptotic

approximations for free diffusion (solid green line) and high confinement

(dashed blue line), exhibiting the dramatic increase of the uncertainty for

high confinement. Note that to obtain the evolution of h for N > 1, a factor
1
2
logðNÞ needs to be subtracted.
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maximum of the posterior probability exists for a finite value

of D for every realization as shown in Fig. 5. The number of

steps needed to achieve a desired precision should therefore

be estimated using Eq. 18. In this particular case (u¼ 0.5 and

N ¼ 103), ~4 � 104 steps would be required to estimate D

with 10% error. The evolution of the posterior probability

with respect to the number of steps is illustrated in Fig. 4 B

for a simulation performed with u ¼ 0.2 and N ranging from

10 to 104. The diffusivity used for the simulation was chosen

to be ~D ¼ 1 a.u. The posterior probability already peaks very

close to this value for N ¼ 100 and the peak gets sharper and

sharper as N increases. The standard deviation of the estima-

tions decreases as 1
ffiffiffi

N
p as stated by Eq. 18. For N ¼ 104 the

relative error on the estimation is then close to 2.5%. Similar

behaviors were obtained for all the domain geometries

studied.

Comparison of MAP and MSD estimators

The MSD after n time steps reads

MSDðnDtÞ ¼ 1

ðN � nÞ
X

N�1�n

i¼ 0

ð~riþ n �~riÞ2: (22)

FIGURE 4 Representation of the evolution of the posterior probability

with D for different realizations of the random walk confined in a square

domain. The simulations were performed with ~D ¼ 1 a.u. (A) Evolution

of the posterior probability for different levels of confinement u (u ¼ 0.5,

purple; u ¼ 0.25, blue; u ¼ 0.2, green; u ¼ 0.1, red) and a given number

of steps (N¼ 103). These levels of confinement would be obtained in exper-

iments withD¼ 0.05 mm2.s�1, L¼ 100 nm, and, respectively, Dt¼ 100 ms,

Dt ¼ 50 ms, Dt ¼ 40 ms, and Dt ¼ 20 ms. (B) Evolution of the posterior

probability for different numbers of steps (N ¼ 10, red; N ¼ 100, green;

N ¼ 1000, blue; N ¼ 10,000, purple) and a fixed level of confinement

(u ¼ 0.2). Realistic experimental parameter values corresponding to this

level of confinement could be D ¼ 0.05 mm2.s�1, L ¼ 100 nm, and Dt ¼
40 ms. The 1

ffiffiffi

N
p convergence of the estimation toward the actual value of

the diffusivity is observed.

FIGURE 5 Representation of the bias (A) and standard deviation (B) of

the MAP and MSD estimators with respect to the level of confinement u,

for N ¼ 100 time steps. For each u, ~105 trajectories were used to evaluate

these quantities. (MAP estimator, solid green lines; MSD(1), dashed red

lines; MSD(2), dashed blue; and MSD(3), dashed purple.) The bias is defined

as the difference between the actual value of the diffusivity used in the simu-

lations (~D ¼ 1 a.u.) and the average value of the estimations made using

a given estimator. Only the MAP estimator is unbiased over the whole range

of levels of confinement. The lowest achievable standard deviation of the

estimations, the Cramér-Rao bound, is represented as the solid black line.

The performances of the MAP estimator are practically identical to the theo-

retical Cramér-Rao bound. All MSD estimators are either largely biased or

less efficient than the MAP estimator.
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For two-dimensional free Brownian motion, we have seen

that we can estimate the diffusivity via

D
ð1Þ
MSD ¼ 1

4Dt
MSDðDtÞ; (23)

and that this method of estimation achieves the lowest

possible uncertainty on the diffusivity. We will shortly see

that this is no longer the case when the motion is confined.

For a random walk of diffusivity D confined in a square

domain of size L � L, the expected MSD after n time steps

(averaged over all the possible n time step displacements) is

(48,52)

�

ðD~rðnDtÞÞ2
�

¼ 2

 

L2

6
� 16L2

p4

X

N

k¼ 1;ðoddÞ

1

k4
e
�

�

kp

L

�2

DnDt
!

:

(24)

The diffusivity can be estimated by least-squares fitting the

MSD curve given by Eq. 22 using the previous formula.

We denote as D
ð2Þ
MSD the resulting estimate of the diffusivity.

The 500 first terms of the sum in Eq. 24 were used in the

least-squares fitting procedure. Another method consists in

least-squares fitting the two-dimensional MSD curve given

by Eq. 22 with the formula L2

3
ð1� e�ltÞ and the diffusivity

is then estimated as D
ð3Þ
MSD ¼ lL2

12
(24).

To compare the quality of the MSD estimates to that of the

MAP estimate we generated a large number of confined

random walks (~105) with a given diffusivity ~D ¼ 1 a.u.

For each realization, we obtain a set of estimates of the

diffusivity fDð1Þ
MSD;D

ð2Þ
MSD;D

ð3Þ
MSD;DMAPg. The bias and the

standard deviation of the estimations for each estimator

can then be evaluated. In Fig. 5, we plot these quantities

with respect to the level of confinement u for N ¼ 100

time steps. For the values of u shown in Fig. 5 and the chosen

number of steps N, it was always possible to perform the four

estimations (the least-squares functions and the posterior

probability all had an extremum for finite values of D).

Complete distributions of the estimations made using the

three estimators are shown in Fig. 6 for u ¼ 0.005 and

u ¼ 0.05. Note that the length L of the domain is considered

as known. Similar results, presented in the Supporting Mate-

rial, are obtained when L has to be estimated along with D.

We see that the first MSD estimator is biased and largely

underestimates the diffusivity. As the level of confinement

increases, its bias increases. Note that this estimator seems

to overcome the theoretical Cramér-Rao lower bound

(Fig. 5 B). This is possible only because this estimator is

biased. The distribution of the estimations can then be

sharply peaked on a underestimated value of the diffusivity

as shown in Fig. 6. Note that we only use the first two points

of the MSD curve for this first MSD estimator. In experi-

mental work, the first three or five points of the MSD curve

are also frequently used to estimate the diffusivity via the

initial slope of the MSD curve. In those cases, we have found

the bias of the estimation to be even larger. The second and

third MSD estimators are also biased for low confinement

and, on average, overestimate the diffusivity. However, the

second MSD estimator seems to become unbiased for suffi-

ciently high confinement. We also observe that their standard

deviations decrease as u increases, but they always exceed

the standard deviation of the estimations made using the

MAP estimator. The MAP estimator is unbiased in the whole

range of levels of confinement studied. Its standard deviation

is practically identical to the lowest achievable uncertainty

evaluated via Eq. 18. The MAP estimator can then reason-

ably be considered as unbiased and efficient, provided a

maximum of the posterior probability exists for a finite value

of D for all possible realizations. In this framework, the

maximum of the posterior distribution provides the best

theoretically achievable estimate of the diffusivity.

FIGURE 6 Normalized distributions of the estimations D
ð1Þ
MSD, D

ð2Þ
MSD,

D
ð3Þ
MSD, and DMAP made using the four studied estimators for N ¼ 100 steps

and two different values of the confinement level: u ¼ 0.005 (A) and

u ¼ 0.05 (B). (MAP estimator, solid green lines; MSD(1), dashed red lines;

MSD(2), dashed blue; and MSD(3), dashed purple.) The vertical black line

is positioned at the actual value of the diffusivity (~D ¼ 1 a.u.). The MSD

estimators are either biased or less efficient than the MAP estimator.
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ROBUSTNESS TO NOISE

So far, we have assumed that the position of the tracked

biomolecule was known exactly. Experimentally, an uncer-

tainty on the position of the particle exists though. We inves-

tigate in this section how MAP and MSD estimators are

affected by the existence of noise in the position of the particle

in the cases of freeBrownianmotion and confineddiffusion. In

both cases we assume that the detected position of the particle

at time ti,~r
0
i, can be obtained from the position of the under-

lying random walk,~ri, as~r
0
i ¼~ri þ D~ri, where each compo-

nent of D~ri is distributed according to a normal law with a

known standard deviation s, N(0,s). Note that s is to be deter-

mined from the experimental data, for example by using the

error bar on the center of the two-dimensional Gaussian that

is used to fit the single-molecule signal in the two-dimensional

images. With such a Gaussian noise, the probability to detect

the particle at~r 0i knowing its actual position is~ri reads

Pð~r 0
ij~riÞ ¼ 1

ð2ps2Þd2
e
�
ð~r 0

i
�~riÞ2
2s2 ; (25)

where d is the dimension of the random walk. During one

time step, the transition probability for the particle to be

consecutively detected at positions ~r 0i and ~r 0iþ1 must now

be written as

Pð~r 0iþ 1; ti þ Dtj~r 0i; tiÞ ¼
Z

d~rid~riþ 1Pð~r 0iþ 1j~riþ 1Þ

� Pð~riþ 1; ti þ Dtj~ri; tiÞPð~r 0ij~riÞ;
(26)

where Pð~riþ1; ti þ Dtj~ri; tiÞ is the transition probability for

the underlying random walk without noise. Note that the

integration has to be performed over all the possible posi-

tions ~ri and ~riþ1. We can then approximate the likelihood

of the noisy trajectory for N time steps (R0
N) as (50)

WðR0
NjqÞ ¼ W

�

~r 0
0; t0
�

Y

N

i¼ 1

Pð~r 0
i; tij~r 0

i�1; ti�1Þ (27)

and the posterior probability is given by Bayes’ rule (Eq. 2).

(Note that the exact solution is a convolution of the likelihood

of the trajectory without noise W(RNjq) with the product of

N þ 1 Gaussian laws centered on positions ~ri; i ¼ 0::Ngf
with standard deviation s. The integration must be performed

over the positions ~ri; i ¼ 0::Ngf as in Eq. 26.)

Free Brownian motion

For free Brownian motion, the transition probability in the

presence of noise becomes

Pð~r 0
iþ 1; ti þ Dtj~r 0

i; tiÞ ¼ 1
�

4pD
0
Dt
�d
2

e
�ð~r 0

iþ 1 �~r 0
iÞ
2

4D
0
Dt ;

(28)

with D
0 ¼ Dþ s2=Dt. The maximum of the posterior prob-

ability is then reached for

DMAP ¼ 1

2Dt

1

Nd

X

N�1

i¼ 0

ð~r 0
iþ 1 �~r 0

iÞ
2�s2

Dt
¼ DMSD � s2

Dt
:

(29)

We see that MAP and MSD estimates of the diffusivity differ

when we take into account the noise in the posterior proba-

bility. The distributions of the estimations made via the

MSD estimator is then shifted toward higher values of diffu-

sivity, in agreement with the findings of Montiel et al. (18).

The Gaussian noise can indeed be seen as an independent

diffusive process that adds up with the underlying Brownian

motion, thus increasing the apparent diffusivity. The MAP

estimator corrects this effect as demonstrated for two

different noise levels (s ¼ 0.3 a.u. and s ¼ 1 a.u.) in

Fig. S1. The MAP estimator remains unbiased as the noise

level increases. From Eq. 29, it follows that one can also

get unbiased estimations of the diffusivity by subtracting a

factor s2=Dt from MSD estimations DMSD.

Confined diffusion

We investigate here the effect of the Gaussian noise on the

estimations of the diffusivity when the motion is confined

in a square domain of size L � L. The posterior probability

can also be approximated in this framework (see Supporting

Material) and a MAP estimator taking the noise into account

is then defined. We generated 105 trajectories with a diffu-

sivity ~D ¼ 1 a.u., L ¼ 1 a.u., and Dt ¼ 0.05 a.u. so that

the confinement level is u ¼ 0.05. For such a confinement

level, we have seen in Fig. 5 A that both the second MSD

estimator (providing estimations D
ð2Þ
MSD) and the MAP esti-

mator seem to be unbiased when there is no noise. We add

here a noise with standard deviation s ¼ 0.15 a.u. To take

noise into account in the MSD estimations, it is usual to

subtract a factor 2s2 from Eq. 22 before performing the

least-squares fitting procedures. The modified MSD esti-

mates are still denoted as D
ð2Þ
MSD and D

ð3Þ
MSD in the following.

In Fig. 7, we plot the distributions ofDMAP,D
ð2Þ
MSD, andD

ð3Þ
MSD

estimates obtained with this set of parameters. The distribu-

tion of DMAP is peaked on the actual value of the diffusivity

whereas the distributions of D
ð2Þ
MSD and D

ð3Þ
MSD are shifted

toward higher values of diffusivity. This shift toward higher

diffusivities is also observed if the factor 2s2 is not sub-

tracted from Eq. 22, as described above. The proposed

Bayesian scheme thus reveals itself highly robust to noise

on the position of the biomolecule.

CONCLUSIONS

In this article, we have presented a systematic Bayesian

scheme to estimate the diffusivity of a biomolecule. For an

assumed model of motion, the posterior probability of the

parameter can be determined exactly or approximated using
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the maximum posterior estimator. In the framework of free

Brownian motion and confined diffusion within a domain

with strictly reflective boundary conditions, this estimator

is shown to reach the best performances theoretically achiev-

able according to the Cramér-Rao limit. As a consequence,

the uncertainty on the estimation is provided. Furthermore,

the number of data points necessary to achieve any desired

precision can easily be estimated. Other estimators making

use of an analysis of the MSD are shown to be either biased

or less efficient. The Bayesian estimator has also been shown

to be highly robust to noise on the position of the biomole-

cule in both frameworks. For more complex models of

motion such as diffusion within a confining potential, the

relevance of such a Bayesian scheme has also been demon-

strated (17). Accurate descriptions of biomolecule dynamics

can thus be provided using such Bayesian methods.

SUPPORTING MATERIAL

Additional text, equations, references, and three figures are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)01726-3.

The authors are grateful to M. Vergassola for fruitful discussions and critical

reading of the manuscript.
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