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Abstract: We developed an extended Fano model describing the
Extraordinary Electromagnetic Transmission (EET) through arrays of
subwavelength apertures, based on terahertz transmission measurements of
arrays of various hole size and shapes. Considering a frequency-dependent
coupling between resonant and non-resonant pathways, this model gives
access to a simple analytical description of EET, provides good agreement
with experimental data, and offers new parameters describing the influence
of the hole size and shape on the transmitted signal.
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1. introduction

Interaction between metal surface waves and periodic geometry of subwavelength structures is
at the core of the recent but crucial renewal of interest in plasmonics [1, 2, 3, 4] from which
major promising applications in optics and electronics are arising, based in particular on the Ex-
traordinary Electromagnetic Transmission (EET) through periodic subwavelength structures.
This renewal has raised considerable interest and subsequent theoretical discussions as to de-
scribe this abnormal transmission, leading to numerous concurrent theories.

EET is characterized by abnormally high asymmetrical resonances of light transmission
through arrays of subwavelength apertures for wavelengths close to the period of the arrays.
EET has been observed over the full electromagnetic range, from visible to terahertz and mi-
crowave, therefore even for almost perfectly conductive metals [3, 5]. The microscopic nature
of EET is still debated but Surface Plasmon Polaritons (SPP) seem to play a major role in the
visible and near infrared range. When dealing with highly conductive metals such as in the far
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Fig. 1. Fano model of a subwavelength hole array and the couplingV between a contin-
uum of states{|E〉} and a resonant levelEϕ . [i〉 and |ψE〉 are the initial and final states,
respectively.

infrared, importance of SPP is suspected to disappear, and may be replaced by surface waves
such as quasi-cylindrical waves [4]. Basic macroscopic description relying on Bloch mode ex-
citation near the metal surface provides an approximation of the resonance frequencies [6], but
fails to explain the influence of the hole size and shape, or of the plate thickness. Many models
describing EET are based on mode-expansion approach [7, 8, 9, 10, 11, 12, 13, 14] or on the
full resolution of Maxwell’s equations [4, 15].

A Fano-like model has been adapted to EET [16, 17, 18, 19, 20], based on the similarity
between EET experimental results and calculations performed by Fano on auto-ionization pro-
cesses [21]. This model considers the interference between two contributions: a continuum of
non-resonant states and a resonant state related to the periodic structure, both contributions be-
ing coupled together. Assuming a constant coupling as in auto-ionization, the Fano model has
been successfully integrated to the EET framework, and describes the asymmetrical profiles
as well as the interaction between surface waves [22, 20] but it fails to describe in details the
influence of the geometry and the origin of the coupling.

In this paper, based on experimental measurements in the terahertz domain on arrays of
subwavelength holes, we found that the coupling between resonant and non-resonant states is
Gaussian, and therefore showed that the hypothesis of constant coupling is not valid for EET.
We present an analytical extension of the Fano model of EET incorporating for the first time
geometrical considerations such as the size and shape of the subwavelength apertures.

2. Extended Fano model

Fano introduced in 1961 a model describing auto-ionization processes of helium [21]. It has
now been extended to many other fields such as quantum wires, mesoscopic transport phe-
nomena, polariton in inhomogeneous absorptive dielectric, or transmission coefficient in an
Aharonov-Bohm ring [23, 24]. Fano described the scattering process of an electron through
both a continuum of states and an isolated state, coupled together. The model relies on basic
quantum physics, and describes the two paths that the electron can choose: the non resonant
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one through the continuum, and the resonant one via the isolated level. The calculus leads to
a transmission related parameter equal to the ratio of probability of taking the first over the
second path.

A parallel can be drawn between the Fano model and EET. Two choices are available for light
impinging the array of subwavelength holes. First, light can go through by being diffracted by
the aperture, as was first described by Bethe [25, 26]. Considering an impinging wave, diffrac-
tion by the subwavelength aperture generates a continuum of high spatial frequency wave vec-
tors. Second, light can couple to the surface and cross the screen via the surface waves, inter-
acting with the periodic structure as given by Bloch model. Therefore, the transmission process
involves a non resonant continuum of scattered states (the incident wave diffracted by the aper-
tures) and a resonant state (Bloch model). After propagation through the array, both components
coherently interfere and it results in a new plane wave since apertures are subwavelength. Even
though the high spatial frequency wave vectors vanish after full propagation through the array,
their coupling with the periodic structure is responsible for the resonance of EET. Schemati-
cally (see figure 1), the system is described by an initial state|i〉 and excited state|ψE〉. The
latter is the result of the coupling between a non resonant continuum{|E〉} and a resonant
state|ϕ〉. Without coupling between{|E〉} and|ϕ〉, the matrix elements of the non perturbed
HamiltonianH0 are

〈ϕ|H0|ϕ〉 = Eϕ (1)

〈E|H0|E′〉 = Eδ (E−E′), (2)

whereδ is the Dirac function. Considering a coupling between{|E〉} and|ϕ〉, the total Hamil-
tonian becomes

H = H0 +V, (3)

whereV is the coupling Hamiltonian.|ψE〉 are the eigenstates ofH of eigenvaluesE and the
new matrix elements are

〈E|V|ϕ〉 = v(E) (4)

〈E|V|E′〉 = 〈ϕ|V|ϕ〉 = 0. (5)

Now, we consider the coupling between an initial state|i〉 and either the discrete or continuum
states. The transmission efficiency through the periodic arrays of subwavelength holes is then
given by the probability of transition from|i〉 to the final state|ψE〉 with coupling,|〈ψE|T|i〉|2,
normalized by the transition probability in absence of coupling,|〈E|T|i〉|2. According to Fano
derivation [21], one obtains

T(E) =
|〈ψE|T|i〉|2
|〈E|T|i〉|2 =

[q(E)+ ε(E)]2

1+ ε2(E)
, (6)

with

ε(E) =
E−Eϕ −Γ(E)

πv2(E)
, (7)

andq(E) the Breit-Wigner-Fano coupling coefficient defined as

q(E) =
〈ϕ|T|i〉

πv∗(E)〈ψE|T|i〉
. (8)

The parameterΓ is related to the coupling Hamiltonian matrix element by a Hilbert transform
as

Γ(E) = π Hilb[|v(E)|2] = PP
∫ |v(E′)|2

E−E′ dE′, (9)
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Fig. 2. Normalized transmission spectra of subwavelength hole arrays (L = 600µm), for
round holes of diameter 270µm (A) and 350µm (B), and for square holes of effective hole
diameter (see text for definition) of 233µm (C) and 273µm (D). The black dots are the
experimental data and the red solid lines come from the extended Fano model using eq. 6
and 15, and the parametersA andΔ are found in figures 4 and 5. The arrows show Bloch
model frequencies asν0

i, j = c
L

√

i2 + j2 wherei and j are integers [1].

where PP stands for “principal part of”.
The physical interpretation of these parameters is as follows:Eϕ corresponds to the resonance

energy from Bloch model asEϕ = hν0
i, j with ν0

i, j = c
L

√

i2 + j2 wherei and j are integers [1] ;

v2(E) provides the resonance width, correlated by a Hilbert transform to the resonance shift
Γ(E). Finally, the dimensionless ratioq(E) is a shape factor controlling the asymmetry of
the resonance. In his original model, Fano made strong assumptions that were valid for auto-
ionization, namely thatq, v andΓ were supposed to be independent ofE over the considered
range. In the case of EET, these assumptions are nota priori justified and taking into account
the possible dependence with respect toE could provide new parameters to describe EET more
precisely.

3. Experimental results

The enhanced transmission through the subwavelength hole arrays was measured by Terahertz
Time-Domain Spectroscopy (THz-TDS) from 0.1 to 2 THz [27]. Thanks to the very long wave-
length of the radiation (300µm at 1 THz), the corresponding mechanical precision on the hole
geometry allows a very accurate design and shape control of the apertures. Therefore, poly-
hedral geometries can be investigated: triangle, square, pentagon and round holes of various
sizes. Broadband linearly polarized subpicosecond single cycle pulses of terahertz radiation
are generated and coherently detected by illuminating photoconductive antennas with two syn-
chronized femtosecond laser pulses. Numerical Fourier transform of the time-domain signals
gives access to the transmission spectrum of the arrays. The samples are free-standing 10-µm-
thick nickel arrays of subwavelength polyhedral holes, fabricated by electroforming. Influence
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Fig. 3. Coupling Hamiltonian matrix elementvE(E) calculated from experimental data
(dots) and Gaussian fit (solid line), for round (hole diameter: 210µm, black) and square
(effective hole diameter 113µm, green and 194µm, red) apertures. The Laguerre decom-
position used is truncated at fifth order (k = 5, n = 10, see Appendix A).

of substrate or plate thickness is then negligible, and the plates are still much thicker than skin
depth in the terahertz range. All arrays have aL = 600µm period, and are positioned on a 10
mm circular aperture, in the linearly polarized, frequency independent 4.8 mm-waist (1/e in
amplitude) Gaussian THz beam. The precision over the hole size and periodicity is 1µm. The
dynamics of the EET is then recorded during 250 ps, yielding to a 4 GHz frequency precision
after numerical Fourier transform, with 104 signal to noise ratio in a 300 ms acquisition time.
A reference scan is taken with empty aperture. The transmission of the array is then calculated
by taking the amplitude ratio of the complex spectra of the metal plate and reference scans.

Typical spectra can be found in Figure 2, for round and square apertures. Each spectrum
exhibits typical EET features, with non-symmetrical resonance profiles [19]. In first approxi-
mation, the resonances can be found at frequencies given by Bloch theory asν0

i, j . The observed

resonance frequenciesνi, j are shifted fromν0
i, j as usually found [20, 28, 29]. In order to com-

pare holes of various shapes, we introduced an effective hole diameterD for whichS= π D2/4
equals the real surface of an individual hole. Contrary to some previous papers, we do not ob-
serve anti-resonance at Bloch frequencies, probably due to the ultra thin metal plates used in
the experiments.

The key point is the fitting procedure of Eq. 6 applied to the terahertz spectra, for various
hole sizes and for round, square, triangle and pentagon apertures. Details may be found in the
appendix A. Parametersq andv are left free to evolve with respect toE. The first important
result is that parameterq remains constant for all shapes and sizes, within experimental uncer-
tainty (q = −6±0.5). On the contrary,v is not constant, and exhibits a strong dependence with
E. It then appears thatq is no more an important parameter of our model. The peak asymmetry
will be much more sensitive now to the simultaneous evolution ofv(E) andΓ(E) rather than
q. The coupling Hamiltonian is clearly of Gaussian shape, whose height and width depend on
the shape and size of the apertures, as shown in figure 3.v(E) can then be written in terms of
Gaussian parameters, as

v(E) =
2√
π

A
Δ

e−E2/Δ2
. (10)
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Fig. 5. Evolution of the inverse of width of the Gaussian coupling 1/Δ (see Eq. 10) versus
effective hole diameter for round (black), pentagon (red), square (green) and triangle (blue)
apertures. Solid lines are linear fits.

ParameterA represents the integral of the Gaussian, asA=
∫ ∞

0 v(E)dE, andΔ is the width of the
Gaussian. Sincev2(E) has the dimension of an energy (taken in THz for purpose of simplicity
here), dimensions ofA andΔ are then in THz3/2 and THz, respectively. Evolution of Gaussian
parametersA andΔ can be found in figures 4 and 5.

ParameterA evolves monotonously with respect toD (see figure 4). Moreover, its profile is
the same for all the hole shapes. Every curves can be superimposed within uncertainty range if
normalized. This parameter can then be decomposed into shape-dependent and size-dependent
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functions as
A(s,D) = A(s,0)×AD(D), (11)

wheres refers to round, square, triangle or pentagon shapes. We found that all the curves are
homothetic to a unique hyperbolic function. The inset of figure 4 showsAD(D) and the solid
curve is a fit with the following hyperbolic function

AD(D) = 0.75−105/(D−413), (12)

with D in µm. Evolution of the shape-dependent parameterA(s,0) is also given by figure 6A.
To compare the different hole shapes, a rugosity parameterΔr has been introduced as the mean
deviation of the hole profiles compared to the mean radius ¯r,

Δr2 =
n

2π

∫ 2π/n

0
[r(θ)− r̄]2 dθ with r̄ =

1
2π

∫ 2π

0
r(θ)dθ , (13)

wheren = 3, 4, 5 or ∞ for triangle, square, pentagon and round shapes, respectively, andr(θ)
is the polar coordinate of the hole with respect to its center.A(s,0) is an increasing function of
rugosity.

As for parameterΔ (see figure 5), its inverse is found to be a linear function ofD. Therefore,
the slope only depends on the hole shape, and one can write

1
Δ(s,D)

= −α(s)[D−D(s)]. (14)
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Furthermore, the slopeα(s) is an increasing linear function of the rugosity (see figure 6B).
Each linear 1/Δ curves crosses the X axis at a pointD(s) comprised between 420 and 470µm,
corresponding to a state of infinitely broad coupling Hamiltonian.

Using these parameters, expression of EET within extended Fano model can be expressed
with analytical functions. The frequency shiftΓ is given by the Hilbert transform of a Gaussian,
as Hilb(e−x2

) = −e−x2
erfi(x) where erfi is the imaginary error function defined as erfi(x) =

−i erf(ix) [30]. Then

Γ = −4A2

Δ2 exp

[

−2

(

E
Δ

)2
]

erfi

(√
2

E
Δ

)

, (15)

which complete the analytical expression of EET using equations 6, 7, 10, 11, 12 and 14.
The use of this set of equations may be found in figures 2 and 7. The last one presents the

evolution of the experimental frequencyν1,0 of the first resonance, compared to the one of the
extended Fano model. Both show thatν1,0 is larger for big apertures, and converges toward
ν0

1,0 for tiny apertures. Evolutions ofν1,0 for round and square hole lattice are very different,
highlighting the complex relationship between EET and the geometry of the screen [29].

4. Discussion

We can infer from the Gaussian characteristic of the couplingv(E) that the Hamiltonian related
to the discrete state is parabolic, and that the discrete state can be simply described as an har-
monic oscillator [31] (see Appendix B). As a consequence, the ground state of the discrete state
can also be considered as Gaussian.

The Gaussian parametersA andΔ of the coupling Hamiltonian exhibit very interesting be-
havior for large hole size. Both parameters diverge for large apertures, at approximately the
same effective hole diameter, even thoughΔ seem to diverge at diameters slightly different for
each shape within experimental uncertainty. When the hole size increases, the amplitude of the
coupling Hamiltonian increases, correlated with a broadening of the coupling Hamiltonian, up
to a point where the validity of the model vanishes. This is in good agreement with the recent
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Fig. 8. Fano profiles obtained from the extended Fano model (Eq. 6).(A) Δ = 3 andA varies
from 0.1 to 0.5.(B) the ratioΔ/A remains constant and equal to 5, whileA varies from 0.15
to 3.

observation of the disappearance of EET in subwavelength hole arrays at large hole size in
round and square apertures in the terahertz regime [29]. For large holes, EET was found to be
replaced by symmetric resonances scaling as integers. The transition between the two trans-
mission modes was described as a first order phase transition at effective hole sizes of 440 and
475µm, respectively for round and square apertures, in good correspondence with the results
of figure 5 (438 and 466µm, respectively).

This model also precisely describes the influence of the rugosity of the apertures, from sharp
(triangle) to smooth (round) contours. The origin of sensitivity of the resonance to rugosity may
be due to a modification of the local field distribution inside the holes, as well as a modification
of the coupling between adjacent holes.

The influence of the two parametersA andΔ on the shape of the resonance is not as straight-
forward as in the original Fano model, since the coupling now depends on the frequency. How-
ever it is possible to obtain a general behavior ofA andΔ. Figure 8 shows several calculated
Fano profiles, for various values ofA andΔ. It results in first order thatA mainly affects the
width of the resonance, withΔ constant (Figure 8A), whereas the ratioA/Δ controls the asym-
metry and shift (Figure 8B).
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5. Conclusion

Based on time-domain terahertz spectroscopy, we developed an extended analytic Fano model
describing the extraordinary electromagnetic transmission through arrays of subwavelength
apertures, including an energy dependent coupling Hamiltonian. The coupling is found to be
Gaussian, and can be easily described as a function of the size and shape of the apertures. This
model precisely predicts the influence of the hole geometry on the transmission resonance and
shows the disappearing of EET characteristics for large apertures.

A. Numerical calculation of the extended Fano model parameters

The numerical parametersv(E) andq(E) are derived from the inversion calculation of Laplace
transform [32]. The procedure is based on the decomposition ofv(E) over orthonormal La-
guerre functionsφk(E) defined from Laguerre polynomialsLk(E) by [33]

φk(E) = e−E/2Lk(E) = e−E/2
k

∑
l=0

bl E
l , (16)

wherebl are the Laguerre polynomial coefficients. The couplingv(E) is decomposed over these
orthonormal functions as

v(E) =
∞

∑
k=0

ak φk(E). (17)

Therefore, the Hilbert transform is given by

Γ(E) = PP
∫ ∞

0

|v(u)|2
E−u

du= PP
∫ ∞

0

|∑∞
k=0ak φk(u)|2

E−u
du (18)

=
∞

∑
n=0

cn

∫ ∞

0

e−E un

E−u
du, (19)

wherecn are coefficients straightforwardly obtained from theak andbl coefficients. At last,
the latter integral is calculated using the saddle point method [33] for any value ofn. The
summation is truncated at a given value ofk. We carefully checked that the values ofΓ rapidly
converge for increasing values ofk, and we assumed here thatk = 5 (i.e. n= 10). Higher
order Laguerre polynomial decomposition was checked to have negligible effect on the fitting
precision, but it increases the calculation time. As a result, one obtains an expression of the
transmissionT using eq. 6. Transmission is then a function ofq and Laguerre coefficientsak.
These parameters are calculated using the nonlinear least-square method [34] on the difference
between the measured transmission and theoretical expressions (eq.6 and following), depending
on parametersak, q andE.

The fundamental advantage of this method is that it returns an implicit form of the Hilbert
transform ofv(E). Consequently, the valueΓ(E) is known for any desired value ofE with
little additional cost since most computational cost is spent in calculating the coefficients of the
Laguerre expansion.

B. Harmonic oscillator model

Let H be the total Hamiltonian
H = HE +Hϕ +V, (20)

whereHE refers to the continuum{|E〉}, Hϕ to the resonant state|ϕ〉 andV is the coupling
Hamiltonian between resonant and non-resonant states whose matrix elements are

v(E) = 〈E|V|ϕ〉. (21)
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Let |ϕ〉 be the resonant ground state depending on the state coordinateρ. SinceV does not
depend onρ,

v(E) = 〈E|V|ϕ〉 = V0〈E|ϕ〉, (22)

and then representing the continuum as plane waves|E〉 ∝ eikρ , one obtains

v(E) ∝ V0

∫

ϕ(ρ)eikρ dρ. (23)

Thenv andϕ are related by Fourier transform. Sincev(E) is Gaussian, one obtains

ϕ = ϕ0e−ρ2/Δρ2
. (24)

The resonant ground state is found to be Gaussian, which is characteristic of a parabolic reso-
nant HamiltonianHϕ = aρ2.
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