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Mapping of the forces on biomolecules in cell membranes has spurred the development of effective

labels, e.g., organic fluorophores and nanoparticles, to track trajectories of single biomolecules. Standard

methods use particular statistics, namely the mean square displacement, to analyze the underlying

dynamics. Here, we introduce general inference methods to fully exploit information in the experimental

trajectories, providing sharp estimates of the forces and the diffusion coefficients in membrane micro-

domains. Rapid and reliable convergence of the inference scheme is demonstrated on trajectories

generated numerically. The method is then applied to infer forces and potentials acting on the receptor

of the � toxin labeled by lanthanide-ion nanoparticles. Our scheme is applicable to any labeled

biomolecule and results show its general relevance for membrane compartmentation.
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The motion of proteins and lipids in cell membranes and

its relation to biological function have attracted consider-

able interest in recent years [1]. Motion is commonly

followed by tracking of single biomolecules labeled by

an organic fluorophore or an inorganic nanoparticle that

allows detection via fluorescence, light scattering, etc. [2].

Trajectories are usually analyzed by plotting the mean-

square displacement (MSD) as a function of time. Parame-

ters like diffusion coefficients and domain sizes are ex-

tracted by fitting MSD curves to analytical behaviors ex-

pected for different modes of motion, e.g., free Brownian

diffusion, directed, confined or anomalous motion [2].

A major physical motivation to biomolecule tracking

stems from the actively debated origin of membrane com-

partmentation. Free diffusion of membrane proteins in a

sea of lipids was first postulated in the fluid mosaic model

[3]. Following experimental observations of confinement,

the lipid rafts [4] and the picket and fence [5] models were

proposed. In the former, membrane proteins are preferen-

tially located in domains with different lipid composition

(lipid rafts). In the latter, compartmentation is ascribed to

the combined action of the cytoskeleton and anchored

transmembrane proteins, forming fences and pickets, re-

spectively. Alternative models relying on more specific

mechanisms of protein-protein interactions have also

been proposed [6,7]. Additional complexity arises from

the fact that different confinement mechanisms may coex-

ist and depend on the type of biomolecule [8].

The MSD-based approach has been used extensively.

Alternative observables related to first-passage times [9]

or radial particle density distribution [10] have been pro-

posed recently. More information on the dynamics is hid-

den in the full trajectory of biomolecules, though. Focusing

on a single observable, e.g., the second-order moment for

MSD, has the virtue of simplicity yet it wipes out infor-

mation. In particular, it makes harder discriminating

among different models of motion and does not provide

systematic assessment of their validity. A more general

approach based on inference methods [11] is taken by

considering the likelihoods of the models themselves. A

quantitative sense of their validity is thus obtained, to-

gether with systematic estimates of the parameters of the

models and their uncertainties.

Our aim here is to present a general inference approach

to obtain maps of the forces and the potentials involved in

the confined motion of biomolecules in cell membranes.

Inferences are shown to provide sharp estimations of the

local forces acting in the microdomains. We specifically

consider the case of the receptors of � toxin in the mem-

brane of Madin-Darby canine kidney (MDCK) cells.

The � toxin is responsible for lethal enterotoxemia in

livestock, due to the Gram-positive bacterium Clostridium

perfringens (types B and D). A relatively inactive peptidic

prototoxin is first synthesized and is then converted to a

highly potent mature protein by cleavage and removal of

terminal amino acids. The mature protein targets a specific

receptor located preferentially in detergent-resistant do-

mains of MDCK cells [12]. The protein acts by heptame-

rizing, which leads to the formation of pores and the rapid

modification of the membrane permeability to ions, caus-

ing cell death without any entry of the toxin into the cytosol

[13,14].

To label the � toxin, we used 30–50 nm amine-coated

lanthanide oxide nanoparticles (NPs) Y0:6Eu0:4VO4 (mean

toxin:NP ratio, 1:1; see [15]). These nanoparticles present
several advantages: they are highly photostable without

emission intermittency, they are synthesized directly in

water and present extremely narrow emission, allowing

efficient rejection of cell fluorescence [16]. Their size is

directly determined from their luminosity [17]. Different

emission colors are obtained using different lanthanide

ions [18].
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We used a wide-field inverted microscope (Zeiss

Axiovert 100) equipped with a 63� , NA ¼ 1:4 oil-

immersion objective and an EM-CCD (Roper Scientific

QuantEM:512SC). The Eu3þ ions of the nanoparticles

were excited with the 465.8-nm line of an Arþ-ion laser

and their emission was detected using a 617=8M filter

(Chroma). MDCK cells were grown to confluency on glass

coverslips. They were then rinsed, incubated with 0.04 nM

of labeled � toxin or prototoxins for 20 min, rinsed 3 times,

and observed in Hanks buffer containing 1% fetal calf

serum and 1% penicillin-streptomycin either at 20 or

30 �C.
In all experiments (�400 cells), we observed several

nanoparticles bound to a specific receptor on the cell

membrane. We verified specificity of binding by preincu-

bating the toxin for 1 h with an � toxin antibody that

prevents binding to the membrane (obtained as in [13])

and verifying the absence of nanoparticles bound to the

cells. Toxins were kept at concentrations low enough to

ensure that single toxins (and not oligomers) are tracked.

Trajectories similar to those of prototoxins, which do not

oligomerize, were indeed observed. The mean toxin:NP

ratio 1:1 implies, assuming a Poisson distribution, that the

fraction of NPs bound to zero, one and two or more toxins

are 37%, 37%, and 26%, respectively. Nanoparticles with-

out toxins do not bind to the cells and are rinsed away.

Given the size of the NPs, it is improbable that more than

one toxin is present on the same area of the NP surface

allowing simultaneous binding to more than one receptor.

Furthermore, the binding ability of a fraction of the toxins

may be impaired by the coupling to the NPs. We therefore

estimate that the fraction of NPs bound to more than one

receptor is less than 10%. We also labeled � toxin with the

organic fluorophore Cy3 and observed again similar tra-

jectories. This implies that the nanoparticle label does not

modify the receptor motion, which is thus determined by

the receptor mass and the membrane characteristics (vis-

cosity, forces, etc.). The receptor motion was studied dur-

ing 150 to 300 s. Figure 1 shows a portion of the confined

trajectory of a prototoxin bound to its receptor. We verified

that, given the diffusion coefficient and the domain size, we

are not limited by the image acquisition time (21.4 or

51.4 ms) [19,20]. Relatively short portions of trajectories

were considered, so as to exclude possible drifting of the

membrane domain, the cell, or the microscope setup.

Langevin equations for the position rðtÞ and the velocity
vðtÞ of a biomolecule subject to molecular diffusion and to

the force induced by a potential V (see Fig. 2) are

dr

dt
¼ v; m

dv

dt
¼ ��v�rVðrÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi

2D�2
q

�: (1)

Here, m is the mass of the biomolecule, � and D are the

friction and the diffusion coefficients inside the micro-

domain of the membrane. The zero-average Gaussian noise

�ðtÞ rapidly fluctuates in time, accounting for the effect of

thermal noise. Smoluchowski’s overdamped approxima-

tion [21] to (1) is sufficient for the motion of biomolecules.

Indeed, the typical time for the relaxation of the velocity to

local equilibrium is � ¼ m
�
’ 10�16 s (since m ’ 10�22 kg

and � ’ 10�6 kg=s [22]). Hence, the velocity is slaved to

its local forcing and (1) reduces to

dr

dt
¼ �rVðrÞ

�
þ

ffiffiffiffiffiffiffi

2D
p

�: (2)

The Fokker-Planck equation [23] associated to (2) reads

@tP ¼ �1
�
r � ðFPÞ þD�P; (3)

where the force F � �rV. Kolmogorov equation (3) gov-

erns the transition probability Pðr; tjr0; t0Þ to get to the

space-time point (r, t) conditional to the initial space-

time position (r0, t0) of the biomolecule. It follows from

(3) that the probability P can be expressed as a path

integral [24] over all paths rðsÞ connecting r0 to r:

Pðr; tjr0; t0Þ /
Z

DrðsÞe�
R

dsQðrðsÞÞ: (4)

The term QðrðsÞÞ � ðdrðsÞ=ds� FðrðsÞÞ=�Þ2=4D is the

quadratic Gaussian weight governing the probability of

displacements over an infinitesimal time interval.

In practice, space is discretized in a fine regular mesh of

n2 squares, as shown in Fig. 1 (n ¼ 8). The size of the

mesh is taken small enough for the forces to be smooth on

that scale. At the lowest order, forces are approximated by

a constant value within each mesh square and we shall

show later that higher-order variations are indeed negli-

gible. The integral appearing at the exponential in (4) is

approximated by the corresponding discrete Riemann sum

[see (6)]. Mesh squares Si;j are indexed by the pair (i, j)

(with i; j ¼ 1; . . . ; n) and the force acting in Si;j is denoted

Fi;j. Our goal is to estimate the 2n2 þ 1 unknowns
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FIG. 1 (color). A 60-s trajectory of a Y0:6Eu0:4VO4 nanopar-

ticle labeling � prototoxin bound to its receptor on the membrane

of an MDCK cell. The line color changes from red to blue

(beginning/end of the trajectory). The motion is clearly confined.

See Ref. [25] for a movie at real speed (scale bar: 1 �m).

Excitation intensity, 0:2 kW=cm2; integration time, 50 ms; read-

out time, 1.4 ms; r localization precision, 20 nm; temperature,

20 �C. Inferred forces and potentials are shown in Fig. 2(a). The

dashed lines indicate the mesh squares used for the inference.
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U ¼ fD; fFi;jgg, i.e., the forces and the diffusivity within a

membrane subdomain, governing the trajectories of the

labeled biomolecule. Variations in D can be handled simi-

larly (see below).

Inference methods (see, e.g., [11]) generally feature two

steps: (a) the derivation of the posterior probability distri-

bution of the unknown parameters of the model given the

experimental observations; (b) sampling from the posterior

distribution to estimate the parameters. Specifically, it

follows from Bayes rule that the posterior probability

distribution PðUjTÞ of the set of unknown parameters U
given an observed trajectory T reads

PðUjTÞ ¼ PðTjUÞP0ðUÞ
PðTÞ ; (5)

where PðTjUÞ is the likelihood of a trajectory given the

parameters U and PðTÞ is a normalizing constant. P0ðUÞ is
the prior probability, which we take constant. As for the

sampling part (b), we used Monte Carlo methods to com-

pute the average over the posterior distributions. The latter

are generally well peaked and maximum values provide

then good estimates of the average values.

An asset of our specific problem is that the diffusivity D
is the only global parameter while the n2 forces Fi;j appear

in the likelihood additively at the exponential. It follows

that the contributions of the various squares of the mesh

factorize as PðUjTÞ ¼ Q
n
i;j¼1 PðFi;j; DjTÞ. The contribu-

tion of each mesh square reads

PðFi;j; DjTÞ /
Y

�:r�2Si;j

exp½� ðr�þ1�r��Fi;j�t=�Þ2
4D�t

�
4�D�t

: (6)

Here, � indexes the various time steps (discretized by �t)
and the product is restricted to those times when the

biomolecule is detected within the mesh square Si;j. Note

that discretization introduces a fortiori an ambiguity when

the biomolecule crosses the lines of the mesh and moves to

a new square. The choice made in (6) is to simply use

indices of the starting square. Corrections will be shown

shortly to be negligible.

The crucial element ensuring well-peaked posterior dis-

tributions and sharp inferences is that the trajectories of the

biomolecules are well confined to subdomains. It follows

that the various squares of the mesh are crossed multiple

times, permitting the acquisition of a massive amount of

information. Even for those squares where the largest

forces are measured, i.e., the residence time is the shortest,

the amount of data is sufficient to permit sharp inferences.

Note also that posterior distributions for the forces are

Gaussian, as seen directly in (6).

To have a quantitative sense of the quality of the infer-

ence scheme, we numerically generated ensembles of tra-

jectories with the same force fields and diffusion

coefficients as obtained from the experimental data.

Posterior distributions were found to be sharply peaked

at the values used to generate the trajectories. Typical

evolutions of inferred values vs the number of points

used for the inference are shown in Fig. 3. Convergence

is manifestly rapid and the standard deviation brackets the

real value even for few data points, providing a sensible

estimate of the error bars. Predictions by our method were

found to be more precise and to require less data points

than those based on a single statistic, e.g., MSD or radial

particle density distribution. In summary, simulations pro-

vide strong support to the validity of the inference method.

To visualize the results, it is convenient to plot the

potentials V as in Fig. 2. To that purpose, the potential is

written as a polynomial of order C (C ¼ 4 in Fig. 2):

VðrÞ ¼ P
C
j¼0

Pj
i¼0 �ijx

iyj�i. The constants �ij are fitted

to the experimental force fields, minimizing the squared

FIG. 2 (color). Force and potential fields inferred inside two

membrane microdomains. The length of the arrows is propor-

tional to the magnitude of the force. The potential is plotted as

level curves with the bar indicating the potential’s amplitude on

the isoline. The interpolation scheme described in the text was

used, leading to an effective time step of 5 ms. The diffusion

coefficent for (a) is 4:75� 10�2 �m2 s�1 and for (b) is 8:15�
10�2 �m2 s�1. Posterior distributions for the five locations in-

dicated by the squares are shown in Fig. 4.
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error by standard simplex methods. Potentials that we find

are incompatible with a cytoskeleton fence-type model,

where a steep wall-like potential is expected. This type

of domain, however, may still influence the receptor tra-

jectories on time scales below our resolution. Variations

within microdomains for the diffusivities were found to be

small, i.e., about 4% vs 65% for the forces.

Discretization errors were controlled by the following

method. Given two acquisitions (x1, t1) and (x2, t2 ¼
t1 þ �t), we interpolate their transition probability by

summing over all possible positions x0 at the inter-

mediate time t0 ¼ t1 þ�t=2, i.e., Pðx2; t2jx1; t1Þ ¼R
dx0Pðx2; t2jx0; t0ÞPðx0; t0jx1; t1Þ. The process can be fur-

ther refined by introducing additional intermediate points.

The effect of the interpolation mostly amounts to a reduc-

tion of the error bars, without any major shift in the

estimates of the forces, as can be seen in Fig. 4.

In conclusion, we have developed an inference approach

that fully exploits information hidden in labeled biomole-

cule trajectories. The technique is generally applicable to

any type of biomolecule and trajectory, including intermit-

tent trajectories like those obtained with blinking quantum

dots, and for forces and domains that change in time. We

have explicitly demonstrated the value of the method by

mapping the forces and the potentials involved in the

confined motion of the � toxin receptor in the membrane

of MDCK cells. Results obtained here indicate that the

method, especially in combination with data on cytoskele-

ton destruction and cholesterol depletion, is poised to shed

light onto the controversial mechanisms of membrane

compartmentation.
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FIG. 4 (color online). Posterior probability distributions of the

forces at the locations indicated with the squares in Fig. 2. The

curves for horizontal (vertical) components of the force are 2,4,5

(1,3). Solid curves are obtained by the interpolation scheme

described in the text. Note that average values are extremely

close to those obtained without interpolation (dashed curves) yet

the variance is reduced.

FIG. 3 (color online). Typical evolution of the inferred value of

a local force (left) and its standard deviation (right) with the

number of points used to infer them. Note the rapid convergence

to the real value of the force (indicated by the solid horizontal

line).
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