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Abstract

Background: 5-fluorouracil, a commonly used chemotherapeutic agent, up-regulates expression of human thymidylate
synthase (hTS). Several different regulatory mechanisms have been proposed to mediate this up-regulation in distinct cell
lines, but their specific contributions in a single cell line have not been investigated to date. We have established the relative
contributions of these previously proposed regulatory mechanisms in the ovarian cancer cell line 2008 and the
corresponding cisplatin-resistant and 5-FU cross-resistant-subline C13*.

Methodology/Principal Findings: Using RNA polymerase II inhibitor DRB treated cell cultures, we showed that 70–80% of
up-regulation of hTS results from transcriptional activation of TYMS mRNA. Moreover, we report that 5-FU compromises the
cell cycle by blocking the 2008 and C13* cell lines in the S phase. As previous work has established that TYMS mRNA is
synthesized in the S and G1 phase and hTS is localized in the nuclei during S and G2-M phase, the observed cell cycle
changes are also expected to affect the intracellular regulation of hTS. Our data also suggest that the inhibition of the
catalytic activity of hTS and the up-regulation of the hTS protein level are not causally linked, as the inactivated ternary
complex, formed by hTS, deoxyuridine monophosphate and methylenetetrahydrofolate, was detected already 3 hours after
5-FU exposure, whereas substantial increase in global TS levels was detected only after 24 hours.

Conclusions/Significance: Altogether, our data indicate that constitutive TYMS mRNA transcription, cell cycle-induced hTS
regulation and hTS enzyme stability are the three key mechanisms responsible for 5-fluorouracil induced up-regulation of
human thymidylate synthase expression in the two ovarian cancer cell lines studied. As these three independent regulatory
phenomena occur in a precise order, our work provides a feasible rationale for earlier observed synergistic combinations of
5-FU with other drugs and may suggest novel therapeutic strategies.
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Introduction

Human thymidylate synthase of the ThyA family [hTS (EC

2.1.1.45), encoded by the gene TYMS] is a folate-dependent

enzyme that converts 29-deoxyuridine-59-monophosphate (dUMP)

and N5-N10-methylenetetrahydrofolate (mTHF) to dihydrofolate

and 29-deoxythymidine-59-monophosphate (dTMP). Recent pa-

pers demonstrated that hTS is localized not only in the cytoplasm,

but also in the nuclei and in the mitochondria. Nuclear hTS is

associated with proliferating cell nuclear antigen (PCNA) and

other components of the DNA replication machinery, suggesting

that de novo thymidylate biosynthesis occurs at replication forks [1].

On the other hand, mitochondrial hTS prevents uracil accumu-

lation in mitochondrial DNA and is essential for mtDNA integrity

[2]. Human cells do not possess the flavin-dependent thymidylate

synthase ThyX that is found in many free living microbes [3].

Consequently, hTS provides the only de novo pathway for

thymidylate synthesis in human cells and represents an essential

target enzyme for cancer chemotherapy [4]. Several inhibitors that

prevent the catalytic activity of human thymidylate synthase

through binding to dUMP and/or mTHF binding pockets have

been identified. For instance, the uracil- analog 5-fluorouracil (5-

FU), after metabolic conversion to 5-FdUMP, is a well character-

ized active-site inhibitor of hTS that has been widely used in

chemotherapy since 1957 [5]. FdUMP forms a covalent ternary

complex with hTS and mTHF, resulting in the irreversible

inhibition of the catalytic activity of hTS. Inhibition of hTS

provokes an increase of the intracellular dUMP concentration

[6,7] and causes depletion of deoxythymidine triphosphate (dTTP)

[8]. The imbalance of intracellular deoxynucleotide pools disrupts

DNA replication and triggers cell death [9,10]. In addition to

direct inhibition of hTS, the 5-FU metabolites 5-fluorouridine-59-

triphosphate (F-UTP) and 5-fluoro-29-deoxyuridine-59-triphos-

phate (FdUTP) cause cell death through incorporation into

RNA and DNA, respectively (for a review see [11]). To prevent
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formation of resistant cell populations and to improve the response

rate of treatment, 5-FU is usually given in combination with other

drugs in clinical settings. For instance, a combination of 5-FU with

irinotecan and oxaliplatin has increased the response rate to

treatment for advanced colorectal cancer from 10%–15% to 40%–

50% [12,13], and histone deacetylase (HDAC) inhibitors have

shown synergistic effects in combination with 5-FU [14,15].

Although the reliability of thymidylate synthase expression as a

clinical predictor of the response to 5-FU remains controversial

[16,17], it should be noted that the nuclear to cytosolic expression

ratio of hTS predicts the outcome of 5-FU treatment better than

the overall expression level [18]. It is well established that 5-FU

administration increases the steady-state expression level of hTS in

tissues and cell lines (for a review see [19]). Different regulatory

mechanisms contributing to this phenomenon have been described

in distinct human cell lines. For instance, in human gastrointestinal

cell lines (Hutu 80, HT-29 and WIDR), as well as in human

ovarian carcinoma cell lines (2008 and C13*), the ternary complex

5-FdUMP-MTF-hTS has increased stability as compared with the

non-complexed enzyme, thus increasing up to 6-fold the steady-

state expression level of hTS [20,21]. The increase in protein

stability is controlled by the amino-terminus of hTS that contains

an intrinsically disordered region essential for ubiquitin-indepen-

dent degradation by the proteasome and which may be partially

buried in the ternary complex [22]. Kitchens [23] proposed the

observed enzyme stabilization to be the primary mechanism that

contributes to increased expression levels of hTS in human colon

cancer cell lines (HTC15 and HTC15/200). In human hepato-

cellular carcinoma cell lines (Hep-AEG-1-14 and QGY-7703),

over-expression of the transcription factor LSF, involved in G1/S

phase transition of the cell cycle [24], increases the expression

levels of hTS and 5-FU catabolic enzymes, thus partially

conferring resistance to 5-FU [25]. It has also been proposed that

in human colon cancer cells (H630 and H630R10), hTS binds to

its own mRNA, resulting in translational repression [26,27,28]. In

the presence of hTS ligands, including 5-FU and other active site

inhibitors, the negative regulatory function of hTS as RNA

binding protein is lost, resulting in increased expression. Finally,

another mechanism of post-transcriptional regulation has been

proposed in colorectal cancer cell lines (RKO, LoVo, DLD1 and

SW620), where miRNA-192 and miRNA-195 modulate the

expression levels of the TS protein without decreasing TYMS

mRNA levels [29]. As far as we are aware, the possibility that

incorporation of 5-FU into RNA may inhibit synthesis, stability

and/or splicing of mature TYMS mRNA has not been addressed

to date.

In this study we have investigated the relevance of these

proposed mechanisms for hTS regulation and assayed their

kinetics during 5-FU treatment in the ovarian cancer cell line 2008

and the corresponding cisplatin resistant- and 5-FU cross-resistant

subline C13* that shows higher steady-state expression level of the

enzymes of the folate cycle [20]. Despite the constitutively higher

levels of TYMS in the C13* cell line, we found no obvious effect

on splicing or maturation of TYMS pre-mRNA. Our findings

support that in these cell lines a combination of increased protein

stability and TYMS mRNA transcription (i.e. constitutive and 5-

FU induced) is sufficient to increase hTS expression levels during

5-FU treatment. Our data addresses for the first time the relative

contributions of these mechanisms involved in TS regulation in

two distinct cell lines and may help to predict the observed

synergistic effects between 5-FU and other drugs acting either on

cell cycle regulation or on the stability of hTS.

Materials and Methods

Cell lines
The 2008 cell line was established from a patient with serious

cystadenocarcinoma of the ovary and the cDDP-resistant C13*

subline, about 15-fold resistant to cDDP and 2.5-fold cross-

resistant to 5-FU, was derived from the parent 2008 cell line by 13

monthly selections where the cells were exposed chronically to

cDDP starting at 0.25 mM (first month) and incrementally

increased to 5.25 mM (last month) [30]. These human ovarian

cell lines were grown as monolayers in RPMI 1640 medium

containing 10% heat-inactivated fetal bovine serum and 50 mg/ml

gentamycin sulfate. Cultures were equilibrated with humidified

5% CO2 in air at 37uC. Protein content in the various assays was

calculated by the method of Bradford [31].

Volume size determination and intracellular
concentration of hTS
Cells were harvested and placed on a Burker cell counter and

100 randomly selected cells were examined using an Axioscope 40

epifluorescence microscope (Zeiss, Germany). The diameters were

quantified at a 400-fold magnification by image analysis software

(Axiovision 3.1 from Zeiss). The volume of a single cell was

determined using the volume formula of the sphere. The

intracellular concentration of mRNAs was established using retro

transcription real-time PCR (RT-PCR) accounting for the

aqueous phase volume recovered during tri-reagent extraction

(80%). The real-time PCR amplification efficiency (100%) was

determined according to the ‘‘Guide to Performing Relative

Quantification of Gene Expression Using Real–Time quantitative

PCR’’ (Applied Biosystems) and retro transcription efficiency

(34%) was evaluated by comparing our condition with the

condition already reported by Stahlberg et al. [32].

Cell cycle analysis
Quantitative measures of the cell cycle phase distribution were

performed by flow cytometry [33]. Cells were incubated with

10 mM BrdU for 1 h at 37uC and labeled with monoclonal anti-5-

bromodeoxyuridine (Clone MoBu-1,Sigma) in conjunction with a

goat anti mouse IgG-FICT (Fab*specific, Sigma). Subsequently,

cells were suspended in 0.5 ml of hypotonic fluorochrome solution

(50 mg/ml PI, 0.1% sodium citrate, 0.1% Triton X-100). The

samples were kept at 4C in the dark for at least 30 min, dispersed

by repeated pipetting before flow cytometry analysis in a FACS-

Coulter Epics XL flow cytometer equipped with a single 488 nm

argon laser. The percentage of nuclei in the different phases of the

cell cycle (G0–G1, S and G2-M) was calculated with DNA cell cycle

analysis software (Cell-Fit, Becton Dickinson). A minimum of

104 cells/sample was analyzed for each sample.

Western blotting
The intracellular concentration of TS protein was determined

by Western blotting and immunodetection assuming 100%

efficiency of both protein extraction and blotting (table 1). Western

blot analysis was conducted as previously described [34]. Cells

were harvested and washed twice in ice-cold 16PBS, and

resuspended in 20 mM Tris–HCl (pH 7.4), 150 mM NaCl,

1 mM EDTA (pH 8.0), 1% Triton X-100, and 0.1% SDS. Cells

were lysed by freeze-thawing three times followed by sonication

using three 2-to-3-s bursts. The insoluble debris was removed by

centrifugation at 15,0006g for 30 min. 10 mg of each sample was

resolved by SDS-PAGE (12%). The gels were electroblotted onto

100% pure nitrocellulose membranes (Amersham HybondTM-

ECLTM, GE Healthcare Bio-Science). Antibody staining was
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performed with an Infrared Dye detection system (LI-CORH

IRDyeH, LI-CORH Biosciences), using a 1:500 dilution of the anti-

human TS mouse TS106 monoclonal primary antibody (Abcam)

in conjunction with a 1:5000 dilution of IRDyeH 800CW

Conjugated Goat (polyclonal) Anti-Mouse IgG, highly cross

adsorbed (LI-CORH Biosciences). Red Ponceau staining of the

membrane prior immune-detection was used as loading control

and to ensure equal efficiency of Western transfer (figure S3).

Quantification of signal intensity was performed using LI-COR

software (LI-CORH Biosciences). To determine the intracellular

concentration of hTS, 105 cells instead of 10 mg were resolved on

SDS-PAGE and the absolute amount of TS protein was

established using the standard curve obtained with purified TS

protein (figure S1).

Reverse transcription and real-time PCR analyses
Total RNA was extracted from the cultured cells using TRI

reagent (Sigma-Aldrich). Reverse transcription was performed

with 2 mg of total RNA using random primers (Promega) and M-

MLV reverse transcriptase (Promega). Real time RT–PCR was

performed with 10 ng of cDNA using Power SYBRH Green PCR

Master Mix (Eurogentec) and a Mini-OpticonTM (Bio-Rad),

followed by dissociation curve analysis and subsequent agarose

gel electrophoresis to confirm specificity of amplification. The

following primer sets were used: TYMS [Genbank:

NM_001071.1], forward: 59-CAGATTATTCAGGACAGG-

GAGTT-39, reverse: 59-CATCAGAGGAAGATCTCTTG-

GATT-39; GAPDH [Genbank: NM_002046.3], forward: 59-

CAAGGTCATCCATGACAACTTTG-39, reverse: 59-

GGGCCATCCACAGTCTTCTG-39; TYMS pre-mRNA [Gen-

bank: NT_010859.14], forward: 59-CCCTTCAGCTCTGATG-

GAAG-39, reverse: 59-GTTTCTGCAGGTGTCCATT-39; p53

[Genbank: NM_001126112.1, NM_001126113.1,

NM_001126114.1, NM_001126115.1, NM_001126116.1,

NM_001126117.1, NM_000546.4] forward: 59-CCCCAGG-

GAGCACTAAGCGAGCACT-39,reverse: 59-TCGAAGCGCT-

CACGCCCACGGA-39. The amount of target, normalized to an

endogenous reference (GADPH) and relative to a calibrator (2008

cell line or untreated sample), was given by 22DDCt calculation

[35]. To determine the intracellular concentration, the cDNA

derived from 250 cells instead of 10 ng was quantified by Real

Time PCR and the absolute amount of TYMS mRNA was

established using a TYMS cDNA standard curve [36]. All

experiments were carried out in triplicate; amplification plots

were analyzed using the CFX Manager Software v 1.6 (Bio-Rad).

Immunoprecipitation assay
Immunoprecipitation of TS-RNP complexes was performed as

described by Peritz at al. [37] using protein A and TS monoclonal

antibody (TS 106), which were recently used to investigate

Zebrafish TS protein interaction with its own mRNA [38]. In

brief, 56106 cells were harvested and washed twice in PBS. The

cells were subsequently lysed in polysome lysis buffer (100 mM

KCl, 5 mMMgCl2, 10 mM HEPES, pH 7.0, 0.5% Nonidet P-40,

1 mM DTT, 100 U ml21 RNasin RNase inhibitor (Promega),

2 mM vanadyl ribonucleoside complex solution (Sigma-Aldrich),

25 ml ml21 protease inhibitor cocktail for mammalian tissues

(Sigma-Aldrich) and pre-cleared by two 1 h washes with protein A

agarose beads 12.5% (GE healthcare Bio-Science) at 4uC. The

cleared extract was then incubated with TS monoclonal antibody

(TS 106) overnight at 4uC and the day after protein A agarose

beads 12.5% were added for 6 h at 4uC. Immunoprecipitates were

centrifuged at 250 g for 5 min and then washed four times with

polysome lysis buffer. The pellets were subsequently solubilized in

glycine 0.1 M pH 3 and used for both Western immunoblotting

and RT-real time PCR analysis. The percentages of TYMS

mRNA bound to TS protein in cell free extract and immunopre-

cipitates are reported where indicated. GAPDH mRNA and b-

tubulin antibody (Abcam) were used to estimate the non-specific

binding. The supernatant fraction after immunoprecipitation was

used to exclude any effect due to the TYMS mRNA stability under

the experimental conditions used.

Drug interaction analyses
The effects of drug combinations were quantified by a

synergism quotient (SQ) [39,40]. The synergism quotient was

defined as the net growth inhibitory effect of the drug combination

divided by the sum of the net individual analogue effects on

growth inhibition. A quotient of .1 indicates a synergistic effect,

while a quotient of ,1 indicates an antagonistic effect and a

quotient close to 1 indicates an additive effect.

Results

Effect of 5-FU on TS expression
We first investigated the effect of 5-FU on both the TS protein

and the TS mRNA levels in the cisplatin/5-FU-resistant (C13*)

and sensitive (2008) cell lines. We confirmed that the basal levels of

both, TYMS mRNA and hTS protein are significantly higher in

C13* cells compared to the 2008 parental cell line (p,0.05, n= 5,

figure 1). Our time-course study indicated that treatment with 5-

FU increased the TS mRNA level in the 2008 cells by 1.5-fold

72 hours after addition of 5-FU (p,0.05, n = 3, figure 1A). A

modulation of the mRNA level was not observed in the sensitive

cells after 24 h- and 48 h treatment (figure 1A); although the

Table 1. Intracellular concentrations of TYMS mRNA and hTS.

2008 cells C13* cells

hTS Protein TYMS mRNA Ratio Prot/mRNA hTS Protein TYMS mRNA Ratio Prot/mRNA

Intracellular concentration* 4306140 nM 3.660.9 nM 119 9306300 nM 10.362.6 nM 90

Pull down amount 139500642000 amol 2366 amol 6065 135000637000 amol 4565 amol 3000

*Using an estimated cell volume of 1.86*10212 L.
Intracellular concentrations of hTS protein and TYMS mRNA are indicated. The amounts of hTS protein (figure S2) and TYMS mRNA in the pull down fraction after
immunoprecipitation are also shown. Antibody against Beta-tubulin was used to evaluate the non-specific binding between TYMS mRNA and a generic protein. The
non-specific interaction between mRNAs and hTS protein was checked by quantification of GAPDH mRNA bound to hTS in the pull down fraction. (Intracellular
concentration: n = 5, error =6S.D. Pull down amount: n = 2, error =6S.E.)
doi:10.1371/journal.pone.0047318.t001
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protein level was approximately two fold increased already

24 hours after treatment (p,0.05, n= 3, figure 1B). We also

noticed that the sensitive 2008 cells showed a significant increase

in protein levels after 5-FU treatment compared to the resistant

cells, thus overcoming the low basal expression levels of TS

protein. The 5-FU resistant C13* cell line also showed a level of

TYMS mRNA 3.5-fold higher than the 2008 cell line (p,0.05,

n = 5, figure 1A). Although, the level of TYMS mRNA in C13*

cells does not appear to change during 5-FU treatment, we

observed a 1.5-fold increase of the protein level in the presence of

5-FU (p,0.05, n= 3, figure 1B). Thus, during 5-FU treatment the

steady-state expression level of TS protein increased in both cell

lines, in part independently of transcriptional activity (figures 1A

and 1B).

TS mRNA regulation: synthesis, splicing and stability
As 5-FU is also directly incorporated into RNA, this pro-drug

affects not only DNA synthesis, but also the RNA metabolism, pre-

mRNA synthesis and processing, as well as mRNA stability [11].

In particular, it has been reported that incorporation of 5-FUTP in

spliceosomal snRNA does block splicing [41]. To obtain more

detailed insight into the action of 5-FU, we examined the TS pre-

mRNA levels during 5-FU treatment by real time PCR using a

primer couple that spanned the intron 4 of the human TYMS

(figure 2A). Up to 48 h post treatment we did not find evidence for

a significant modulation of the amount of TS pre-mRNA (n= 3,

figures 2B and 2C). Subsequently the level of pre-mRNA carrying

the intron 4 was 40% increased in C13* cell lines (p,0.05, n= 3,

figure 2C), likely due to increased transcriptional activity of the

TYMS gene (figure 1A). We also tested if the observed changes in

hTS expression could result from differences in turnover of

mRNA. Using 5,6-Dichlorobenzimidazole 1-b-D-ribofuranoside

(DRB), a selective inhibitor of RNA polymerase II (RNA pol II)

that blocks mRNAs synthesis completely, we found that the TS

mRNA half-life was about 23 h and 16 h (p,0.05, n= 3, figure 3)

in C13* and 2008 cells, respectively. This indicates increased

stability of mRNA in the resistant cell line, which contributes to

the different amounts of basal TS mRNA in the two cell lines

(figure 1A). Treatment with 10 mM 5-FU did not affect the TS

mRNA degradation rate, as the same half-life of TS mRNA was

found in 5-FU treated and non-treated cultures (figures 3A and

3B).

Cell cycle perturbation and p53 mRNA level
It is well-known that 5-FU causes perturbation of the cell cycle

phase distribution in many cell lines [14,15,42]. This is mainly due

to the modulation of several protein families: cyclins, p-53 target

genes and apoptosis regulatory pathways [43,44]. Moreover,

TYMS gene expression is modulated during the cell cycle since

LSF, a transcription factor essential for stimulating G1-S gene

expression, mediates the activation of the TYMS gene in the late

G1 phase [24]. Consequently, we decided to investigate the cell

cycle phase distribution during 5-FU treatment and to compare

TYMS expression with the cell cycle perturbation. Our bi-

parametric flow cytometry analyses using propidium iodide (PI)

and an antibody against-BrdU, showed that 5-FU caused a

significant perturbation of the cell cycle in both cell lines, with an

accumulation of cells in the S phase and a substantial decrease of

the cells in the G0–G1 and G2-M phases (n = 3, figure 4 and table

S1). The sensitive 2008 cells showed a higher rate of perturbation

of the cell cycle when compared with the resistant C13* cell line.

In particular, after 24 h-treatment, the 2008 cells showed a dose-

dependent increase of 2–3 fold of the cell number in the S phase,

and a dose-dependent decrease from 2 to 5-fold of the cell number

in both, G1–G0 and G2-M. At 48 h-treatment a partial recovery of

the cell cycle distribution is observed, in particular at the highest

concentration of 5-FU. Indeed, only a 2-fold reduction of the cell

amount in both, G0–G1 and G2-M phases together with a 2-fold

increase of cells in the S phase was observed in the presence of

20 mM 5-FU. At 72 h of treatment of 2008 cells with 5-FU, the

cell amount was restored in the G2-M phase, whereas only a

partial retrieval of the cell distribution between G1–G0 and S

phase was observed. A pronounced 3–4 fold reduction of cells in

the G0–G1 phase was also observed in the C13* cells after 24 h of

Figure 1. Modulation of TS mRNA and TS protein levels by 5-FU in 2008 and C13* cells. The amount of TS mRNA was determined by
relative Real Time PCR using GAPDH mRNA as internal reference (panel A), while the amount of TS protein was determined by Western Immunoblot
analysis at different times after addition of 5-FU. Red Ponceau staining of the membranes prior to immune-detection was used as loading control [66]
(panel B). For each selected time the ratio between the TS level in presence and absence of 5-FU is shown. Results represent the mean of three
separate experiments. Statistical significance was estimated by two-tailed unequal variance Student’s t-test comparing either treated and untreated
samples (*P,0.05, n = 3) or C13* cells and 2008 cells (# P,0.05, n = 5). Error bars indicate S.D.
doi:10.1371/journal.pone.0047318.g001
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treatment together with a 1.5–2 fold increase of the cells in the S

phase and a 50% of reduction of the G2-M phase compared to the

untreated cells. However, already after 48 h-treatment we

observed roughly the same amount of cells in the G2/M phase

in treated and untreated samples and, when compared with the

24 h-treatment, less perturbations of the cell distribution between

S and G1–G0 phases. Finally, at 72 h of 5-FU treatment, the cell

cycle profiles of the C13* cells were comparable with the control

sample with regard to the cell distribution between S and G1–G0

phase and a visible G2-M block was observed at the higher

concentration of 5-FU (20 mM). This observation agrees with the

dual antitumor effect of 5-FU on the cell cycle [45] and indicates

that at high concentrations 5-FU perturbs G1-S phases, whereas at

lower concentrations this drug perturbs G2-M phases.

Since 5-FU provokes not only the inhibition of hTS, but also

DNA and RNA damage and cDDP is a DNA-damaging agent (for

a review see [11] and [46], respectively), we tested the possibility

that p53 could be up-regulated in the cDDP-resistant 5-FU-cross-

resistant cell line, C13*, with respect to the 2008 cells. The first

analyses of p53 in these cell lines, performed using real time PCR,

revealed that even in the absence of 5-FU treatment, the p53

transcript level was 2-fold higher in cells resistant to cisplatin/5-

FU compared to sensitive ones (p,0.05, n= 3, figure 5). Up to

48 hours after treatment with 5-FU, the p53 transcript levels were

constant in both cell lines. However, at the later time points an up-

regulation of p53 mRNA of 1.5 and 1.2 fold was observed in both

2008 and C13* cells, respectively (p,0.05, n= 3, figure 5).

Different schedules of drug treatment and anti-tumor
responses
Since TYMS transcription occurs during both G1 and S phases

[24,47] and 5-FU increases the cell amount in the S phase, we

decided to evaluate and compare the anti-tumor responses

generated by different combinations of 5-FU and others agents

which have shown the ability to compromise the cell cycle such as

cDDP and the polyamine analog N1,N11-diethylnorspermine

(DENSpm). It is well known that cDDP arrests the cell cycle in the

G2/M phase [48] while DENSpm first retards the S phase

progression and later increases the sub-G1 population and/or

arrests the cell cycle in G1 [49,50,51,52]. Thus, both drugs can

impair the S phase and moreover have already shown a synergistic

cell killing effect when combined with novel folate cycle inhibitors

Figure 2. Measurements of TS pre-mRNA. Schematic representa-
tion of the annealing regions of the 2 primer couples used for TYMR
mRNA and TYMS pre-mRNA measurements (panel A). The amounts of
TS pre-mRNAs containing intron 4 were determined in 2008 cells (panel
B) and C13* cells (panel C) by Real-Time PCR at different times after
adding 5-FU. GAPDH mRNA was used as internal reference for Real Time
PCR. For each selected time the ratio between the mRNA level in
presence and absence of 5-FU is shown. Results represent the mean of
three separate experiments. Statistical significance was estimated by
two-tailed with unequal variance Student’s t-test comparing treated
samples with time 0 for each selected time (*P,0.05, n = 3). Error bars
indicate S.D.
doi:10.1371/journal.pone.0047318.g002

Figure 3. Measurements of TS mRNA stability. The level of TS
mRNA was determined in 2008 cells (panel A) and C13* cells (panel B)
by Real Time PCR at different times after the addition of DRB (inhibitor
of RNA pol II). Results represent the mean of three separate
experiments. Statistical significance was estimated by two-tailed
unequal variance Student’s t-test comparing samples treated with
DRB with samples treated with DRB+5-FU at each selected time, (n = 3).
Error bars indicate S.D.
doi:10.1371/journal.pone.0047318.g003
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with quinoxaline structure in these ovarian carcinoma cell lines

[20,39]. Our results show that the cell killing resulting from the

drug combinations between 5-FU and cDDP or DENSpm is

affected by the drug treatment schedule (p,0.05, n= 3, table 2).

In particular, in 2008 cells we observed a synergistic effect when

either 1 mM cDDP or DENSpm are added 24 h before the

treatment with 2 mM of 5-FU. When 5-FU was added either

before cDDP or before DENSpm, we found no evidence for a

strong synergistic effect. It is interesting to note that not only the

timing, but also the concentration of the two agents can affect the

outcome of the drug combination as underlined by the additive

effect shown by the sequentially combination between 3 mM of

cDDP and 2 mM of 5-FU in the sensitive cells (table 2). In the

C13* cell line, in agreement with the cDDP-resistance and 5-FU-

cross-resistance, all the combinations between 5-FU and cDDP

result in an antagonistic effect. On the other hand, also here a

synergistic effect is observed when 2 mM of the polyamine analog

is added 24 h before 5-FU. The other drug combinations between

5-FU and DENSpm are additive, confirming that the cell killing

can be affected by different schedules of drug combination.

TS protein regulation: translational repression
We have shown earlier that 5-FU increases the stability of hTS

in the cell lines used in this study [20]. To investigate in our cell

lines also the validity of the auto-regulatory model, postulating that

translation of TYMS mRNA is controlled by hTS itself (reviewed

in [19]), we evaluated the amount of TS mRNA bound to hTS

protein in whole cell extracts. Using quantitative RT-PCR and

Figure 4. The effect of 5-FU on the cell cycle phase distribution of 2008 and C13* cells. Biparametric analysis based on flow cytometric
analysis of the DNA content by PI staining and BrbU incorporation in 2008 and C13* cells is shown. After 24 h (top) 48 (middle) 72 h (down) of
incubation with the indicated concentrations of 5-FU, cells were processed according to materials and methods. Similar results were obtained in
three separate experiments. The error bars are omitted for a clearer visualization and standard deviations (SD) are reported in table S1 (n = 3).
doi:10.1371/journal.pone.0047318.g004
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Western immunoblot assays, we estimated the intracellular

concentrations of mature TYMS mRNA and hTS protein

(n = 5, table 1). In agreement with earlier work performed in

HuTu 80, HT-29 and WIDR cell lines [21,53], we found that the

intracellular concentration of hTS protein is 0.4360.14 mM in

2008 cells and 0.9360.3 mM in C13* cells (p,0.05, n= 5, table 1),

while the mature TYMS mRNA is 3.660.9 nM and

10.362.6 nM (p,0.05, n = 5, table 1), respectively. This indicates

that the hTS protein is present in considerable (approximately

100-fold) molar excess in the cytosol. This ratio may nevertheless

be an overestimation, as hTS is expressed up to 60% [18] in the

nucleus [1,54] and also in mitochondria [2]. We also investigated

the amount of mRNA in hTS immuno-precipitates (table 1 and

figure S2). The ratio between hTS protein and TYMS mRNA

observed in the pull-down fractions after immunoprecipitation was

significantly higher than in the cell, suggesting that TYMS mRNA

did not significantly co-precipitate with hTS under these

experimental conditions. After correcting for non-specific RNA

binding with an unrelated antibody, we estimated that only

2.0%61.9 and 3.0%61.6 of TYMS mRNA were bound to TS

protein in 2008 and in C13* cells.

TYMS transcription is required for up-regulation of hTS
by 5-FU
To investigate to which extent transcriptional activity is

required for up-regulation of hTS in 5-FU treated cells, we also

determined TS protein levels in DRB-treated and untreated

control cells. The inhibition of RNA pol II by DRB was confirmed

using qPCR analysis of TS mRNA levels under the same

conditions used for protein determination. The data reported in

figures 6A and 6B show that up to 12 hours after 5-FU treatment,

no obvious difference in TS protein levels was detected in samples

pre-treated with DRB or in negative controls in 2008 or C13* cell

lines (n = 5). On the contrary, after 24-h treatment, the amount of

TS protein was significantly lower in cells pre-treated with DRB

when compared with non-treated control cells (p,0.05, n= 5,

figure 6). As the turnover rate of the ribosome is reported to be

between 4 and 10 days [55,56,57], we can exclude any significant

effect due to newly synthetized ribosomes in our data set. Thus,

our data support the hypothesis that during the first 12 hours after

treatment with 5-FU, the increase in TS protein is due to the

translation of TS mRNA synthesized before addition of 5-FU

and/or increased stability of the ternary complex. After this initial

period, it is transcription that is responsible for the increased

expression level of hTS in 5-FU treated samples. Our data also

suggest that the inhibition of hTS activity and up-regulation of

hTS protein levels are not directly linked, as the inactivated

ternary complex was detected already 3 hours after 5-FU

exposure, whereas a substantial increase in global TS levels was

detected only after 24 hours (figures 6A and 6B).

Figure 5. Modulation p53 mRNA by 5-FU in 2008 and C13*
cells. The amount of p53 mRNA was determined Real Time PCR at
different times after adding 5-FU. For each selected time the ratio
between the p53 mRNA level in presence of 5-FU and p53 mRNA level
in absence of 5-FU is shown. GAPDH mRNA was used as internal
reference for Real Time PCR. Results represent the mean of three
separate experiments. Statistical significance was estimated by two-
tailed unequal variance Student’s t-test comparing either treated
samples with time 0 for each cell line (*P,0.05, n = 3) or C13* cells
with 2008 cells (# P,0.05, n = 3). Error bars indicate S.D.
doi:10.1371/journal.pone.0047318.g005

Table 2. Effects of sequential combination of 5-FU with cDDP and DENSpm on SQ values in 2008 and C13* cells.

2008 cells
Synergism

Quotient SD C13* cells
Synergism

Quotient SD

Day 1 Day 2 Day 1 Day 2

1 mM cDDP 2 mM 5FU 1.50a 0.14 4 mM cDDP 5 mM 5FU 0.57 0.21

2 mM 5-FU 1 mM cDDP 1.03a 0.19 5 mM 5FU 4 mM cDDP 0.65 0.19

3 mM cDDP 2 mM 5-FU 0.96 0.10 8 mM cDDP 5 mM 5FU 0.67 0.12

2 mM 5-FU 3 mM cDDP 0.96 0.20 5 mM 5FU 8 mM cDDP 0.71 0.10

2 mM DENSpm 2 mM 5-FU 1.84b 0.30 2 mM DENSpm 2 mM 5-FU 1.24d 0.08

2 mM 5-FU 2 mM DENSpm 1.23b 0.13 2 mM 5-FU 2 mM DENSpm 1.05d 0.08

4 mM DENSpm 2 mM 5-FU 1.35c 0.05 4 mM DENSpm 2 mM 5-FU 0.94 0.06

2 mM 5-FU 4 mM DENSpm 1.08c 0.06 2 mM 5-FU 4 mM DENSpm 0.94 0.10

Synergism of growth inhibition was determined by treatment of cells with 5-FU, DENSpm and cDDP alone and in sequential combination where the first drug was
added at Day 1 and the second drug was added at Day 2. Counting the cell biomass was done at Day 4. Synergism Quotients (SQ) have been calculated as reported in
material and methods. The concentration of 5-FU was chosen to obtain values for percentage growth inhibition no greater than 30% when added alone. Statistical
significance was estimated by two-tailed paired Student’s t-test comparing the samples where 5-FU was added before the other drug with the samples where 5-FU was
added after the other drug. (a,b,c,d P,0.05, n = 3, error = standard deviation (SD)).
doi:10.1371/journal.pone.0047318.t002
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Discussion

In this study we investigated the regulatory mechanisms that

bring about up-regulation of hTS in 5-FU treated cells using the

ovarian cancer cell line 2008 and the corresponding cisplatin-

resistant and 5-FU cross-resistant subline C13*. Our results

indicate that quantity, splicing and stability of TYMS mRNA

are not significantly altered during the first 48 h of 5-FU treatment

(figures 1, 2 and 3). In addition, we have demonstrated that the

basal transcription of TYMS mRNA is the key factor required for

up-regulation of hTS in drug-treated ovarian cancer cells. For

instance, we have shown that the RNA polymerase II inhibitor

DRB substantially limits up-regulation of TS proteins after

addition of 5-FU, indicating that 70–80% of the up-regulation

depend on the de novo synthesis of TYMS mRNA in 2008 and C13*

cells, respectively (figure 6). The TYMS mRNA already present

before addition of 5-FU contributes to up-regulation of the hTS

protein during the first 12 hours of treatment (figure 6), albeit to a

lower extent than observed at the later time points (see above).

Moreover, the presence of the inactive ternary complex 3–

6 hours posteriori of 5-FU addition (figure 6) supports the notion

that the steady-state expression level of hTS reflects increased

stability of hTS in the ternary complex, in agreement with earlier

observations indicating that hTS enzyme stability is linked to a

conformational change due to the presence of the substrates [58].

In contrast, the amount of the TYMS mRNA – hTS complex

observed in these ovarian cancer cell lines (table 1) is very small

and not fully consistent with a translational de-repression

mechanism proposed earlier for the up-regulation of human TS

by 5-FU in other cell lines [26,27,28]. Our quantitative data

suggest that in whole cell extracts at least 95% of TYMS mRNA

present in the cell were not bound to hTS protein with high

affinity, even under the reducing conditions (1 mM DTT) that

have been reported to enhance the RNA binding activity of hTS

[59]. The formation of the hTS-RNA complex should have been

favored by a molar excess (up to 100-fold) of hTS over its own

cytosolic mRNA (table 1). Thus, our results indicate that enzyme

stabilization [20], rather than translational de-repression, is one of

the pivotal mechanisms in hTS protein accumulation. According-

ly, the increase in protein levels in 2008 cells during 5-FU

treatment correlates with the major increase in hTS protein

stability found in this cell line when compared with the resistant

one. In particular, in the presence of 5-FU the hTS half-life is

increased 2.5 fold (from 6 h to 15 h) in 2008 cells and only 1.9 fold

(from 11 h to 21 h) in the resistant C13* cells [20].

Notably, cell cycle analyses reveal that 5-FU compromises the

cell cycle by blocking the 2008 cell line in the S phase (figure 4). It

is known that TYSM mRNA is synthesized in the S phase of the

cell cycle, as well as in the G1 phase [24,47]. After the pronounced

S phase block in 2008 cells at 24 h treatment, we observed a slight

recovery of the cell cycle distribution after 48 h treatment and a

more evident restoration at 72 h, together with an increase in

TYMS transcript. Similar results have been obtained also for the

C13* cells, although, in agreement with the resistant phenotype,

this cell line showed a faster restoration of the cell cycle

distribution and overcomes the S phase block at 72 h of treatment.

This effect is only partially observed in 2008 cells, which are 2.5

fold more sensitive to 5-FU. This is demonstrated by IC50 values

for 5-FU of 3.5 mM and 8.2 mM that were determined by a cell

growth inhibition assay at 72 h post-treatment in 2008 cells and

C13* cells, respectively [20]. This higher resistance to 5-FU could

result from increased detoxification of the drug [60,61] and more

active DNA synthesis and repair processes [62,63] together with

increased expression of the folate cycle enzymes, thymidylate

synthase and dihydrofolate reductase, due to the cisplatin-

resistance phenotype [20]. We have also shown that p53 is

transcribed constitutively at two-fold higher level in the resistant

cells when compared to a parental cell line (figure 5), in agreement

with an up-regulation of DNA synthesis and repair mechanisms. It

is also of interest that the increase in TYMS transcription

(figure 1A and 2C) occurs after the changes in the cell cycle

distribution, which have been observed already after 24 h-

Figure 6. Role of TS mRNA synthesis in TS protein up-
regulation. The concentration of TS protein in 2008 (panel A) and
C13* cells (panel B) was determined by Western blotting at various
times after the addition of 5-FU to the control media (closed squares)
and DRB (inhibitor of RNA pol II)-treated cells (closed triangles). For each
time selected 10 mg of protein extract was resolved in SDS-PAGE (12%)
and the TS protein amount is given with respect to time 0. Results
represent the mean of five separate experiments. Red Ponceau staining
of the membranes prior to immune-detection was used as loading
control [66] (Figure S3). Immunodetection of typical experiment is
shown in the bottom part of each panel. Statistical significance was
estimated by two-tailed with unequal variance Student’s t-test
comparing samples treated with 5-FU with samples treated with 5-
FU+DRB at each selected time (*P,0.05; **P,0.01, n = 5). Error bars
indicate S.D.
doi:10.1371/journal.pone.0047318.g006
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treatment (figure 4), further indicating that increase in TYMS

transcription is a relatively late cellular response to 5-FU. This

enhanced transcription of TYMS could be part of a more complex

pathway involving p53, as transcriptional up-regulation of p53 and

TYMS are at least partially temporally linked (figures 1A, 2C and

5).

The fact that 5-FU has multiple cellular targets makes it difficult

to fully establish causal links between the multiple and complex

regulatory mechanisms affecting TYMS up-regulation. Neverthe-

less, our data has clearly established that the inhibition of hTS

itself, 3 h-6 h after 5-FU addition, is not directly involved in the

transcriptional activation, that occurs 72 hours after treatment,

and only a later stimulus, characterized also by the increase of p53

mRNA levels, seems to be the starting point of the transcriptional

activation. Since p53 is mainly involved in the pathways of DNA

damage/repair, we hypothesize that the DNA damage could be

one of the causes of this increase of the transcription of the TYMS

gene. Moreover, it is of particular interest that recent reports have

shown that the sub-cellular localization of hTS is cell cycle-

dependent. In particular, in the S and G2-M phases, hTS is

present in the nucleus to enable nuclear de novo synthesis of

thymidylate during DNA replication and repair [1] and to prevent

uracil accumulation in nuclear DNA [64] avoiding DNA damage.

Our results suggest a direct link between TYMS transcription and

cell cycle perturbation resulting from 5-FU treatment, as the

TYMS gene is transcribed in the S phase where hTS is in the

nucleus to overcome the cytotoxic effects provoked by metabolites

of 5-FU. Thus, the S phase-block could promote cell survival in

the presence of 5-FU through an increase in the level of hTS in the

nucleus due to both, enhanced transcription and intracellular

localization induced by the cell cycle.

Our findings also suggest that a combination of 5-FU together

with cell cycle modulators may result in beneficial synergic drug

effects. We showed that distinct anti-tumor responses are

generated by different schedules of drug combination (p,0.05,

n = 3, table 2). Pre-treatment with both cDDP and DENSpm is

known to reduce or impair the S phase [48,49,50,51,52] and may

explain the observed synergistic effects of these drugs with 5-FU in

our cell models. Since we have observed a synergistic effect

primarily when the cell cycle modulator (i.e. cDDP and DENSpm)

is added 24 h before 5-FU, we suggest that a reduced or impaired

S phase could increase the cytotoxic effect of the following

administration of 5-FU. However, the cell cycle modulation of

DENSpm is strongly time-dependent [52], possibly explaining why

an antagonist effect between DENSpm and 5-FU was found when

5-FU was added 48 h after DENSpm in HCT116 colon cancer

cells [51]. In any event, our combined findings suggest that the

effects of the drug combinations between 5-FU and both

DENSpm and cDDP are closely related to the drug treatment

schedule.

Moreover, combinations of 5-FU and other drugs that have

been reported in the literature, such as RPR-115135, a

farnesyltransferase inhibitor, show a synergic effect on growth

inhibition only in human colon cancer cell lines. Here the drug

combination drastically reduces the amount of cells either in the

G0–G1 or the S phase (HCT-116, LoVo, RKO, DLD-1, Colo-

320), whereas an antagonism or a non-significant effect is observed

when both G0–G1 and S phases are slightly modulated or

increased (SW-620, HT-29, HCT- 15, KM-12) [42]. Moreover,

the co-treatments with 5-FU and two inhibitors of histone

deacetylase (HDAC), either Vorinostat or LBH589, decrease

either the amount of cells in the G1 or S phase together with a

inhibition of TYMS gene expression in colon cancer cells (HCT-

116 and HT-29), therefore enhancing the effect of 5-FU [14].

Besides these synergic drug combinations acting on cell cycle

distribution, it has been reported that Trichostatin A, another

HDAC inhibitor synergic with 5-FU, affects the protein stability of

hTS [65], confirming the important role of this mechanism in TS

protein regulation. We also note that the cDDP/5-FU-resistant

cells, which have high basal levels of both, TYMS mRNA and

hTS protein, showed a behavior similar to the cDDP/5-FU-

sensitive cell line. This suggests that key mechanisms regulating

hTS expression are maintained even under conditions of high

steady-state expression levels of hTS.

In summary, our experimental data indicate that, constitutive

TYMS mRNA transcription and cell cycle-induced hTS regula-

tion (i.e. increasing the amount of cells in the S phase) together

with hTS enzyme stability [20], are the three key mechanisms that

Figure 7. Schematic representation of hTS regulation in the 2008 cell line during treatment with 10 mM 5-FU. All the mechanisms
involved in hTS regulation that have been observed in this work are shown with respect to the time scale indicated in the upper part. Continued
arrows represent the time window where the phenomenon reported in the figure has been observed. TS protein amount is reported with respect to
the untreated cells at the selected time. The percentages of cells in the different phases of the cell cycle are proportional to the size of the letters
indicating the different phases.
doi:10.1371/journal.pone.0047318.g007
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mediate 5-fluorouracil induced up-regulation of human thymidyl-

ate synthase expression in the two ovarian cancer cell lines studied.

We have also established that these three regulatory phenomena

have a precise order (figure 7), suggesting the possibility of new

therapeutic strategies based upon our findings.

Supporting Information

Figure S1 hTS protein standard curve for absolute

quantification. hTS protein standard curve has been obtained

by serial dilution of purified hTS followed by SDS-PAGE,

electroblotting, antibody staining (panel B) and quantization of

signal intensity using LI-COR (panel A) as described in the

material and method. The correlation coefficient is also shown

(panel A).

(DOCX)

Figure S2 hTS detection in the immunoprecipitation

analysis. The amounts of hTS protein after the immunoprecip-

itation (IP) assay were quantified by Western blot as described

under materials and methods. Lane 1: supernatant of IP using hTS

antibody in 2008 cells. Lane 2: pull down fraction of IP using hTS

antibody in 2008 cells. Lane 3: pull down fraction of IP using Beta-

tubulin antibody. Lane 4: supernatant of IP using hTS antibody in

C13* cells. Lane 5: pull down fraction of IP using hTS antibody in

C13* cells. Lane 6: pull down fraction of IP using Beta-tubulin

antibody in C13 cells.

(DOCX)

Figure S3 Red Ponceau staining of the western blot

reported in figure 6. Red ponceau staining prior immunode-

tection in 2008 cells (panel A) and C13* cells (panel B) was used as

loading control and to confirm equal efficiency during Western

transfer.

(DOCX)

Table S1 Standard deviations (SD) of the cell-cycle phase

distribution (%). Standard deviations of the cell cycle distributions

are shown for every phase of each sample reported in figure 4

(n= 3).

(DOCX)

Acknowledgments

We thank members of the LIGHTS consortium for discussions.

Author Contributions

Conceived and designed the experiments: AL GM HM. Performed the

experiments: AL GM. Analyzed the data: AL GM UL HM. Contributed

reagents/materials/analysis tools: AL GM UL HM. Wrote the paper: AL

UL HM.

References

1. Anderson D, Woeller C, Chiang E-P, Shane B, Stover PJ (2012) Serine

Hydroxymethyltransferase anchors the de novo thymidylate synthesis pathway

to the nuclear lamina for DNA synthesis. Journal of Biological Chemistry.

2. Anderson DD, Quintero CM, Stover PJ (2011) Identification of a de novo

thymidylate biosynthesis pathway in mammalian mitochondria. Proceedings of

the National Academy of Sciences 108: 15163–15168.

3. Myllykallio H, Lipowski G, Leduc D, Filee J, Forterre P, et al. (2002) An

Alternative Flavin-Dependent Mechanism for Thymidylate Synthesis. Science

297: 105–107.

4. Garg D, Henrich S, Salo-Ahen OMH, Myllykallio H, Costi MP, et al. (2010)

Novel Approaches for Targeting Thymidylate Synthase To Overcome the

Resistance and Toxicity of Anticancer Drugs. Journal of Medicinal Chemistry

53: 6539–6549.

5. Peters G, Kohne C (1999) Fluoropyrimidines as antifolate drugs; (ed.) JJ, editor.

Totowa, NJ: Humana Press

6. Aherne GW, Hardcastle A, Raynaud F, Jackman AL (1996) Immunoreactive

dUMP and TTP pools as an index of thymidylate synthase inhibition; effect of

tomudex (ZD1694) and a nonpolyglutamated quinazoline antifolate (CB30900)

in L1210 mouse leukaemia cells. Biochemical Pharmacology 51: 1293–1301.

7. Mitrovski B, Pressacco J, Mandelbaum S, Erlichman C (1994) Biochemical

effects of folate-based inhibitors of thymidylate synthase in MGH-U1 cells.

Cancer Chemother Pharmacol 35: 109–114.

8. Jackson RC, Grindley GB (1984) The Biochemical Basis for Methotrexate

Cytotoxicity; Accademic, editor. New york: Sirotnak, FM, Burchall, JJ,

Ensminger, WD, Montgomery, JA. 289–315 p.

9. Houghton JA, Tillman DM, Harwood FG (1995) Ratio of 29-deoxyadenosine-

59-triphosphate/thymidine-59-triphosphate influences the commitment of hu-

man colon carcinoma cells to thymineless death. Clin Cancer Res 1: 723–730.

10. Yoshioka A (1987) Deoxyribonucleoside triphosphate imbalance. 5-Fluorodeox-

yuridine-induced DNA double strand breaks in mouse FM3A cells and the

mechanism of cell death. J Biol Chem 262: 8235–8241.

11. Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of

action and clinical strategies. Nat Rev Cancer 3: 330–338.

12. Giacchetti S (2000) Phase III multicenter randomized trial of oxaliplatin added

to chronomodulated fluorouracil-leucovorin as first-line treatment of metastatic

colorectal cancer. J Clin Oncol 18: 136–147.

13. Douillard JY (2000) Irinotecan combined with fluorouracil compared with

fluorouracil alone as first-line treatment for metastatic colorectal cancer: a

multicentre randomised trial. Lancet 355: 1041–1047.

14. Fazzone W, Wilson PM, LaBonte MJ, Lenz H-J, Ladner RD (2009) Histone

deacetylase inhibitors suppress thymidylate synthase gene expression and

synergize with the fluoropyrimidines in colon cancer cells. International Journal

of Cancer 125: 463–473.

15. Di Gennaro E, Bruzzese F, Pepe S, Leone A, Delrio P, et al. (2009) Modulation

of thymidilate synthase and p53 expression by HDAC inhibitor vorinostat

resulted in synergistic antitumor effect in combination with 5FU or Raltitrexed.

Cancer Biology & Therapy 8: 782–791.

16. Showalter SL, Showalter TN, Witkiewicz A, Havens R, Kennedy EP, et al.

(2008) Evaluating the drug-target relationship between thymidylate synthase

expression and tumor response to 5-fluorouracil: Is it time to move forward?

Cancer Biology & Therapy 7: 986–994.

17. Backus H, Pinedo H, Wouters D, Kuiper C, Jansen G, et al. (2000) Differences

in the induction of DNA damage, cell cycle arrest, and cell death by 5-

fluorouracil and antifolates. Oncology Research 12: 8.

18. Gustavson MD, Molinaro AM, Tedeschi G, Camp RL, Rimm DL (2008)

AQUA Analysis of Thymidylate Synthase Reveals Localization to be a Key

Prognostic Biomarker in 2 Large Cohorts of Colorectal Carcinoma. Archives of

Pathology & Laboratory Medicine 132: 1746–1752.

19. Berg RW, Ferguson PJ, DeMoor JM, Vincent MD, Koropatnick J (2002) The

means to an end of tumor cell resistance to chemotherapeutic drugs targeting

thymidylate synthase: Shoot the messenger. Current Drug Targets 3: 297–309.

20. Marverti G, Ligabue A, Paglietti G, Corona P, Piras S, et al. (2009) Collateral

sensitivity to novel thymidylate synthase inhibitors correlates with folate cycle

enzymes impairment in cisplatin-resistant human ovarian cancer cells. European

Journal of Pharmacology 615: 17–26.

21. Washtien WL (1984) Increased levels of thymidylate synthetase in cells exposed

to 5-fluorouracil. Molecular Pharmacology 25: 171–177.

22. Melo SP, Barbour KW, Berger FG (2011) Cooperation between an Intrinsically

Disordered Region and a Helical Segment Is Required for Ubiquitin-

independent Degradation by the Proteasome. Journal of Biological Chemistry

286: 36559–36567.

23. Kitchens ME, Forsthoefel AM, Rafique Z, Spencer HT, Berger FG (1999)

Ligand-mediated Induction of Thymidylate Synthase Occurs by Enzyme

Stabilization. Journal of Biological Chemistry 274: 12544–12547.

24. Hansen U, Owens L, Saxena U (2009) Transcription factors LSF and E2Fs:

Tandem cyclists driving G0 to S? Cell Cycle 8: 2146–2151.

25. Yoo BK, Gredler R, Vozhilla N, Su Z-z, Chen D, et al. (2009) Identification of

genes conferring resistance to 5-fluorouracil. Proceedings of the National

Academy of Sciences 106: 12938–12943.

26. Chu E, Koeller DM, Casey JL, Drake JC, Chabner BA, et al. (1991)

Autoregulation of human thymidylate synthase messenger RNA translation by

thymidylate synthase. Proceedings of the National Academy of Sciences 88:

8977–8981.

27. Chu E, Koeller DM, Johnston PG, Zinn S, Allegra CJ (1993) Regulation of

thymidylate synthase in human colon cancer cells treated with 5-fluorouracil and

interferon-gamma. Mol Pharmacol 43: 527–533.

28. Chu E, Cogliati T, Copur SM, Borre A, Voeller DM, et al. (1996) Identification

of in Vivo Target RNA Sequences Bound by Thymidylate Synthase. Nucleic

Acids Research 24: 3222–3228.

29. Boni V, Bitarte N, Cristobal I, Zarate R, Rodriguez J, et al. (2010) miR-192/

miR-215 Influence 5-Fluorouracil Resistance through Cell Cycle-Mediated

Mechanisms Complementary to Its Post-transcriptional Thymidilate Synthase

Regulation. Molecular Cancer Therapeutics 9: 2265–2275.

Human Thymidylate Synthase Regulation

PLOS ONE | www.plosone.org 10 October 2012 | Volume 7 | Issue 10 | e47318



30. Andrews PA, Albright KD (1992) Mitochondrial Defects in cis-Diamminedi-
chloroplatinum(II)-resistant Human Ovarian Carcinoma Cells. Cancer Re-
search 52: 1895–1901.

31. Bradford MM (1976) A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding.
Analytical biochemistry 72: 248–254.

32. Stahlberg A, Kubista M, Pfaffl M (2004) Comparison of reverse transcriptases in
gene expression analysis. Clinical Chemistry 50: 1678–1680.

33. Dolbeare F, Gratzner H, Pallavicini MG, Gray JW (1983) Flow cytometric
measurement of total DNA content and incorporated bromodeoxyuridine.
Proceedings of the National Academy of Sciences 80: 5573–5577.

34. Longley DB, Ferguson PR, Boyer J, Latif T, Lynch M, et al. (2001)
Characterization of a Thymidylate Synthase (TS)-inducible Cell Line. Clinical
Cancer Research 7: 3533–3539.

35. Arocho A, Chen BY, Ladanyi M, Pan QL (2006) Validation of the 2(-Delta
Delta Ct) calculation as an alternate method of data analysis for quantitative
PCR of BCR-ABL P210 transcripts. Diagnostic Molecular Pathology 15: 56–61.

36. Bengtsson M, Hemberg M, Rorsman P, Stahlberg A (2008) Quantification of
mRNA in single cells and modelling of RT-qPCR induced noise. BMC
Molecular Biology 9: 63.

37. Peritz T, Zeng F, Kannanayakal TJ, Kilk K, Eiriksdottir E, et al. (2006)
Immunoprecipitation of mRNA-protein complexes. Nat Protocols 1: 577–580.

38. Zhang Y, Yang S, Liu M, Song C, Wu N, et al (2010). Interaction between
Thymidylate Synthase and Its Cognate mRNA in Zebrafish Embryos. PLoS
ONE 5: e10618.

39. Marverti G, Ligabue A, Guerrieri D, Paglietti G, Piras S, et al. (2010)
Spermidine/spermine N1-acetyltranferase modulation by novel folate cycle
inhibitors in cisplatin-sensitive and -resistant human ovarian cancer cell lines.
Gynecologic Oncology 117: 202–210.

40. Cho YS, Cho-Chung YS (2003) Antisense Protein Kinase A RIa Acts
Synergistically with Hydroxycamptothecin to Inhibit Growth and Induce
Apoptosis in Human Cancer Cells. Clinical Cancer Research 9: 1171–1178.

41. Zhao X, Yu Y-T (2007) Incorporation of 5-fluorouracil into U2 snRNA blocks
pseudouridylation and pre-mRNA splicing in vivo. Nucleic Acids Research 35:
550–558.

42. Russo P, Malacarne D, Falugi C, Trombino S, O’Connor PM (2002) RPR-
115135, a farnesyltransferase inhibitor, increases 5-FU- cytotoxicity in ten
human colon cancer cell lines: Role of p53. International Journal of Cancer 100:
266–275.

43. De Angelis P, Svendsrud D, Kravik K, Stokke T (2006) Cellular response to 5-
fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and
recovery. Molecular Cancer 5: 20.

44. Guo X, Goessl E, Jin G, Collie-Duguid ESR, Cassidy J, et al. (2008) Cell Cycle
Perturbation and Acquired 5-Fluorouracil Chemoresistance. Anticancer Re-
search 28: 9–14.

45. Yoshikawa R, Kusunoki M, Yanagi H, Noda M, Furuyama J-i, et al. (2001) Dual
Antitumor Effects of 5-Fluorouracil on the Cell Cycle in Colorectal Carcinoma
Cells: A Novel Target Mechanism Concept for Pharmacokinetic Modulating
Chemotherapy. Cancer Research 61: 1029–1037.

46. Jamieson ER, Lippard SJ (1999) Structure, Recognition, and Processing of
Cisplatin DNA Adducts. Chemical Reviews 99: 2467–2498.

47. Le Francois BG, Maroun JA, Birnboim HC (2007) Expression of thymidylate
synthase in human cells is an early G1 event regulated by CDK4 and
p16INK4A but not E2F. Br J Cancer 97: 1242–1250.

48. Montopoli M, Ragazzi E, Froldi G, Caparrotta L (2009) Cell-cycle inhibition
and apoptosis induced by curcumin and cisplatin or oxaliplatin in human
ovarian carcinoma cells. Cell Proliferation 42: 195–206.

49. Kramer DL, Fogel-Petrovic M, Diegelman P, Cooley JM, Bernacki RJ, et al.
(1997) Effects of Novel Spermine Analogues on Cell Cycle Progression and
Apoptosis in MALME-3M Human Melanoma Cells. Cancer Research 57:
5521–5527.

50. Kramer DL, Vujcic S, Diegelman P, Alderfer J, Miller JT, et al. (1999)
Polyamine Analogue Induction of the p53–p21WAF1/CIP1-Rb Pathway and
G1 Arrest in Human Melanoma Cells. Cancer Research 59: 1278–1286.

51. Choi W, Gerner EW, Ramdas L, Dupart J, Carew J, et al. (2005) Combination
of 5-Fluorouracil and N1,N11-Diethylnorspermine Markedly Activates Spermi-
dine/Spermine N1-Acetyltransferase Expression, Depletes Polyamines, and
Synergistically Induces Apoptosis in Colon Carcinoma Cells. Journal of
Biological Chemistry 280: 3295–3304.

52. Alm K, Berntsson PSH, Kramer DL, Porter CW, Oredsson SM (2000)
Treatment of cells with the polyamine analog N1,N11-diethylnorspermine
retards S phase progression within one cell cycle. European Journal of
Biochemistry 267: 4157–4164.

53. Dolnick B, Zhang Z, Hines J, Rustum Y (1992) Quantitation of dihydrofolate
reductase and thymidylate synthase mRNAs in vivo and in vitro by polymerase
chain reaction. Oncology Research 4: 8.

54. Anderson DD, Woeller CF, Stover PJ (2007) Small ubiquitin-like modifier-1
(SUMO-1) modification of thymidylate synthase and dihydrofolate reductase.
Clinical Chemistry and Laboratory Medicine: De Gruyter. pp. 1760–1763.

55. Retz KC, Steele WJ (1980) Ribosome turnover in rat brain and liver. Life
Sciences 27: 2601–2604.

56. Hirsch CA, Hiatt HH (1966) Turnover of Liver Ribosomes in Fed and in Fasted
Rats. Journal of Biological Chemistry 241: 5936–5940.

57. Nikolov EN, Dabeva MD, Nikolov TK (1983) Turnover of ribosomes in
regenerating rat liver. International Journal of Biochemistry 15: 1255–1260.

58. Mohsen AW, Aull JL, Payne DM, Daron HH (1995) Ligand-induced
conformational changes of thymidylate synthase detected by limited proteolysis.
Biochemistry 34: 9.

59. Chu E, Voeller DM, Morrison PF, Jones KL, Takechi T, et al. (1994) The effect
of reducing reagents on binding of thymidylate synthase protein to thymidylate
synthase messenger RNA. Journal of Biological Chemistry 269: 20289–20293.

60. Marverti G, Cusumano M, Ligabue A, Di Pietro ML, Vainiglia PA, et al. (2008)
Studies on the anti-proliferative effects of novel DNA-intercalating bipyridyl-
thiourea-Pt(II) complexes against cisplatin-sensitive and -resistant human
ovarian cancer cells. Journal of Inorganic Biochemistry 102: 699–712.

61. Mann SC, Andrews PA, Howell SB (1990) Short-term cis-diamminedichlor-
oplatinum(II) accumulation in sensitive and resistant human ovarian carcinoma
cells. Cancer Chemotherapy and Pharmacology 25: 236–240.

62. Zhen W, Link CJ, O’Connor PM, Reed E, Parker R, et al. (1992) Increased
gene-specific repair of cisplatin interstrand cross-links in cisplatin-resistant
human ovarian cancer cell lines. Molecular and Cellular Biology 12: 3689–3698.

63. Marverti G, Ligabue A, Montanari M, Guerrieri D, Cusumano M, et al. (2011)
Characterization of the cell growth inhibitory effects of a novel DNA-
intercalating bipyridyl-thiourea-Pt(II) complex in cisplatin-sensitive and -
resistant human ovarian cancer cells. Investigational New Drugs 29: 73–86.

64. MacFarlane AJ, Anderson DD, Flodby P, Perry CA, Allan RH, et al. (2011)
Nuclear localization of the De Novo thymidylate biosynthesis pathway is
required to prevent uracil accumulation in DNA. Journal of Biological
Chemistry 286: 44015–44022.

65. Lee J-H, Park J-H, Jung Y, Kim J-H, Jong H-S, et al. (2006) Histone deacetylase
inhibitor enhances 5-fluorouracil cytotoxicity by down-regulating thymidylate
synthase in human cancer cells. Molecular Cancer Therapeutics 5: 3085–3095.

66. Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, et al.
(2010) Reversible Ponceau staining as a loading control alternative to actin in
Western blots. Analytical biochemistry 401: 318–320.

Human Thymidylate Synthase Regulation

PLOS ONE | www.plosone.org 11 October 2012 | Volume 7 | Issue 10 | e47318


