Diffraction from a subwavelength elliptic aperture: analytic approximate aperture fields

Jean-Baptiste Masson and Guilhem Gallot

1. INTRODUCTION

Diffraction by a subwavelength aperture on a plane screen is a classical problem in electromagnetism [1–3]. More recently, the question of the transmission through subwavelength structures has become central in metamaterials and subwavelength arrays [4–6]. Even though numerical calculations are often used to simulate subwavelength structures, analytical developments of the electromagnetic field propagation through apertures of various shapes are still of great interest. Elliptic-shaped apertures have a special interest because interactions between the radiation and the hole are strongly driven by the anisotropic geometry [7], yet they have enough symmetry to allow analytical approximations. These analytical solutions may also be useful to simulate the complex electromagnetic transmission through metamaterials allowing fast preconditioning of the fields propagation in the different subwavelength parts. One of the main issues in these simulations is the time to converge as both electric and magnetic fields tend to diverge near every boundary. Elliptical shapes are especially useful as they can be a good approximation of more complicated shapes.

The problem of diffraction by subwavelength circular aperture was the most investigated. Rayleigh [1] introduced the idea of solving the problem with power series in \(k \), and Bethe [2] found a scalar potential solution with a little error in the first-order approximation. Bouwkamp [3] and Eggimann [8] corrected Bethe's solutions and gave exact power series development of the electromagnetic field in the near-field and far-field zone. These two authors also gave vast bibliographies [8,9] of diffraction problems, highlighting the most important aspects of these problems. For other shapes, far-field approximations based on magnetic and electric dipolar moments have been developed [6,10–12], but no satisfactory analytical solutions such as the ones found for circular apertures have been found. Yet, for a subwavelength square aperture a semi-analytical expression for the aperture was found for a linear polarized, normally incident planar wave, in a unique direction of polarization [13]. Obviously, vast numbers of numerical strategies [14–18] can be used to evaluate the aperture fields, yet analytical expansions are useful to investigate these diffractions problems, in particular for preconditioning conditions.

The problem, as Eggimann [8] wrote it, can be expressed in the following way: (i) Maxwell's equation must be followed, (ii) the tangential magnetic field must vanish on the aperture, (iii) the electromagnetic field energy must remain finite inside the aperture, (iv) Sommerfeld's [19] radiation conditions must be fulfilled. The problem is solved by expanding every field in the power series of \(ka \) and \(kb \), then every term is expanded in polynomial forms and finally all the fields are extracted by solving the linear systems linking all the developments coefficients together.

2. CALCULATION OF THE FIELDS IN THE ELLIPTICAL APERTURE

A perfectly reflecting screen \(S \) of vanishing thickness lies at \(z = 0 \) with an elliptic hole centered at \((x = 0, y = 0) \) with semimajor axis \(a \) and semiminor b (Fig. 1). A monochromatic electromagnetic plane wave field \(\vec{E}_0 \) is incident to the screen from \(z < 0 \). The transmitted electric field in \(z \geq 0 \) is \(\vec{E} \). Only the steady-state problem is discussed. It is tacitly understood that the time factor is \(e^{-\omega t} \), with \(\omega \) the angular frequency, and \(t \) the time. The wavenumber is denoted by \(k = 2\pi/\lambda \) with \(\lambda \) the wavelength.

Copson [20] showed that the transmitted fields should be written, assuming \(\vec{r} = (x, y, z) \),

\[
\begin{align*}
\vec{E}(\vec{r}) &= \frac{1}{\mu_0}\nabla \times \vec{F}(\vec{r}) \\
\vec{H}(\vec{r}) &= \frac{1}{\epsilon_0}\nabla \times \vec{E}(\vec{r})
\end{align*}
\]

where \(\epsilon_0 \) is the permittivity of vacuum, \(\mu_0 \) the permeability of vacuum, \(c \) the celerity of light in vacuum, \(H(\vec{r}) \) the
transmitted magnetic field, and \(\vec{F}(\vec{r}) \) a potential vector defined by

\[
\vec{F}(\vec{r}) = \frac{e_0}{2\pi} \int_{\text{ellipse}} \vec{n} \times \vec{E}(x', y', 0) e^{ikr/R} \, dx' \, dy'
\]

with \(R = \sqrt{(x-x')^2 + (y-y')^2 + z^2} \). \((2) \)

and with \(\vec{n} \) the unit vector normal to the surface of the screen in the \(z > 0 \) direction. In the aperture, the boundary conditions are given by

\[
\begin{align*}
\vec{F}(\vec{r}) &= \frac{e_0}{2\pi} \int_{\text{ellipse}} \vec{n} \times \vec{E}(x', y', 0) e^{ikr/R} \, dx' \, dy' \\
\vec{F}(\vec{r}) &= \frac{e_0}{2\pi} \left(\int_{\text{ellipse}} \vec{J} \, dx' \, dy' + j \int_{\text{ellipse}} \vec{J} \, dx' \, dy' \right) \\
\end{align*}
\]

With \(\vec{n} \times \vec{E} = \vec{J} \) and \(\vec{E} = 0 \), we have

\[
\begin{align*}
\vec{F}(\vec{r}) &= \vec{F}_0 + \vec{F}_1 + \vec{F}_2 + \vec{F}_3 \\
\end{align*}
\]

and

\[
\begin{align*}
\vec{F}_0 &= \frac{e_0}{2\pi} \int_{\text{ellipse}} \vec{n} \times \vec{E}(x', y', 0) e^{ikr/R} \, dx' \, dy' \\
\vec{F}_1 &= \frac{e_0}{2\pi} \int_{\text{ellipse}} \vec{n} \times \vec{E}(x', y', 0) e^{ikr/R} \, dx' \, dy' \\
\vec{F}_2 &= \frac{e_0}{2\pi} \left(\int_{\text{ellipse}} \vec{J} \, dx' \, dy' + j \int_{\text{ellipse}} \vec{J} \, dx' \, dy' \right) \\
\vec{F}_3 &= \frac{e_0}{2\pi} \left(\int_{\text{ellipse}} \vec{J} \, dx' \, dy' + j \int_{\text{ellipse}} \vec{J} \, dx' \, dy' \right) \\
\end{align*}
\]

Using Maxwell’s equations and (2) lead to the following set of equations in the aperture:

\[
\begin{align*}
\nabla_{xy}^2 F_x + k^2 F_x &= -e_0 \frac{\partial E_x}{\partial z} \\
\nabla_{xy}^2 F_y + k^2 F_y &= -e_0 \frac{\partial E_y}{\partial z} \\
\frac{\partial^2 F_x}{\partial x^2} - \frac{\partial^2 F_y}{\partial y^2} &= e_0 F_z \\
\end{align*}
\]

1. Zeroth-Order Development

We will demonstrate that, at zeroth order, both \(\vec{J}_0 \) and \(F_0 \) are null, as well as all even orders in the series expansions of the fields. For a linearly polarized, normally incident plane wave, introducing (5) in (4) reduces to

\[
\nabla_{xy}^2 F_0 = \nabla_{xy}^2 E_0 = \frac{\partial E_0}{\partial x} - \frac{\partial E_0}{\partial y} = 0.
\]

Thus, both \(F_0 \) and \(F_0 \) are linear in variables \(x \) and \(y \). In order to obtain the electric field at zeroth order, the first equation of (7) has to be solved. It is first kind Fredholm problem [21], and
its general solution is given in Appendix A. It follows that \(\mathbf{J}^0 \) may be written in the following form:

\[
\mathbf{J}^0(x', y') = \frac{D^0_1(x', y')}{\sqrt{1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}}} + \frac{D^0_2(x', y')}{\sqrt{1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}}},
\]

(9)

where \(D^0_1(x', y') \) and \(D^0_2(x', y') \) are polynomials. In Appendix A, we show in (A.1.1) that the two polynomials have the same degree as \(F^0_1 \) and \(F^0_2 \). Furthermore, the supplementary condition of finiteness of the electromagnetic energy, corresponding to Sommerfeld’s condition [8,10], is satisfied if

\[
x'D^0_1(x', y') + y'D^0_2(x', y') = K^0(x', y') \left(1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}\right),
\]

(10)

where \(K^0(x', y') \) is a polynomial. So, at zeroth-order approximation \(\mathbf{J}^0 \) and \(\mathbf{F}^0 \) must vanish. Bouwkamp found the same result for a circular aperture [22]. Note that if the electromagnetic field were not normal to the surface the two fields would not vanish (see section C). Furthermore, equations (1) with a normally incident plane wave lead to the nullity of all even orders development of the all the fields.

2. First-Order Development

Equations (4) reduce to

\[
\nabla_{x'y'} F^1_{xx} = -j\varepsilon_0 E^i \sin(\psi),
\]

\[
\nabla_{x'y'} F^1_{yy} = j\varepsilon_0 E^i \cos(\psi),
\]

\[
\frac{\partial F^1_{1x}}{\partial x} = \frac{\partial F^1_{1y}}{\partial y},
\]

(11)

where \(\psi \) is the polarization angle of the incident plane wave, as seen in Fig. 1. Then Sommerfeld’s conditions now become

\[
x'D^1_1(x', y') + y'D^1_2(x', y') = K^1(x', y') \left(1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}\right),
\]

(12)

where \(K^1 \) is a polynomial. Since we showed that \(\mathbf{J}^0 = 0 \), (7) reduces at the first order to

Fig. 2. (Color online) Evolution of the electric field in an elliptical hole (a = 2b) with varying incident polarization. On the left \(E_x \) and on the right \(E_y \), from top to bottom, \(\psi = (0, \frac{\pi}{4}, \frac{\pi}{2}) \). The plotted quantity is \(\log|E| \) in order to increase the contrast of the patterns.
\[F^3 = \frac{\varepsilon_b}{2\pi} \int_{\text{ellipse}} j^1 \frac{dx \, dy'}{R}. \]

We again write \(\vec{F} \) as a polynomial in \(x \) and \(y \) as

\[
F_x = a_0 + a_1 x + a_2 y + a_3 \beta_1 y + a_4 \beta_1 y^2.
\]

\[
F_y = \beta_1 y + \beta_2 x + \beta_3 y^2 + \beta_4 x y + \beta_5 y^3.
\]

and using (11), this leads to

\[
2a_1 + 2a_2 = -je_0E^3 \sin(\psi), \quad 2\beta_1 + 2\beta_2 = je_0E^3 \cos(\psi).
\]

Finally, we write

\[
\begin{align*}
J_x(x', y') &= \frac{(a_1' + a_2' \eta_1' + a_3' \beta_1' \eta_1' + a_4' \beta_1' \eta_1')}{1 + \frac{x'^2}{a^2} + \frac{y'^2}{b^2}}, \\
J_y(x', y') &= \frac{(a_1' + a_2' \eta_1' + a_3' \beta_1' \eta_1' + a_4' \beta_1' \eta_1')}{1 + \frac{x'^2}{a^2} + \frac{y'^2}{b^2}}.
\end{align*}
\]

Solving \(\eta_1 \) and \(\beta_1 \), where \(i \) ranges from 0 to 5, will provide the solution at the third-order development. Equation (12) leads to

\[
\begin{align*}
\eta_1 &= 0, & \eta_2 &= -\eta_1, & \eta_3 &= -\eta_1, \\
\eta_4 &= -\frac{\eta_1}{a^2}, & \eta_5 &= -\frac{\eta_1}{b^2}, & \eta_6 &= -\frac{\eta_1}{b^2}.
\end{align*}
\]

Here are the equations linking the \((a_i, \beta_i)\) to the \((\eta_i, \theta_i)\), using Table 1 and Eqs. (13), (14), and (16):

\[
\begin{align*}
a_0 &= x^2 g_0 \eta_1 + x^2 \sin \theta_1, & a_1 &= 0, \\
a_2 &= x^2 \sin \theta_1, & a_3 &= x^2 \sin \theta_1, \\
\beta_1 &= x^2 \sin \theta_1, & \beta_2 &= x^2 \sin \theta_1, \\
\beta_3 &= x^2 \sin \theta_1, & \beta_4 &= x^2 \sin \theta_1.
\end{align*}
\]

We then obtain 12 linear independent equations for the \((\eta_i, \theta_i)\). Using (7) and Table 1, we find the solution presented in Table 3.

Solving (10), (12), and (13), and remembering that \(\vec{j} = \vec{n} \times \vec{E}^{(1)} \), the electric field inside the elliptical aperture reads

\[
\begin{align*}
E_x^{(1)} &= \frac{\theta_1 + \theta_2 \eta_1 + \theta_3 \beta_1 \eta_1 + \theta_4 \beta_1 \eta_1}{1 + \frac{x'^2}{a^2} + \frac{y'^2}{b^2}}, \\
E_y^{(1)} &= -\frac{\theta_1 + \theta_2 \eta_1 + \theta_3 \beta_1 \eta_1 + \theta_4 \beta_1 \eta_1}{1 + \frac{x'^2}{a^2} + \frac{y'^2}{b^2}}.
\end{align*}
\]

where the values of \((\eta, \theta)\) are given in Table 3.

3. Third-Order Development

We now consider the third-order development in (7). As we stated before, the second-order fields will vanish. Let us evaluate the third-order fields. Equation (4) now becomes

\[
\nabla_x F_x + F_y = 0, \quad \nabla_y F_x + F_y = 0, \quad \frac{\partial F_x}{\partial x} = \frac{\partial F_y}{\partial y}.
\]

Both \((F_x^3, F_y^3)\) are fourth-order polynomials and so both \((E_x^3, E_y^3)\) have a fourth-order numerator. The procedure to find the coefficients is similar to the one used before. Using (4), (7), and (10) with the help of Tables A1 and A2 leads to 30 linear equations for the coefficients of \((E_x^3, E_y^3)\). We write

\[
F_x^3(x, y) = \sum_{(i+j+k)} c_{i,j,k} x^i y^j, \quad \text{and}
\]

\[
F_y^3(x, y) = \sum_{(i+j+k)} f_{i,j,k} y^j x^j.
\]

The next steps are found in Appendix A and lead to the transmitted electric field in the elliptical aperture at the third order:

\[
\begin{align*}
E_x^{(3)} &= \frac{\theta_1 + \theta_2 \eta_1 + \theta_3 \beta_1 \eta_1 + \theta_4 \beta_1 \eta_1}{1 + \frac{x'^2}{a^2} + \frac{y'^2}{b^2}}, \\
E_y^{(3)} &= -\frac{\theta_1 + \theta_2 \eta_1 + \theta_3 \beta_1 \eta_1 + \theta_4 \beta_1 \eta_1}{1 + \frac{x'^2}{a^2} + \frac{y'^2}{b^2}},
\end{align*}
\]

Finally, the total transmitted electric field in the elliptical aperture at a third-order development is given by
Electric field patterns can be found in Fig. 2.

B. Diffraction by an Elliptical Disk

The case of an elliptical disk can easily be solved with the generalized Babinet’s principle [22,23]. We define the diffracted potential vector as

\(\tilde{A}(\tilde{r}) = \frac{\mu_0}{4\pi} \int_{\text{ellipse}} \tilde{\sigma}(x', y') e^{-jkr} dx'dy', \)

with \(\tilde{\sigma}(x', y') \) the electric surface current on the elliptic disk. The boundary conditions on the disk are

\[
\begin{align*}
E_x(x', y', 0) &= -E_x^i(x', y', 0), \\
E_y(x', y', 0) &= -E_y^i(x', y', 0), \\
H_z(x', y', 0) &= -H_z^i(x', y', 0)
\end{align*}
\]

leading to the following set of equations:

\[
\begin{align*}
\nabla^2_A x + k^2 A_x &= \frac{\mu_0}{\varepsilon_0} \frac{\partial E_x^i}{\partial x}, \\
\nabla^2 A_y + k^2 A_y &= -\mu_0 \frac{\partial E_y^i}{\partial y}, \\
\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} &= -\mu_0 H_z^i
\end{align*}
\]

Thus, the disk and aperture problems are equivalent if the following substitution is made:

\[
\begin{align*}
\tilde{F} &\longleftrightarrow \tilde{A} \\
-\varepsilon_0 \tilde{E}^i &\longleftrightarrow \mu_0 \tilde{H}^i, \\
\tilde{\sigma} &\longleftrightarrow \tilde{\sigma} \times \tilde{E}^i
\end{align*}
\]

C. Nonplane Incident Electromagnetic Wave

We now briefly describe the case of a nonplane incident electromagnetic wave. We limit the polynomial development of the fields to the first order.

1. Zeroth-Order Development

Equation (5) becomes

\[
\begin{align*}
\nabla^2 F^0_x &= -\varepsilon_0 \frac{\partial E^i_x}{\partial x}, \\
\nabla^2 F^0_y &= \varepsilon_0 \frac{\partial E^i_y}{\partial x}, \\
\frac{\partial F^0_x}{\partial x} - \frac{\partial F^0_y}{\partial y} &= \varepsilon_0 E^i_x + \varepsilon_0 \frac{\partial E^i_x}{\partial x} + \varepsilon_0 \frac{\partial E^i_y}{\partial y}.
\end{align*}
\]

We use the same procedure, and then

\[
\begin{align*}
E^0_x &= \frac{\theta_1 x + \theta_2 y + \theta_3 x^2 + \theta_4 y^2 + \theta_5 x^3 + \theta_6 x y + \theta_7 x y^2}{\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}}, \\
E^0_y &= -\frac{\theta_1 y + \theta_2 x + \theta_3 y^2 + \theta_4 x^2 + \theta_5 x y + \theta_6 x^3 + \theta_7 x^2 y}{\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}},
\end{align*}
\]

where the coefficients \(\theta_i \) and \(\theta_i^0 \) are found in Table A.

2. First-Order Development

Equation (5) becomes

\[
\begin{align*}
\nabla^2 F^1_x &= -\varepsilon_0 \frac{\partial E^i_x}{\partial x}, \\
\nabla^2 F^1_y &= \varepsilon_0 \frac{\partial E^i_y}{\partial x}, \\
\frac{\partial F^1_x}{\partial x} - \frac{\partial F^1_y}{\partial y} &= \varepsilon_0 E^i_x + \varepsilon_0 \frac{\partial E^i_x}{\partial x} + \varepsilon_0 \frac{\partial E^i_y}{\partial y}.
\end{align*}
\]

With a notation similar to (16), it then follows that

\[
\begin{align*}
\eta^1_x &= \frac{\partial E^i_x}{\partial x}, \\
\eta^1_y &= \frac{\partial E^i_y}{\partial x}, \\
\eta^1_0 &= \frac{\partial E^i_0}{\partial x} \\
\theta^1_x &= \frac{\partial E^i_x}{\partial y}, \\
\theta^1_y &= \frac{\partial E^i_y}{\partial y}, \\
\theta^1_0 &= \frac{\partial E^i_0}{\partial y}, \\
\end{align*}
\]

and so

\[
\begin{align*}
E^1_x &= \frac{\theta_1 x + \theta_2 y + \theta_3 x^2 + \theta_4 y^2 + \theta_5 x^3 + \theta_6 x y + \theta_7 x y^2}{\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}}, \\
E^1_y &= -\frac{\theta_1 y + \theta_2 x + \theta_3 y^2 + \theta_4 x^2 + \theta_5 x y + \theta_6 x^3 + \theta_7 x^2 y}{\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}},
\end{align*}
\]

Due to the structure of Eqs. (4), (7), and (10), we know that for all orders of development in \(k \) the coefficients (\(\eta_i, \theta_i \)) will have the same structure, only the degree in \(k \)-differentiation will change. This property only holds if the degree of the polynomial development remains the same for all orders of \(k \). Eggeimann [8] was the first to point out this property for the circular disk diffraction.

3. DISCUSSION

In the degenerate case of a circular aperture, (19) reduces to

\[
\begin{align*}
E^0_x &= \frac{4j}{\pi} \frac{2x \cos \psi - 2x^2 \cos \psi - 2y \sin \psi + 2y^2 \sin \psi}{\sqrt{\sin^2 - y^2}}, \\
E^0_y &= \frac{4j}{\pi} \frac{2y \cos \psi - 2x \sin \psi + 2x^2 \sin \psi + 2y^2 \cos \psi}{\sqrt{\sin^2 - y^2}},
\end{align*}
\]

which for \(\psi = 0 \) leads to

\[
\begin{align*}
E^0_x &= \frac{4j}{\pi} \frac{2x - 2y^2}{\sqrt{\sin^2 - y^2}}, \\
E^0_y &= \frac{4j}{\pi} \frac{2y - 2x^2}{\sqrt{\sin^2 - y^2}}.
\end{align*}
\]

This is the same solution found by Bouwkamp [24] Eq. (35) [the factor \(k \) is absent here because it is in Eq. (25) of this paper].

In acoustics, mixed boundary conditions are common problems and recent development in subwavelength optics has spurred similar research in acoustics. Due to the numerous similarities between electromagnetic and acoustic propagation the results and calculi found here can find applications into the acoustic field.
4. CONCLUSION

We have presented an analytical approximate solution of the aperture fields for a subwavelength elliptical aperture in a thin perfectly conducting screen. We used Copson’s formulation combined with Bouwkamp/Eggimann procedure and adapted it to elliptical geometry. Results are interesting because they lead to interesting insights into analytical expressions of electromagnetic interactions with anisotropic subwavelength structures. Results may be used to build analytical expressions of aperture fields for aperture with more anisotropy, and can also find some use in vibration theory. Finally, accessing higher-order terms could easily be done using symbolic programming.

APPENDIX A

A.1. Evaluation of the Integrals in Eq. (2)

The strategy is to use a change of variables to switch from elliptical to circular geometry. We define the following set of polar coordinates:

\[
\begin{align*}
(x' &= ap \cos(\varphi') & x &= ap \cos(\varphi) \\
y' &= bp \sin(\varphi') & y &= bp \sin(\varphi) \\
\end{align*}
\]

\[
\rho' e^{i\varphi'} - \rho e^{i\varphi} = re^{i\theta}. \tag{A1}
\]

Nonvanishing integrals encountered in Eq. (7) are of the forms

\[
\tilde{F} = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J \frac{\partial x' \partial y'}{R}, \tag{A2}
\]

or

\[
\tilde{F} = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J R \partial x' \partial y', \tag{A3}
\]

where we recall that \(R = \sqrt{(x' - x)^2 + (y' - y)^2} \) at \(z = 0 \).

A.1.1. Integral \(\tilde{F} = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J \frac{\partial x' \partial y'}{R} \)

The first integral (A1) reads in polar coordinates

\[
G(x, y) = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J(x', y') \rho' \partial \rho' \partial \varphi' \frac{\partial \rho^2}{\partial \rho}, \tag{A4}
\]

which can be rewritten in a circular geometry as

\[
G(x, y) = \frac{\varepsilon_0 b}{\pi} \int_{\text{circle}} J(x', y') \rho' \partial \rho' \partial \varphi' \frac{\partial \rho^2}{\partial \rho}, \tag{A5}
\]

with \(p = \sqrt{1 - \frac{x'^2}{a^2}} \). The general solution was given by Boersma and Daniecki [21], by expanding Wolfe’s work [25]. In order to evaluate the integral (A4) we define \(g(\theta) = \frac{\varepsilon_0 b}{4\pi} \sqrt{1 - p^2 \sin^2(\theta)} \)

and decompose it on a Fourier basis \(g(\theta) = \sum_{l \text{even}} g_l e^{il\theta} \).

\[
\begin{align*}
g_0 &= \frac{\varepsilon_0 b}{\pi} K(p) \\
g_{2,4} &= \frac{2\varepsilon_0 b}{\pi p^2} \left[E(p) - \frac{1}{2} p^2 K(p) \right] \\
g_{4,4} &= \frac{\varepsilon_0 b}{3\pi p^2} (3p^4 - 16p^2 + 16) K(p) + (8p^2 - 16) E(p) \\
g_{6,4} &= \frac{\varepsilon_0 b}{15\pi p^2} (15p^6 - 158p^4 + 384p^2 - 256) K(p) + (46p^4 - 256p^2 + 256) \\
g_{8,4} &= \frac{\varepsilon_0 b}{105\pi p^2} (105p^8 - 1856p^6 + 8000p^4 - 12288p^2 + 6144) K(p) + (352p^6 - 3776p^4 + 9216p^2 - 6144) E(p) \tag{A6},
\end{align*}
\]

where \(K(p) \) and \(E(p) \) are the elliptic integrals of the first and second kind, respectively [26]. We only evaluate up the eighth order because the polynomial numerator of \(J(x', y') \) won’t exceed the fourth degree.

We evaluate the integrals of type (A3) and (A4) with

\[
J(x', y') = \frac{e^{i\varphi'}}{\sqrt{1 - \frac{x'^2}{a^2}}}, \quad \text{where } i \text{ and } j \text{ are integers.}
\]

The polynomial term is expressed as series of Legendre functions multiplied by the complex exponential \(e^{im\varphi'} \) and the following formula are used:

\[
\begin{align*}
\int_{0}^{2\pi} \int_{0}^{\infty} \frac{p^m}{r} \left(\frac{\sqrt{1 - p^2}}{\sqrt{1 - \rho^2}} \right)^{e^{i\varphi'}} \rho \partial \rho \partial \varphi' &= 0 \quad \text{if } |m + l| > n \\
\int_{0}^{2\pi} \int_{0}^{\infty} \frac{p^m}{r} \left(\frac{\sqrt{1 - p^2}}{\sqrt{1 - \rho^2}} \right)^{e^{i\varphi'}} \rho \partial \rho \partial \varphi' &= L_{m,n} P_m^n \left(\frac{1}{\sqrt{1 - \rho^2}} \right) e^{(m+l)\varphi'} \quad \text{if } |m + l| \leq n \tag{A7}
\end{align*}
\]

with \(n, l, m \) integers, \(P_m^n \) Legendre functions, and

\[
L_{m,n} = 2^{-l-\frac{1}{2}} \pi \frac{\Gamma\left(\frac{1}{2} n + \frac{1}{2} m + \frac{1}{2} l + \frac{1}{2}\right) \Gamma\left(\frac{1}{2} n - \frac{1}{2} m - \frac{1}{2} l + \frac{1}{2}\right) \Gamma\left(\frac{1}{2} n + \frac{1}{2} m + \frac{1}{2} l + 1\right)}{\Gamma\left(\frac{1}{2} n - \frac{1}{2} m + \frac{1}{2} l + \frac{1}{2}\right) \Gamma\left(\frac{1}{2} n + \frac{1}{2} m + \frac{1}{2} l + \frac{1}{2}\right)}. \tag{A8}
\]

Finally, the integral is expressed in \((x, y) \) coordinates. Table 1 provides the value of \(G(x, y) \) for various \(J(x', y') \). Most interestingly, the degree of \(G(x, y) \) is identical to the degree of the numerator of \(J(x', y') \).

A.1.2. Integral \(\tilde{F} = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J R \partial x' \partial y' \)

The second integral (A2) reads

\[
H(x, y) = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J(x', y') \sqrt{\frac{1}{(x' - x)^2 + (y' - y)^2}} \partial x' \partial y'. \tag{A9}
\]

They are evaluated in three steps:

\[
H(0, 0) = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J(x', y') \sqrt{\frac{1}{x'^2 + y'^2}} \partial x' \partial y'. \tag{A10}
\]

which is expressed as elliptic integrals and

\[
\frac{\partial H(x, y)}{\partial x} = \frac{\varepsilon_0 y}{2\pi} \int_{\text{ellipse}} J(x', y') \sqrt{(x' - x)^2 + (y' - y)^2} \partial x' \partial y' - \frac{\varepsilon_0 x}{2\pi} \int_{\text{ellipse}} J(x', y') \sqrt{(x' - x)^2 + (y' - y)^2} \partial x' \partial y' \tag{A11}
\]

\[
\frac{\partial H(x, y)}{\partial y} = \frac{\varepsilon_0 x}{2\pi} \int_{\text{ellipse}} J(x', y') \sqrt{(x' - x)^2 + (y' - y)^2} \partial x' \partial y' - \frac{\varepsilon_0 y}{2\pi} \int_{\text{ellipse}} J(x', y') \sqrt{(x' - x)^2 + (y' - y)^2} \partial x' \partial y'.
\]
which can be evaluated using Table 1. Results are found in Table 2 with

\begin{equation}
\begin{aligned}
\left\{ h_0 = \frac{1}{4} \mu_0 \alpha^2 b E(p) \\
\theta_{\text{ll}} = \frac{\mu_0 \alpha^2 b E(p)}{\alpha^2} (p^2 - 1)K(p) + (p^2 + 1)E(p) \\
\theta_{\text{ll}} = \frac{\mu_0 \alpha^2 b E(p)}{\alpha^2} \left[(1-p^2) \frac{1}{2}K(p) + (2p^2 - 1)E(p) \right]
\end{aligned}
\end{equation}

where \(K \) and \(E \) are the elliptic integrals previously defined. Note that Bouwkamp formula [22,24,27], modified to be used in elliptical geometry, could also have been used to evaluate these integrals.

A.2. Third-Order Development

Third-order development, (4), (7), and (30) lead to 30 independent linear equations involving \((y^3, \theta^3) \). The system may be solved in a specific order to ease the solving procedure: \((\eta_1^3, \eta_2^3, \eta_3^3, \eta_4^3), (\eta_5^3, \eta_6^3, \eta_7^3, \eta_8^3), (\eta_9^3, \eta_{10}^3, \eta_{11}^3, \eta_{12}^3, \eta_{13}^3, \eta_{14}^3), (\eta_1^3, \eta_2^3, \eta_{10}^3, \eta_{11}^3, \eta_{12}^3, \eta_{13}^3, \eta_{14}^3) \) and finally \((\eta_1^3, \eta_2^3, \eta_{10}^3, \eta_{11}^3, \eta_{12}^3, \eta_{13}^3, \eta_{14}^3) \). The first four steps in the solving procedure lead to

\begin{align}
\eta_1^3 &= \eta_2^3 = \eta_3^3 = \eta_4^3 = 0 \\
\eta_5^3 &= \eta_6^3 = \eta_7^3 = \eta_8^3 = 0 \\
\eta_9^3 &= \eta_{10}^3 = \eta_{11}^3 = \eta_{12}^3 = \eta_{13}^3 = \eta_{14}^3 = 0.
\end{align}

(A12)

It follows

Table 3. First-Order Development

<table>
<thead>
<tr>
<th>Value</th>
<th>(x \in (-2 \theta C_1 + \pi \theta C_1 - 2 \theta C_1 + 2 \theta C_1 + \theta C_1 + 2 \theta C_1 + \theta C_1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_1^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_2^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_3^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_4^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_5^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_6^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_7^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_8^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_9^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_{10}^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_{11}^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_{12}^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_{13}^3)</td>
<td>0</td>
</tr>
<tr>
<td>(\eta_{14}^3)</td>
<td>0</td>
</tr>
</tbody>
</table>

\[x = (-2 \theta C_1 + \pi \theta C_1 - 2 \theta C_1 + 2 \theta C_1 + \theta C_1 + 2 \theta C_1 + \theta C_1) \]
\[
\begin{align*}
\eta_1^0 &= |S_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 D_{10}|^\psi \\
\eta_1^1 &= |D_1 S_1 D_3 D_4 D_5 D_6 D_7 D_8 D_9 D_{10}|^\psi \\
\eta_1^2 &= |D_1 D_2 S_1 D_4 D_5 D_6 D_7 D_8 D_9 D_{10}|^\psi \\
\eta_1^3 &= |D_1 D_2 D_3 S_1 D_5 D_6 D_7 D_8 D_9 D_{10}|^\psi \\
\eta_1^4 &= |D_1 D_2 D_3 D_4 S_1 D_6 D_7 D_8 D_9 D_{10}|^\psi \\
\rho_0^1 &= |D_1 D_2 D_3 D_4 D_5 S_1 D_6 D_7 D_8 D_9 D_{10}|^\psi \\
\rho_0^2 &= |D_1 D_2 D_3 D_4 D_5 D_6 S_1 D_7 D_8 D_9 D_{10}|^\psi \\
\rho_0^3 &= |D_1 D_2 D_3 D_4 D_5 D_6 D_7 S_1 D_8 D_9 D_{10}|^\psi \\
\rho_0^4 &= |D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 S_1 D_{10}|^\psi. \\
\end{align*}
\]

with \(| \) being the determinant, and

\[
\begin{align*}
D_1 &= [\pi^2 C_{11}^{20} 0 0 0 -2\pi^2 C_{21} 0 0 -4\pi^2 C_{24} -a^2/b^2 0]^T \\
D_2 &= [0 \pi^2 C_{22}^{13} 0 0 -2\pi^2 C_{30} 0 0 -3\pi^2 C_{36} 0 0 -a^2/b^2]^T \\
D_3 &= [\pi^2 C_{31}^{20} 0 0 \pi^2 C_{33}^{13} 0 0 -2\pi^2 C_{31} 0 0 -4\pi^2 C_{30} 1 0]^T \\
D_4 &= [0 \pi^2 C_{33}^{20} 0 0 \pi^2 C_{35}^{13} 0 0 -2\pi^2 C_{35} 0 0 0 1]^T \\
D_5 &= [\pi^2 C_{30}^{20} 0 0 \pi^2 C_{30}^{13} 0 0 -2\pi^2 C_{40} 0 0 -3\pi^2 C_{36} 0 0 -a^2/b^2]^T \\
D_6 &= [0 0 0 0 \pi^2 C_{30}^{20} 0 0 \pi^2 C_{36}^{13} 0 0 0 -2\pi^2 C_{40} 0 0 -3\pi^2 C_{36} 1 0]^T \\
D_7 &= [0 0 0 0 0 3\pi^2 C_{36} 0 \pi^2 C_{30} 0 0 -b^2/a^2 0]^T \\
D_8 &= [0 0 0 0 0 \pi^2 C_{30}^{20} 0 2\pi^2 C_{30} 0 0 0 1]^T \\
D_9 &= [0 0 0 0 0 \pi^2 C_{30}^{20} 0 \pi^2 C_{27} 0 0 0 0 1]^T \\
D_{10} &= [0 0 0 \pi^2 C_{24}^{20} 0 2\pi^2 C_{21} 0 0 0 -a^2/b^2]^T \\
S_1 &= [\xi_1^1 \xi_2^1 \xi_3^1 \xi_4^1 \xi_5^1 \xi_6^1 \xi_7^1 \xi_8^1 0 0]^T \\
\psi &= |D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 D_{10}|. \\
\end{align*}
\]

where \(T \) stands for transposition, with

\[
\begin{align*}
\delta_{10}^1 &= 1/8\pi^2(-C_1 + C_6)\eta_3^1 + 1/8\pi^2(-C_5 + C_{14})\eta_3^1 \\
\delta_{11}^1 &= 1/2\pi^2(-C_7 + C_{12})\eta_4^1 \\
\delta_{12}^1 &= 1/4\pi^2(-C_2 + C_3)\eta_3^1 + 1/4\pi^2(C_{15} - C_4)\eta_3^1 \\
\delta_{13}^1 &= 1/2\pi^2(C_1 - C_5)\eta_4^1 \\
\lambda_{10}^1 &= 1/8\pi^2(C_{11} - C_7)\eta_3^1 + 1/8\pi^2(C_{17} - C_4)\eta_3^1 \\
\lambda_{11}^1 &= 1/2\pi^2(C_1 - C_5)\eta_4^1 \\
\lambda_{12}^1 &= 1/4\pi^2(C_{15} - C_4)\eta_3^1 + 1/4\pi^2(C_9 - C_8)\eta_3^1 \\
\lambda_{13}^1 &= 1/6\pi^2(C_1 - C_5)\eta_4^1 \\
\lambda_{14}^1 &= 1/8\pi^2(C_4 - C_9)\eta_3^1 + 1/8\pi^2(C_8 - C_4)\eta_3^1 \\
\end{align*}
\]

and

\[
\begin{align*}
C_0^0 &= \frac{1}{2}(g_0 - C_{-1}) \\
C_0^{10} &= \frac{1}{2}(C_3 - C_{10}) \\
C_0^{20} &= \frac{1}{2}(C_{10} - C_3) \\
C_0^{30} &= \frac{1}{2}(C_{19} - C_6) \\
C_0^{40} &= \frac{1}{2}(C_{20} - C_{14}) \\
C_0^{50} &= \frac{1}{2}(C_{21} - C_4) \\
C_0^{60} &= \frac{1}{2}(C_{22} - C_2) \\
C_0^{70} &= \frac{1}{2}(C_{23} - C_5) \\
C_0^{80} &= \frac{1}{2}(C_{24} - C_1) \\
C_0^{90} &= \frac{1}{2}(C_{25} - C_0) \\
C_0^{100} &= \frac{1}{2}(C_{26} - C_0) \\
C_0^{110} &= \frac{1}{2}(C_{27} - C_0) \\
C_0^{120} &= \frac{1}{2}(C_{28} - C_0) \\
C_0^{130} &= \frac{1}{2}(C_{29} - C_0) \\
C_0^{140} &= \frac{1}{2}(C_{30} - C_0) \\
C_0^{150} &= \frac{1}{2}(C_{31} - C_0) \\
C_0^{160} &= \frac{1}{2}(C_{32} - C_0) \\
C_0^{170} &= \frac{1}{2}(C_{33} - C_0) \\
C_0^{180} &= \frac{1}{2}(C_{34} - C_0) \\
C_0^{190} &= \frac{1}{2}(C_{35} - C_0) \\
C_0^{200} &= \frac{1}{2}(C_{36} - C_0) \\
C_0^{210} &= \frac{1}{2}(C_{37} - C_0) \\
C_0^{220} &= \frac{1}{2}(C_{38} - C_0) \\
C_0^{230} &= \frac{1}{2}(C_{39} - C_0) \\
C_0^{240} &= \frac{1}{2}(C_{40} - C_0) \\
C_0^{250} &= \frac{1}{2}(C_{41} - C_0) \\
C_0^{260} &= \frac{1}{2}(C_{42} - C_0). \\
\end{align*}
\]

Finally, one obtains

\[
\begin{align*}
\xi_1 &= -d_1^1 - 2d_{10}^1 - 2d_{12}^1 \\
\xi_2 &= -d_1^1 - 6d_{11}^1 - 6d_{13}^1 \\
\xi_3 &= -d_1^1 - 2d_{12}^1 - 12d_{14}^1 \\
\xi_4 &= -d_1^1 - 2d_{12}^1 - 12d_{14}^1 \\
\xi_5 &= -d_1^1 - 2d_{12}^1 - 12d_{14}^1 \\
\xi_6 &= -d_1^1 - 2d_{12}^1 - 12d_{14}^1 \\
\xi_7 &= -d_1^1 - 2d_{12}^1 - 12d_{14}^1 \\
\xi_8 &= -d_1^1 - 2d_{12}^1 - 12d_{14}^1 \\
\end{align*}
\]

with
\[a_0^\alpha = \eta_1^\alpha x_0 + \eta_2^\alpha x_2^2 C_4 + \eta_3^\alpha x_2^2 C_6 + \eta_4^\alpha x_2^2 C_{25} + \eta_5^\alpha x_2^2 C_{34} + \eta_6^\alpha x_2^2 C_{43} - \frac{1}{2} \eta_1^\alpha h_1 - \frac{1}{2} \eta_1^\alpha h_0 - \frac{1}{2} \eta_1^\alpha h_2. \]

\[a_1^\alpha = \frac{1}{2} \eta_1^\alpha x_2 C_3, \quad a_2^\alpha = \frac{1}{2} \eta_1^\alpha x_2^2 C_6. \]

\[a_3^\alpha = \eta_3^\alpha x_2^2 C_1 + \eta_4^\alpha x_2^2 C_5 + \eta_5^\alpha x_2^2 C_{22} + \eta_6^\alpha x_2^2 C_{32} + \eta_7^\alpha x_2^2 C_{41} - \frac{1}{2} C_{10}^2 x_2^2 \eta_1^0 - \frac{1}{2} C_{10}^2 x_2^2 \eta_1^0 - \frac{1}{2} C_{10}^2 x_2^2 \eta_1^0, \]

\[a_4^\alpha = \eta_7^\alpha x_2^2 C_7 + \eta_8^\alpha x_2^2 C_{28} + \eta_9^\alpha x_2^2 C_{37} + \frac{1}{2} C_{13} x_2^2 \eta_1^0. \]

\[a_3^\beta = \eta_3^\beta x_2^2 C_2 + \eta_4^\beta x_2^2 C_4 + \eta_5^\beta x_2^2 C_{23} + \eta_6^\beta x_2^2 C_{33} + \eta_7^\beta x_2^2 C_{42} - \frac{1}{2} C_{0}^2 x_2^2 \eta_1^0 - \frac{1}{2} C_{0}^2 x_2^2 \eta_1^0 - \frac{1}{2} C_{0}^2 x_2^2 \eta_1^0, \]

\[a_6^\beta = \frac{1}{6} \pi^2 (C_4 - C_4). \quad a_7^\beta = \frac{1}{2} \eta_1^\beta x_2 C_5, \quad a_8^\beta = \frac{1}{6} \pi^2 \eta_2^\beta (C_4 - C_4). \quad (A18) \]

and

\[\beta_0^\beta = \eta_0^\beta x_0 + \eta_1^\beta x_2 C_6 + \eta_2^\beta x_2 C_3 + \eta_3^\beta x_2 C_{24} + \eta_4^\beta x_2 C_{34} + \eta_5^\beta x_2 C_{43} - \frac{1}{2} \eta_1^\beta h_0 - \frac{1}{2} \eta_1^\beta h_2 - \frac{1}{2} \eta_1^\beta h_1. \]

\[\beta_1^\beta = \frac{1}{2} \eta_1^\beta x_2 C_6, \quad \beta_2^\beta = \frac{1}{2} \eta_1^\beta x_2 C_3. \]

\[\beta_3^\beta = \eta_3^\beta x_2^2 C_4 + \eta_4^\beta x_2^2 C_2 + \eta_5^\beta x_2^2 C_{22} + \eta_6^\beta x_2^2 C_{33} + \eta_7^\beta x_2^2 C_{42} - \frac{1}{2} C_{0}^0 x_2^2 \eta_1^0 - \frac{1}{2} C_{0}^0 x_2^2 \eta_1^0 - \frac{1}{2} C_{0}^0 x_2^2 \eta_1^0. \]

\[\beta_4^\beta = \frac{1}{6} \pi^2 (C_4 - C_4). \quad \beta_5^\beta = \frac{1}{2} \eta_1^\beta x_2 C_5, \quad \beta_6^\beta = \frac{1}{6} \pi^2 \eta_2^\beta (C_4 - C_4). \quad (A19) \]

\[\kappa_1 = \pi^2 C_{10}^0 \eta_1^0 + \pi^2 C_{13}^0 \eta_1^0 + \pi^2 C_{16}^0 \eta_1^0 + \pi^2 C_{19}^0 \eta_1^0 - \frac{1}{2} \pi^2 C_{13} \theta_1^0 + \frac{1}{2} \pi^2 C_{20} \eta_1^0 + \pi^2 C_{23} \eta_1^0 + \frac{1}{2} \pi^2 C_{20} \eta_1^0 \]

\[- \frac{1}{2} \pi^2 C_{23} \theta_1^0 + \pi^2 C_{16} \eta_1^0 - \pi^2 C_{10} \eta_1^0 \]

\[- \frac{1}{2} \pi^2 C_{23} \theta_1^0 + \pi^2 C_{20} \eta_1^0 + \pi^2 C_{23} \eta_1^0 + \pi^2 C_{10} \eta_1^0 - \frac{1}{2} \pi^2 C_{20} \eta_1^0 - \frac{1}{2} \pi^2 C_{23} \eta_1^0 \]

\[- \frac{1}{2} \pi^2 C_{23} \theta_1^0. \]

\[\kappa_2 = \frac{1}{2} \pi^2 C_{13} \theta_1^0 + \pi^2 C_{16} \theta_1^0 + \pi^2 C_{19} \theta_1^0 + \pi^2 C_{20} \eta_1^0 + \pi^2 C_{23} \eta_1^0 - \pi^2 C_{23} \eta_1^0 - \pi^2 C_{20} \eta_1^0 - \pi^2 C_{23} \eta_1^0 - \pi^2 C_{10} \eta_1^0 - \frac{1}{2} \pi^2 C_{20} \eta_1^0 - \frac{1}{2} \pi^2 C_{23} \eta_1^0 - \frac{1}{2} \pi^2 C_{23} \eta_1^0 \]

\[- \frac{1}{2} \pi^2 C_{23} \theta_1^0 + \pi^2 C_{16} \eta_1^0 - \pi^2 C_{10} \eta_1^0 - \pi^2 C_{20} \eta_1^0 - \pi^2 C_{23} \eta_1^0 - \pi^2 C_{10} \eta_1^0 - \frac{1}{2} \pi^2 C_{20} \eta_1^0 - \frac{1}{2} \pi^2 C_{23} \eta_1^0 - \frac{1}{2} \pi^2 C_{23} \eta_1^0 \]

\[- \frac{1}{2} \pi^2 C_{23} \theta_1^0. \]

\[\kappa_3 = \eta_0^3 + \pi^2 C_{10} \eta_1^0 + \pi^2 C_{13} \eta_1^0 + \pi^2 C_{16} \eta_1^0 + \pi^2 C_{19} \eta_1^0 + \pi^2 C_{20} \eta_1^0 + \pi^2 C_{23} \eta_1^0 + \pi^2 C_{10} \eta_1^0 + \pi^2 C_{20} \eta_1^0 + \pi^2 C_{23} \eta_1^0 \]

\[- \frac{1}{2} \pi^2 C_{20} \eta_1^0 - \frac{1}{2} \pi^2 C_{23} \eta_1^0 - \frac{1}{2} \pi^2 C_{23} \eta_1^0 \]

\[- \frac{1}{2} \pi^2 C_{23} \theta_1^0. \]

\[\kappa_4 = \eta_1^3 + \pi^2 C_{10} \eta_1^0 + \pi^2 C_{13} \eta_1^0 + \pi^2 C_{16} \eta_1^0 + \pi^2 C_{19} \eta_1^0 + \pi^2 C_{20} \eta_1^0 + \pi^2 C_{23} \eta_1^0 + \pi^2 C_{10} \eta_1^0 + \pi^2 C_{20} \eta_1^0 + \pi^2 C_{23} \eta_1^0 \]

\[- \frac{1}{2} \pi^2 C_{20} \eta_1^0 - \frac{1}{2} \pi^2 C_{23} \eta_1^0 - \frac{1}{2} \pi^2 C_{23} \eta_1^0 \]

\[- \frac{1}{2} \pi^2 C_{23} \eta_1^0 - \frac{1}{2} \pi^2 C_{23} \eta_1^0 \]

\[- \frac{1}{2} \pi^2 C_{23} \theta_1^0. \]

\[(A20) \]
Table 4. Arbitrary Incident Electromagnetic Field

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_0^1 = (a^2 C_1^1 + 2b^2 C_2^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
<tr>
<td>$V_0^1 = (a^2 C_2^1 + 2b^2 C_0^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
<tr>
<td>$H_0^2 = (a^2 C_1^1 + 2b^2 C_2^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
<tr>
<td>$V_0^2 = (a^2 C_2^1 + 2b^2 C_0^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
<tr>
<td>$H_0^3 = (a^2 C_1^1 + 2b^2 C_2^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
<tr>
<td>$V_0^3 = (a^2 C_2^1 + 2b^2 C_0^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
</tbody>
</table>

Table 5. Arbitrary Incident Electromagnetic Field

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_0^1 = (a^2 C_1^1 + 2b^2 C_2^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
<tr>
<td>$V_0^1 = (a^2 C_2^1 + 2b^2 C_0^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
<tr>
<td>$H_0^2 = (a^2 C_1^1 + 2b^2 C_2^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
<tr>
<td>$V_0^2 = (a^2 C_2^1 + 2b^2 C_0^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
<tr>
<td>$H_0^3 = (a^2 C_1^1 + 2b^2 C_2^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
<tr>
<td>$V_0^3 = (a^2 C_2^1 + 2b^2 C_0^1)/(a^2 C_0 + b^2 C_0 + C_0^2 + C_0^2 + C_0^2 + C_0^2) $</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT

This research was supported by C’Nano Network (Ile-de-France, France) research funds.

REFERENCES