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An analytical approximate solution of the electromagnetic field on a subwavelength elliptical hole in a thin
perfectly conducting screen is presented. Illumination is a linear polarized, normally incident plane wave.
A polynomial development method is used and allows one to obtain an easy-to-use analytical solution of
the fields, which can be used to build analytical expressions of aperture fields for apertures in anisotropic

structures. © 2012 Optical Society of America
OCIS codes:  260.1960, 050.6624.

1. INTRODUCTION

Diffraction by a subwavelength aperture on a plane screen is a
classical problem in electromagnetism [1-3]. More recently,
the question of the transmission through subwavelength struc-
tures has become central in metamaterials and subwavelength
arrays [4-6]. Even though numerical calculations are often
used to simulate subwavelength structures, analytical devel-
opments of the electromagnetic field propagation through
apertures of various shapes are still of great interest. Elliptic-
shaped apertures have a special interest because interactions
between the radiation and the hole are strongly driven by the
anisotropic geometry [7], yet they have enough symmetry to
allow analytical approximations. These analytical solutions
may also be useful to simulate the complex electromagnetic
transmission through metamaterials allowing fast precondi-
tioning of the fields propagation in the different subwave-
length parts. One of the main issues in these simulations is
the time to converge as both electric and magnetic fields tend
to diverge near every boundary. Elliptical shapes are espe-
cially useful as they can be a good approximation of more
complicated shapes.

The problem of diffraction by subwavelength circular aper-
ture was the most investigated. Rayleigh [1] introduced the
idea of solving the problem with power series in k, and Bethe
[2] found a scalar potential solution with a little error in the
first-order approximation. Bouwkamp [3] and Eggimann [8]
corrected Bethe’s solutions and gave exact power series de-
velopment of the electromagnetic field in the near-field and
far-field zone. These two authors also gave vast bibliographies
[8,9] of diffraction problems, highlighting the most important
aspects of these problems. For other shapes, far-field approx-
imations based on magnetic and electric dipolar moments
have been developed [6,10-12], but no satisfactory analytical
solutions such as the ones found for circular apertures have
been found. Yet, for a subwavelength square aperture a semi-
analytical expression for the aperture was found for a linear
polarized, normally incident planar wave, in a unique direction
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of polarization [13]. Obviously, vast numbers of numerical
strategies [14-18] can be used to evaluate the aperture
fields, yet analytical expansions are useful to investigate these
diffractions problems, in particular for preconditioning
conditions.

The problem, as Eggimann [8] wrote it, can be expressed in
the following way: (i) Maxwell’s equation must be followed,
(ii) the tangential magnetic field must vanish on the aperture,
(iii) the electromagnetic field energy must remain finite inside
the aperture, (iv) Sommerfeld’s [19] radiation conditions must
be fulfilled. The problem is solved by expanding every field in
the power series of ka and kb, then every term is expanded in
polynomial forms and finally all the fields are extracted by
solving the linear systems linking all the developments
coefficients together.

2. CALCULATION OF THE FIELDS IN THE
ELLIPTICAL APERTURE

A perfectly reflecting screen S of vanishing thickness lies at
2z = 0 with an elliptic hole centered at (x = 0,y = 0) with
semimajor axis a and semiminor b (Flg 1.). Amonochromatic
electromagnetic plane wave field E' is incident to the screen
from 2z < 0. The transmitted electric field in z > 0 is E'. Only
the steady-state problem is discussed. It is tacitly understood
that the time factor is e7*!, where j is the imaginary unit, o the
angular frequency, and ¢ the time. The wavenumber is denoted
by k = 2z/A with 1 the wavelength.

Copson [20] showed that the transmitted fields should be
written, assuming 7 = (x,¥, 2),

E'(F) =LV xF@F)

. 1
HE) =L VxE'F) @

Juoke

where ¢, is the permittivity of vacuum, u, the permeablhty of
vacuum, c the celerity of light in vacuum, H () the

© 2012 Optical Society of America
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Fig. 1. (Color online) Infinitely thin, perfectly conducting screen
with elliptical hole of semimajor axis a and semiminor axis b. Both
kb < 1 and ka << 1. The electromagnetic plane wave is incident from
2 < 0,y is the angle between the incident electric field, and the x axis.
The transmltted field E' propagates in the z > 0 direction.

transmitted magnetic field, and 17‘(17) a potential vector
defined by

oo £ - kR
F(T):—// nxE@,y,0)—dx'dy’
2r ellipse R

with R = \/(x —2) 4+ (y-y)? + 22, @

and with 72 the unit vector normal to the surface of the screen
in the z > 0 direction. In the aperture, the boundary condi-
tions are given by

=0 20
F = %r./fellipseJ dxd

FZ

il & 71 / ’
F = i (/f ellipse J d.l’ + -] ff ellipse J dz d )
(/f e]llpse d.%“dy +-] ff ellipse J d.%"d = 2 .[f ellipse J Rdx’dy )

3 ’ ’
F = 2_0 (/fe]hpse dﬁdy + -] ffelhpse J dx dy 2 ffe]hpse Jle.Z' dy 6 ffe]hpse J de‘xldy )

H(F) = -H(F)
HY(#) = -H|(¥). 3
EL(F) = -EL(F)

Using Maxwell’s equations and (2) lead to the following set of
equations in the aperture:

BL
VE”_:/FVL + szx —€p 2z
V2,F, + KF, = g% 4
s Pe = eoBL
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with V2 = + 3 . Thus, in order to find the electromag-
netic ﬁeld 1n51de the aperture, we must seek F inside the aper-
ture and then solve (2). The last requirement is the fulfillment
of Sommerfeld’s divergence conditions [19] on the metal edge;
namely, that the normal electric field component increases
as 1/+R.

The strategy to solve this problem is as follows: (i) the fields
fixE' and F are expanded in series of ka and kb, (ii) their
components are developed with polynomials in x and y,
(iii) Sommerfeld’s boundary conditions are applied, (iv) the
condition that the field remains finite at the rim of the disk
imposes that the transmitted electric fields are to be found

in the form D(x,y)/+/1-2%/a® - y?/b2, where D(x,y) is a

polynomial whose degrees and coefficients are calculated.

A. Series Expansion

In the following, we attempt to find a power series expansion
of the electric field in terms of ka and kb, which is expected to
converge well for small elliptical apertures since ka << 1 and
kb < 1. Let j(x’. y) =1nx E‘t(x’, y',0). J and F are developed
in series of k

J=J" + kI + KT+ BT+ ®)
F=F +kF' £ I12F? £ IBF° + ...
We then obtain
o . - O
Jetr = J° + k(T +jrJ°) + K2 (? gt - éerO)
- - 1
+k3(J3 +er2—7¢2¢1‘—6‘7’7~3<70) +en (6)
Thus, including (1), and limiting to the third order:
(7

1. Zeroth-Order Development

We will demonstrate that, at zeroth order, both J° and F° are
null, as well as all even orders in the series expansions of the
fields. For a linearly polarized, normally incident plane wave,
introducing (5) in (4) reduces to

FO 0
a__a&:O. (8)

2 70 _
B ox oy

Vi, F) =

Thus, both F? and F7) are linear in variables x and y. In order
to obtain the electric field at zeroth order, the first equation of
(7) has to be solved. It is first kind Fredholm problem [21], and
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Fig. 2. (Color online) Evolution of the electric field in an elliptical hole (a = 2b) with varying incident polarization. On the left £, and on the right
E,, from top to bottom, y = (0,7,%,%). The plotted quantity is log |E| in order to increase the contrast of the patterns.

e

its general solution is given in Appendix A. It follows that J°
may be written in the following form:

Di.y) . | Dy@.y) .
x( Yy )y[z &, + Y - ey, (9)

0
N

where D)(«', y') and Dy(«’, /') are polynomials. In Appendix A,
we show in (A.1.1) that the two polynomials have the same
degree as F9 and F. Furthermore, the supplementary condi-
tion of finiteness of the electromagnetic energy, correspond-
ing to Sommerfeld’s condition [8,19], is satisfied if

J @ y) =

2

oD )+ DY) = Kwan (1-5- ). o
where K°(2’, %) is a polynomial. So, at zeroth-order approx-
imation J° and F° must vanish. Bouwkamp found the same
result for a circular aperture [22]. Note that if the electromag-
netic field were not normal to the surface the two fields would
not vanish (see section C). Furthermore, equations (4) with a

normally incident plane wave lead to the nullity of all even
orders development of the all the fields.

2. First-Order Development
Equations (4) reduce to

V2, FL = —jeE" sin(y),

V2, Fl = je,Et cos(y).
oFy OFL
oy _ oF: 11
ox oy an

where y is the polarization angle of the incident plane wave,
as seen in Fig. 1. Then Sommerfeld’s conditions now become

xz 2
2D y) + YD o) = K\, y) (1 & %) (12)

where K! is a polynomial. Since we showed that J = 0, (M
reduces at the first order to
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-~ g - do'dy’
Fl=2 / / J' . 13
on ellipse R ( )

We again write Fasa polynomial in x and y as

Fl=a} +alx+ aly + ala? + alaey + ol
Fy = By + By + B + Biy* + Py + pia, (14)

and using (11), this leads to

20k + 20t = —jeoE' sin(y), 2BL + 2L = je,E' cos(y),
p=al, 26 = aj, 2ak = pi. (15)

Finally, we write

1 (g +ma +nyy +nia? +ni'y +nty®)
J (x-', y/) 0 1° 2 4

2 2
122 o2
\/ o b2

(O1+0y +0% +0Ly2 +0Ly' v +0La)
Jl (.%J ) Y 3Y WY

1202
a »?

Solving 11} and 911, where 7 ranges from 0 to 5, will provide the
solution at the first-order development. Equation (12) leads to

(16)

U
m=01=0. m=-0, m=-_p
91 ’71 91
1 1 0 1 1 0 1 _ 0
7’]44'95——;, 7]5+6 ——b—, 93——b—2 (17)

Here are the equations linking the (a!, #1) to the (5!, 8'), using
Table 1 and Egs. (13), (14), and (16):

ay = m2gong + 7*Cang + 7°Cen,
aé = nzClné + 71'2057]%
B = 72gy0} + n*C6} + n2C30}
ﬂé = 7[2046’;’ + rtZCZGé,

We then obtain 12 linear independent equations for the
(n*,6%). Using (7) and Table 1, we find the solution presented
in Table 3.

Solvmg (10), (12), and (13), and remembering that J =
7 x Et(l) the electric field inside the elliptical aperture reads

E.;[(l) _ O t059° +0jya+ 05
12 ¥
2752 (19)
EO _ mynyP iyt
Yy R

2
EJ/_
17(,2 b2

where the values of (5, 6) are given in Table 3.

3. Third-Order Development

We now consider the third-order development in (7). As we
stated before, the second-order fields will vanish. Let us eval-
uate the third-order fields. Equation (4) now becomes

J. Masson and G. Gallot

. . oF%  9F3
V2, F3+FL=0, V%F;+F,=0, a_xy = z—yx (20)

Both (Fg,F ) are fourth-order polynomials and so both
(E3, y) have a fourth-order numerator. The procedure to find
the coefficients is similar to the one used before. Using (4),
(7)), and (10) with the help of Tables Al and A2 leads to 30
linear equations for the coefficients of (E3,E3). We write

Fiwy) = ) d;v'y and

(i+j<4)

F%(x’ y) = Z ﬁ‘?(“)yixj’ (21)

(i+<4)

3 1o,
ﬂwyv=§j—&¢—— and

(i+j<4) /1 =% — yb—z
m”ww
Bw.y) =y L (22)
(=) \[1 -5 -

with f(¢,7) = (”])(;7““) + 7. In a way similar as in first-order
development, (4), (7), and (10) lead to 30 independent linear
equations involving (72, #®). The system may be solved in a
specific order to ease the solving procedure: (113,173,92,08),
313,63, 63), (13.6D), (13.603), (rdo. 113y o 1 M3 O 65
9?27913’0?4)7 and finally (’737’73’”2”72703793792’62)'

The first four steps in the solving procedure lead to

m=m=m=n=n=mpm=0
Gi=0=0=0=0=0=0. (23)
al =0 a} = m2Con}

a) = B2Cn} ot = 22Conk + 22Cynt
pi=0. Py = n*C_10}.

Bl = 22C,0) BL = nC56} + n2C,6%

(18)

The next steps are found in Appendix A and lead to the
transmitted electric field in the elliptical aperture at the third
order:

EI®) — GOy Oy 05 0,0y + 0 y3x+9i‘zy21‘)+9{39ﬁ+9‘1‘4y‘
) =

72 2
3 47

E;@) ’70+"2T+’74W+” Y’ +’7107‘4Jf’711“3y+’7123(21/ 1wy’ Y
2 P

a2 b2

24

where the expressions of (4°,6°) are given in Table 4.
Finally, the total transmitted electric field in the elliptical aper-
ture at a third-order development is given by
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{E;- = kE" + KB} @5)

(1 3) -
EY = kE," + K’E,
Electric field patterns can be found in Fig. 2.
B. Diffraction by an Elliptical Disk
The case of an elliptical disk can easily be solved with the

generalized Babinet’s principle [22,23]. We define the dif-
fracted potential vector as

Ho eJkR
A = x, 7d,7(/d 26
() = //mpse @ y) v, (26)

with ¢(2, ') the electric surface current on the elliptic disk.
The boundary conditions on the disk are

E,(@.y.0) = -E4(x'.y.0)
E,(@.y.0) = -Ey(@.y.0) . @7
H.(¢.y.0) = -H\(x'.y.0)

leading to the following set of equations:

VZ,A, + kA, ﬂoa;;

VZ,A, + KA, = (28)
04,

875 ai - _”OHl

Thus, the disk and aperture problems are equivalent if the
following substitution is made:

FoA
—SoE_;j (—)ﬂoﬁl . (29)

- > =t
conxFE

C. Nonplane Incident Electromagnetic Wave

We now briefly describe the case of a nonplane incident elec-
tromagnetic wave. We limit the polynomial development of
the fields to the first order.

1. Zeroth-Order developmentD
Equation (5) becomes

. 8E1 BE’
V;}y = —& a V%UFO = & a
oFYy  OFY oE. oE!
a—xy - ay = €0E1 + ¢ &0 —=— a x + &)= a Y. (30)

We use the same procedure, and then

B — 69 +60y+050+05y> + 6 ya-+63a*
0=

2 2
xs ¥
\/I*a—z oz

EO — iyl +nfay+nly?
¥y = ;
\/1_L_ﬁ
a2 b2

where the coefficients 6? and #? are found in Table 4.

8D
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2. First-Order Development
Equation (5) becomes

82E7 0°E!
2 il 2 pl _ >
Vrsz —€037A. ez VryFy =& okoz’
aFl 8F1 . oE! . %KL . 0%EL 32)
R T R
With a notation similar to (16), it then follows that
any ond ol
’1:—0 ’1:0 ’1:—2 ’1:—3
=% MTR o RTe T
ond o 06
1 215 gl =20 gl =0
M= BT VT 1T
069 069 069 06°
o1 = %% =% = % = %%
27 ok 37 ok 0= 5 =% &
and so
El — O +01y+03 040y +0] yr+0)a*
v \/1 2 2
22
(34)

El = g gy oy gy
L=

2
122 %
\/ o 2

Due to the structure of Egs. (4), (7), and (10), we know that
for all orders of development in k the coefficients (7, 6") will
have the same structure, only the degree in k-differentiation
will change. This property only holds if the degree of the poly-
nomial development remains the same for all orders of k.
Eggimann [8] was the first to point out this property for
the circular disk diffraction.

3. DISCUSSION

In the degenerate case of a circular aperture, (19) reduces to

Et(l) 4j 2a? cos y—a> cos y+ay sin y-2y> cos v i
X “ 3 \/az a2y (35
Et(l) 4] 2a® sin y—22> sin y+ay cos y—y? sin v i ’ )
y \/a —r%—?
which for y = 0 leads to
Et(l) _ 4 20272
L N %6
El(l) __4y 2y Ei ’ ( )
y 5 oy

This is the same solution found by Bouwkamp [24] Eq. (35)
[the factor k is absent here because it is in Eq. (25) of
this paper].

In acoustics, mixed boundary conditions are common pro-
blems and recent development in subwavelength optics has
spurred similar research in acoustics. Due to the numerous
similarities between electromagnetic and acoustic propaga-
tion the results and calculi found here can find applications
into the acoustic field.
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4. CONCLUSION

We have presented an analytical approximate solution of the
aperture fields for a subwavelength elliptical aperture in a thin
perfectly conducting screen. We used Copson’s formulation
combined with Bouwkamp/Eggimann procedure and adapted
it to elliptical geometry. Results are interesting because they
lead to interesting insights into analytical expressions of elec-
tromagnetic interactions with anisotropic subwavelength
structures. Results may be used to build analytical expres-
sions of aperture fields for aperture with more anisotropy,
and can also find some use in vibration theory. Finally, acces-
sing higher-order terms could easily be done using symbolic
programming,.

APPENDIX A

A.1. Evaluation of the Integrals in Eq. (7)

The strategy is to use a change of variables to switch from
elliptical to circular geometry. We define the following set
of polar coordinates:

’

X = ap' cos(¢') X = ap cos(p) ) ) )
{ { pev —pel? =rel?.  (Al)

Y =bp' sin(¢’) y =bpsin(p)

Nonvanishing integrals encountered in Eq. (7) are of the

forms
= &0 -do dy’
F=— J A2
2r / L]]ipse R (42)

or

F=5 / / JRAx' dy, (A3)
2 1lipse

where we recall that R = /(' —2)? + (y —y)% at z = 0.

A.1.1. Integral F = %ffellipsej%
The first integral (Al) reads in polar coordinates

€ J(@',y')p'dp'dg’
G =0 L e A4
wn =5 [ mese L (Ad)

which can be rewritten in a circular geometry as

J(@', y)p'dp'dy’

SOb
Gz, , A5
(-75' y) /:/cllrcle ry1- p2 sin? (9) ( )

withp = /1 - Z—; The general solving was given by Boersma
and Danicki [21], by expanding Wolfe’s work [25]. In order to

Eob 1
evaluate the integral (A4) we define g(0) = 2 i
and decompose it on a Fourier basis g(6) = Y cvendi€™”’

with
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Eob

= 2 K®)

2€0b [

90= 20 B) - (1-37°) K )]

Gis= ﬁ[@p‘l ~16p® +16)K (p) + (8p* - 16)E(p)]

6= 15 2 6[(1510 — 158p* + 384p? —256)K (p)

+ (46p4 —256p + 256)]
Gig= 105 o 8[(105108 1856p5 + 8000p* — 12288p? + 6144) K (p)

+ (352p° —3776p" +9216p? - 6144)E (p)), (A6)

where K (p) and E(p) are the elliptic integrals of the first and
second kind, respectively [26]. We only evaluate up the eighth
order because the polynomial numerator of J (x',y’) won't ex-
ceed the fourth degree.

We evaluate the integrals of type (A3) and (A4) with

J@,y) = =L —, where i and j are integers. To do so,

122 v=

a2 b2
the polynomial term is expressed as series of Legendre
functions multiplied by the complex exponential ¢ and

the following formula are used:

9 leflllpzn(\/m)eim’”, o )
o= mﬂdﬂdq’:() if [m+1 >n
A L e (a7
o Jor iz pdpde
= Lm,n,ll)::{Hrl( /1 _/)/Z)ei(erl)(/) if |m + l| <n
with n, I, m integers, P’ Legendre functions, and
F( n+im+! )F( n-im-1+ )
Ly, =27 (AS)

F(%n “lm+ Q)F(%n +lm+ 1+ 1) '
Finally, the integral is expressed in (x,y) coordinates.
Table 1 provides the value of G(x, y) for various J (', 3'). Most

interestingly, the degree of G(x,y) is identical to the
degree of the numerator of J(/,¥y').

A.1.2. Integral F = 52 Jlenipse JRAx dy’
The second integral (A2) reads

8 J / J A J !
Hap =3 [ s@a)e-er+@-yraa. @)
7T J Jellipse
They are evaluated in three steps:
H(0,0) = ﬁf/ J@,y)\/ 2% +y?dr'dy, (A10)
2r ellipse

which is expressed as elliptic integrals and

0H(xy) _ sox J(@'.y) _ 870/' J(@' y)x ’
o (=2 +(y-4))? @) + ()’
H@y) _ my J@y) dr'dy - & J@ )y dv'dy’
2 (-2 +y-y')* Y=o f (-2 )*+y-y')? Y
(A11)
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B P
Table 1. G(xy) = 3 [ 7EDEE j’; e

G(x,y)

12,/

13,

ﬂ290
%7[2(90 -g)x = n*C_1x
172(90 + 92)y = P*Coy
2l(F90 - 392 + S902% + (— 90 - 102 - F00) S
+% (90 + 92)] = 2[C1a? + Coy® + C]
2l(G90 + 102 + S99 + (— 590 + 102 - S90) La?
+% (90 - 92)] = 2*[Ca? + C52* + Cyg)
272(90 - 9wy = P*Crvy
213(37290 - 2192 + 59394 5496)
+5& 2y (.90 - 00 + 204 + L g6)

+” (1235(1690 16g4)
= 7[2(08.%3 + ngy + Cle)

bzy 3(- 590 — 592 — 594 — :.96)
+722%Y (5 90 — 892 — %91 + £ 96)
+7°a*y({s90 + 192 + 1594)
= 2 (Cny® + Cro2®y + Cy3y)
2 ,’;—ixg(——go + 6492 3—7294 + 6_5496)
+ﬂ29€y2(§go + mgz - %94 - 596)
+ﬂ2‘b2x(ﬁg0 -19 + 94
= 1%(Cpu®® + C1529° + Cie)
y (32g0 + gZ + 3294 + 64g6)
ﬂ;s—;xz?y(—ﬁgso + mgz + 594 _596)
+7°b y(ﬁgo - 1694)
= (C7y® + C152%y + Cop)
i x4(102490 f;ggz + %94 _3%.96 + 13%.98) +
2
2; P-4 51290 12892 + 12894 + 1596 ~ 31398) +
i aZxZ(Mgo - 12892 ()494 + 13896) +
bz Yy (_gﬁgﬁ 129392 54394 12896) +
b“y (102490 + 12892 + 25694 + 5596 + 109298) +

b a4(64g0 + 1692 + 6494) = (Czo%A + Co12%y? + Cop®

+Co3y? + Cogy* + Cs5)

LY (G590 ~ 1692 ~ 51914 T 1596 ~ 35698) +

71'2 %xyff(—%go: %gz‘ 291 + 596 + 256!18) +
”Zany(S%go + 592 - 3294 64g6)

= 1%(Co2y + Cozy® + Cosry)

21;2 4 207 35
7 5ot (— 15190 + 5592 — 1594 + 55596 ~ 109198) +

bzy (- 102490 15(,92 01294 - ﬁge —mgs) +
22y* (2 go —2294 + é‘{;gs)
+7T2b x2(28g0 - 12892 + 3294 _%96) +
72a?y? (3590 + %gz + 38095+ 15596)

+7r2a2b2(—090 - 5504) = 1 (Cog* + Cyo9* + C1 2%y +

Ca2® + Cygy? + 034)

2 b xSy( 25690 + 5492 64g4 —596 + %QS) +
way PG50 + 1692 ~ 5194 ~ 1596 ~ 5598) +
0Py (g0 - 892 - 394 + 296)
= 1%(C352°y + Cewy® + Cyrry)

i b49€4(1024go 12892 + %94 - %QG + %98) +

zyfl(llo%igO + 3292 + 25694 + 3290 + 102498) +

7 Lyt (- 4 51290 + 12892 + 12894 1959 ~ 31298) +

>xz(__g() + 12892 6494 + Mgg(%) +

szy (6490 + 12891 6494 - 12896)
+772b (64g0 - 5g2 +634g4) .
= n%(Cae! + Caoy* + Cyo®y?
+C2? + Cyoy® + Cu3)
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Table 2. H(x,y) = ;—;Ifj(x’,y’)\/(x _x’)z + (y _yr)derdyl

J@',Y) H(x,y)
1 ho +5 (go - C_1)a> + % (gy - Co)y?
x —7z203x +Z Z(C_ - 01)1“3 72 Coxy?
y —ﬂzcey ﬂch«%zy +% (Co -Cpy?

a” hy +% Z(Cy — C1p)a> + - (Cs — Cia)y?

+7 (Cl Cs)x +5 (Cz - Co)®y* + % *(Cy - Cr)Y*
x"y’ —ﬂzclgxy + (C7 - Clz).l'gy ﬂZCny
y? hy +5 (Ce - Cl())xz + 5(Ce - C19)y

+5 (C5 -Ct +% *(Cy - Ci)2%y? + T 2 (Cy - Cro)y*

which can be evaluated using Table 1. Results are found in
Table 2 with

Ry = Luoa*vE(p)
hy =B (2 - DE®) + (0° + DE(D)] |
hy = M2 [(1- pY)K(p) + (2p* - DE(p)]

where K and E are the elliptic integrals previously defined.
Note that Bouwkamp formula [22,24,27], modified to be used
in elliptical geometry, could also have been used to evaluate
these integrals.

A.2. Third-Order Development

At third-order development, (4), (7), and (30) lead to 30
independent linear equations involving (13,8°). The system
may be solved in a specific order to ease the solving
procedure: (1’]7,119,6‘3,499), (’76”78’03’9 ) (7]1,03), (’72’93);
(’7?0"711”712”713 1y 05070150363, and finally (3. 113,
ns.n3.63. 03,63, 63). The first four steps in the solving proce-
dure lead to

3 _ .3 _,3_,3 _ 3 _ 3 _
=y =ng=n;=ng=1y=0
It follows
Table 3. First-Order Development
Value

1 1/2jeo B sin(y)ab*(2C4+C7)

Mo 72(-262C; Cy +a2C5 C7 +a2C4 Cy 1 202C, C4 +b2C1 G +02C5Cr)

1

n 0

1
Up) 0

1 _ 1/2jgy B’ sin(y)b*(2C4+Cr)
3 72(=20%C; Cy+a2C5 Cq+a2C4Cr +267C, C4+b7C1 C+b2C,Cr)

1 JeoE' cos(y)(Csa*+C1b%)
M4 P (VPC1Cr—2a7CyCy +b2Cy Cr+0>C 0 +2a2C, Cy +42C4Cr)

1 _ 1/2jey B sin(y)(-2C,b% +Cra®)

5 T (-26%C5Cy+a?C5Cq+-a2C4 C142b°C, Cy+02C Cr+07CoCr)
ol _ 1/2jeo B’ cos(y)a2b?(2C, +Cq)

0 2(6%C, Cr—2a2CyCs +b2CoCr+a>C5Cr+2a2C, Cy +a2C4 Cr)
ol 0
0} 0
oL 1/2jey B cos(y)a®(2C, +Cr)

3 72(b*C1 C7-2aC5C3+b>CyCr+a>C5C7+2a>C1 0y +a? C4 Cr)
o1 JeoE' sin(y)(Cyb*+Cya?)

4 T (207 C5Ca+a2C5 C7+a2C, Cr 4207 1G4+ 07 C1Cr b7 CoCr)
ol 1/2jey Bl cos(y)(2C5a®~Crb?)

5 T T 073, Oy 1550, o+ @C Oy + 20 Cr O 7201 )
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D,
Sy
D,
D,
D,
D,
D,
D,
D,
D,

D
D;
S3
Dy
D;
D;

’7?0 =5
’7?1 = |Dy
’7?2 =|D,
’7‘?3 = |Dy
’7?4 = |Dy
0?0 =|D;
&3, =D,
9?2 =|D;
9§3 =|D;
&, =D,

with | | being the determinant, and

C% 0
0 72C%
e 0
D4 =[0 z*C%

- e}
=

=

[

= [C 0
=

=

=

=

00
#oy
0 0
woy
00 0 2209
000
000 IIZCSI
D10=[0 0 0 22C%
=l & &8 4 &
=|Dy Dy Dy Dy

where T stands for transposition, with

0 0
—”2026
0 0
*Cs;
00
47%Csg
0 0 372%Cs
47%Cog
0 0 0 0 0 37%Cy
47%Cyy
& &
D;

Dy

0 r 2 CSG

—27[2021 0

0 —37[2C27

—27[2 031 0
0 —37[2036
—277.'2040 0

0 277.'2040

0 271'2031

0 71'2027 1

0 2722Cy

-b%/a?

Dy Iy
Dy |7y
Dy Iy
Dy /'y
Dy Iy
Dy Iy
Dy Iy
Dy |/
Dy Iy
Sy 1y,

—a2/b?
a2/
1 o

—47%Cyy
00
—472C4
0 0 117
—47%C4g
00

0]"

-b%/a?
b2/
0"
0 0 17
0]”
0 0

01"

—a2/? "

g o0 ol

D; Dg

81y = 1/87%(=Cy + Cg)nk + 1/87%(=Cs + Cy)n}
81, = 1/47%(=Cy + Co)pl + 1/47%(C15 - Cy)n}
81, = 1/87%(Cyy - Co)nl + 1/82%(Cyq — Cy)nk
Ay = 1/872(Cyy - C1)0L + 1/82%(Cyy - C)6}
A, = 1/472(Cy5 - C1)0L + 1/47%(Cy — Cs)0)

A, = 1/872(Cyy - C5)0L + 1/87%(Cs - C,)6}

and

0
hzie e
3 3 10
Cl = 1/2(Cyy - Cg)
Cé‘il = 2021 + 12024
el =50 T a0
39 ™ 40 39

Finally, one obtains

with

cy”
0

L= g,-1/2C0, -1/2C,

C13? = -1/2C3 + C3 - 1/2Cy

C%g = —2023 - 2022
ng = —2033 - 2032
CE =20, -20,,.

51 = —aé - 125%0 - 25%2 52
&= —pL-2, - 122, &=
& = 36k, - 224,

—(,14
1
- 511

Ch = 1/2(Cy - 90)

C; =205 + 20,

C18% = —1/2C)9 + C4 - 1/2C44
O = 60y + 6Cy;

033 = 6035 + 6Cs

651, - 651,
4,

&g = 45%4 - 1%1

Dy

Dy |,

5%1 = 1/67[2(—07 + Clz)ﬂi
5%3 = 1/271'20117]411

A, =1/222C1,60}
Ay = 1/622(Cyz - Co)6}

£ = —ab - 251, - 1261,
& =26}, - 321
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(A13)

(Al4)

(A15)

C? =20, +2C

CI6 = 1/2(Cq - C)
ng = 12Cy + 2Cyy
C® = 120y + 205,
C3B = 12Cs5 + 2Cyy

(A16)

(A1T)
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with

. 1 1 1
ay = Moo + 157° s + n5a° o + Migw*Cos + Mipm*Cay + Miyw*Cas = 53l = 5ok = 505,
1 1
0’? = g’ﬂ”ZC& 0-’3 = 577%”2067
. 1 1 1
@3 = ;7§7I201 + n§ﬂ205 + 7’]?071'2022 + 71:;’271'2032 + 11?4772041 - §C(_)17r217(1) - 5050772175 - QCéGﬂzné,
1 .
ay = nja*Cr + 1} 7 Cog + 1isn*Cyy + éclsﬂzﬂ}p
. 1 1 1
@5 = ;7§7I202 + ngﬂ204 + 71?0712023 + 71?2712033 + 11?4772042 - §Cg7t211(1) - ECéSn'Zné - EC}S%ZW%,
1 1 1, . 1
a = 6”2(01 -C_pn. @ = 5’7%”205» o= 5’7}”202» ay = 6”2'7%(04 -Cy),
aly = 113gn*Cao + njyn*Cag + 11y n*Cas + 61
a}y = 1} 7°Cos + nism*Cys + 61y
0’:1;2 = ’7?0”2021 + ’7?2”2031 + ’7‘?4”2040 + 8l
aly = 372 Cor + nign®Cyg + 81y
a}y = nom*Cay + niyn*Cyo + iy 7*Cyg + 614
1 1 1
ﬁg = Hgﬂ'zgo + 0%7[206 + 027[203 + H?OH2C43 + 0‘;’27[2034 + 9?47[2025 - 59(1)}7/0 - §Héh2 - igéhl’

1 1
Al =501Co. 3 =50,7°Cy,
1 1 1
ﬁg = 0%7[204 + 927[202 + 9%07[2042 + 0?27[2033 + 0?47[2023 - 5087[29(1) - ECé9ﬂ29é - 50537[29%,
1
ﬂi = 0271’207 + 0?171'2037 —|— 0:1337[2028 + 501377,'291,
1 1 1
ﬁg = 0%7[205 + 927[201 + 9?07[2041 + 0?27[2032 + 0‘;’47r2022 - QCQII[ZH(I) - §Cé6ﬂ20;) - §C§0ﬂ20é,
1 1 1 1
By = 6”2(04 -Cpol,  pr= 595”202, B = 50{7#05, gy = 6”29%(01 -C.),
Plo = Olon*Cag + 03,7 Cao + 0447°Coy + Ay
?1 = 0?1”2036 + 0?371'2027 + ﬁh
/)]Zfz = 0?0ﬂ2040 + 0?271'2031 + 9?471’26'21 + /‘1%2
?3 = 951)’171'2035 + 6?3772026 + 1%3

7)?4 = 6?0”2038 + 6?27[2029 + 9?47[2020 + /1%4

K1 = nzcgr,}) + JIZCéSU?l) + ﬂQCéQné -1/272C 130} + 277202317‘?0 + 27r203371?2 +272C o3,
- 7r2C379?1 -2 0286?3

Ky = 1/275201311}1 + E2C(3106 + ”20(1560;) + 7[26%09% + ”2028’7:1}1 + 7[203777:1}3 - 27[26'4105;’0 - 27:20320:1}2
- 27120229?4

_ 1 20,-1 1 2133 1 2,196 1 223, 3 2133, 3 2,42 3
k3 = —ay + - Cy g + 7 Cy"ng + 7-Crg7ns + - Comyy + 7 Conyy + 7-Clinyy
__pl 20.-1 1 2,19.6 g1 2133 91 2,42 233 212393
Ky = —fy +1°Cy7 0 + m°C705 + n°C1y"05 + C410:f0 +r 0329:1;2 + 12055014
—_ 3
K5 = =M1

Ke = "7?1 - 9?4

— 3
K7 = =114 _9?1
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Table 4. Arbitrary Incident Electromagnetic Field

Value

3

-a20? Ok ~aPb? (C7+2C)x3 -2 a*b* (202 Cy O -a? Cr C3-2a> C4 C2 )5 +m° b  Cr Gy

Mo (10T + Cr O —2C, 0l +2C, C20%)
3 b“CSK1+bz(C~+2('4)K}+It a’ C7C1 5-1201C,C% aK7
3 7 (C1Ca%+CC2b2—2C, O +2C,C307)
3 —(azci+szf)x2+2(aZC5+szl)mf/rza“’(—ZClCi+ZC5Cf)x5—2ﬂ2b4(CIC§—C5Cf)Kg
U 2 (C-CTa+CC2 07 +2C, Coa® =205 C2a?)
3 =02 C3k1~(~Cra® +2C, b )iz —ra* C7 Coxs +1°b* C7 Clxq
s 72(C7C5a%+C7C20%-2C,C0° +2C, C2b?)
P b2 C2y-a?b? (20, +Cp)ky +72a'b? C7 G + 12 ab? (202 C1 O +b*C7 C-20%C5 C2 kg
0 72(C7Ca%+C7C20*+2C, Ca?-2C5 C2a?)
93 — ZC%K2+02(C7+2C1)K4—7r2a4C7Cpr,+lr2b4C7C%Kg
3 72(C7Ca*+C7C20%+20,Cha*~2C;5 C2a?)
o (@®C3+b>C2 )y +(204a> +2050° k3 +27%a (C5 C3-C4 O )5 +27°b* (~Co C3+C4 C)ky
4 72(C7C5a%+C7C2b?-2C5C3b* +2C, C2b%)
3 aZC‘;)K2+(C7bZ—Z(IZC;,)IQ+7r2a4C7CiKr,—ﬂ2b4C7CZK3
65 (O (P02 C2h2 42 52 o0 (22
7*(C7CLa*+C7C1b° +2C, Cia*-2C5Ca)
Table 5. Arbitrary Incident
Electromagnetic Field
Value
. okl ol
0 €920 ((2C5 +2C4) 52— (Cr+2Cy)54)
Mo 272(=205C30% 4 CC b2 +2C, C4b* +C7C3b% +C C5a® +C C4a%)
n 0.
0 _ gk
1y Z(CoJrC 1)
0 £b*((2C5 +ZC4)—7(C7+ZC4) )
13 272(-205C5b%+CC 0% +2C,C,b* +C~C;bZ+C7C a? +('704a2)
0 £0((-C5a2-Cy bz)—’+(C a’+Cya*+C bz+Czl:2 )
un 72(-2C5,C5a’ +C7c,bz+0~c>b{+zclc4a +C7C5a° +C C,ad?)
- 9EL
0 e ((~2Cob2 +Cra2) 5L+ 0% (201 +2C) 22)
5 212 (=2C5C3b?> +C7C1 b2 +2C, C4b% +C7Cob?> +C7C5a® +C7Cha?)
JEL o
o0 B @b (~(2C +202) T2+ (201 +C) 7e)
0 272(=20,C5a% +C7C, 0%+ C7Cob?+2C, C1a®+C7C5a% +C7Ca?)
& 0
0 eoEL
62 7 (C 1+Cu)
Py toa‘((ZC1+ZC>) (ZCI+C")_)
3 T 27%(=2C,C5a +C7C1bZ+C7C>bZ+261C4a +07C5a*+C7C,40%)
0 £o(— (Czbz+C4a-)—J+(Clb2+C5a'+Czb2+C4a2)—)
04 72 (=2C5C30% +C7C 0% +2C, Cyb?+C7C3b% +C7C5a® +C C4a’)
5 EL oLt
o0 £0((-2C50> +C7b%) 7= +02 (205 +2C,)=5)
5 272 (-2C5C5a%+C7C b* +C7Cob% +2C, C4a% +C C5a% +C C1a?)
00 value
&0 2 £0a2b? (~ (20,+2c,)—+(zcl+c7)—)
0 £ 272 (~205C5a2+C7C1 b2 +C7 0302 42C, C1a® 4 C7C5a% +CCa?)
I 0
o0 2z &kl
2 e 72(C_ |+Cu)
90 2 tna‘((ZC1+ZCz) =-(2C1+C7 )—)
3 £ 272 (-2C,C5a? +C7clb2+0~c bZ+ZCIC4aZ+C7C a1+c7c4a~)
0 o £o(- (Czb2+c4a‘) a”+(c V2 4C5a%+Cyb?+Cya? )W)
04 € 72(-2C5Cob%+C7C 02 +2C, C1b2 +CrC3b* +C7C5a2 +CrCha?)
i i
o 2 e0(~2C5a%+CrbP Yk a2 (205 +2C1 ) a2)
5 £y 272 (-2C,C5a%+C7C b2 +C7Cyb* +2C, C4a* +CCsa* +C7Cya%)
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