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ABSTRACT Currently used techniques for the analysis of single-molecule trajectories only exploit a small part of the available
information stored in the data. Here, we apply a Bayesian inference scheme to trajectories of confined receptors that are
targeted by pore-forming toxins to extract the two-dimensional confining potential that restricts the motion of the receptor.
The receptor motion is modeled by the overdamped Langevin equation of motion. The method uses most of the information
stored in the trajectory and converges quickly onto inferred values, while providing the uncertainty on the determined values.
The inference is performed on the polynomial development of the potential and on the diffusivities that have been discretized
on a mesh. Numerical simulations are used to test the scheme and quantify the convergence toward the input values for forces,
potential, and diffusivity. Furthermore, we show that the technique outperforms the classical mean-square-displacement
technique when forces act on confined molecules because the typical mean-square-displacement analysis does not account
for them. We also show that the inferred potential better represents input potentials than the potential extracted from the position
distribution based on Boltzmann statistics that assumes statistical equilibrium.
INTRODUCTION
Single-molecule tracking (SMT) is a powerful approach that
can reveal the complex trajectory of single biomolecules
with nanometer precision, while using an optical micro-
scope (1,2). Recent progress has focused both on continuous
improvement of experimental techniques in terms of
acquisition time, length, and precision of trajectories and
on alternative approaches for analyzing the trajectories.
However, most of these approaches exploit only small parts
of the available information stored in the trajectories.

The most commonly applied technique is the mean-
square displacement (MSD) analysis, which is based on
monitoring the average molecule displacement from image
to image (3,4). The MSD is usually plotted against the time-
lag t. In the case of Brownian motion, the resulting points
should lie on a line, whose slope is proportional to the diffu-
sion coefficient D (for two-dimensional Brownian diffusion
MSD(t) ¼ 4Dta, a ¼ 1). If the relationship is not linear, the
motion of the molecule is classified as subdiffusive (a < 1)
or superdiffusive (a > 1).

For the case of confined motion, the particle does not
escape from a corral of a certain size during the recording
time, which will manifest itself in the MSD versus a time-
lag plot in a plateau. To obtain the size of the domain and
the diffusion coefficient within the domain from experi-
mental data, the MSD trace is fitted with a model for
confined motion, which assumes a boxlike potential with
no forces acting inside the domain (5–7). Alternatively,
cumulative distribution of square displacements for a fixed
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lag time is analyzed for individual trajectories (8) or
multiple trajectories (9,10) or image correlation techniques
(11). These approaches are straightforward, but only take
into account the second-order moment of the displacement
distribution and thus reduce accessible information to that
stored in the second-order moment. Other methods exploit
higher-order moments of the biomolecule displacement
(12), first-passage times (13), and the analysis of the radial
density distribution (14). However, all of these methods
exploit only a subset of the available information because
they either discard part of the full information or loose
information through averaging.

Considerable effort using SMT has focused on studying
the membrane architecture. Membrane molecules have
been observed to undergo anomalous diffusion and exhibit
confinement, which has been attributed to crowding of
molecules (15,16), intermolecular interactions (17,18),
cytoskeleton barriers (19,20), tethering to the cytoskeleton
(14,21), and lipid rafts or domains (22,23). Despite the
numerous studies, the origin of confinement remains contro-
versial in many cases. There is, therefore, a pressing need
for methods that can extract additional information from
single-molecule data.

Bayesian inference can be used as a technique to infer the
diffusion coefficients and confining potential from confined
single-molecule trajectories. The motion of the single mole-
cule is modeled by the overdamped Langevin equation with
forces generated by the unknown potential. This technique
extracts more information from a data set and converges
very quickly onto the input values for numerical simulations
(24). We emphasize that by adding the unknown potential
interaction, we make fewer assumptions on the motion of
doi: 10.1016/j.bpj.2012.01.063
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the biomolecule than other methods that assume no
interactions.

Here, we show how a Bayesian inference scheme can
exploit more of the information stored in a single-molecule
trajectory and how it can be used to extract additional
parameters. We will focus on confined trajectories in
a potential, because Brownian motion confined by a rigid-
wall square potential has been discussed in Voisinne et al.
(25) and proved to be optimal in most cases and to outper-
form other schemes in all tested cases. Tracking of the
receptors of two bacterial pore-forming toxins (26), the
Clostridium septicum a-toxin (27) and Clostridium perfrin-
gens ε-toxin (28), reveals confinement to domains with an
attractive confining potential on the membrane of Madin-
Darby canine kidney cells (29). Here, we will explain how
the technique can be used to extract the diffusion coefficient
of the receptor and the force map within the domain along
with the confining potential. Depending on the experimental
data, either a global or a spatially varying diffusion coeffi-
cient can be extracted. Whereas the first description of
Bayesian inference applied to confined trajectories concen-
trated on extracting the force map in a mesh inside the
domains (24), we focus here on extracting the coefficients
of the polynomial development of the potential. Then we
analyze the accuracy of the inferred values through simula-
tions. Comparing the inferred values to values obtained
from the MSD analysis or the residence-time technique
will highlight the advantages of the inference approach.
METHODS

Experimental setup

Y0.6Eu0.4VO4 nanoparticles were coupled to toxins as described in

Casanova et al. (30). In brief, we coupled APTES-coated europium-doped

nanoparticles to ε-toxin produced by C. perfringens bacteria (CpεT) or to

a-toxin produced by C. septicum bacteria (CsaT), via the amine-reactive

cross-linker Bis (sulfosuccinimidyl) suberate, as described in the accompa-

nying article (29). This article also describes the setup for single-molecule

tracking and cell culture.
The mean-square displacement analysis

The mean-square displacement (MSD) analysis was performed according

to the literature (5,6,31). The MSD was evaluated in X, Y, and R using

MSDRðnDtÞ ¼ 1

N � nþ 1

XN�nþ1

j¼ 1
½xðjDt þ nDtÞ

� xðjDtÞ�2þ½yðjDt þ nDtÞ � yðjDtÞ�2;
(1)

where N is the number of points and Dt the time step between images.

However, only values as a function of R were considered for this work.

MSD points were calculated for time-lags t ¼ nDt shorter than the total

trajectory length divided by 5 to avoid fitting data points with too large

of an error.

The diffusion coefficient DMSD was extracted from a linear fit of the first

three data points ofMSDR(nDt). An alternative method to find the diffusion

coefficient D
0
MSD and the domain size LMSD is to fit the MSD curve with
MSDRðnDtÞ ¼ L2
MSD

3

�
1� e�

nDt
tm

�
; (2)

where tm is related to the diffusion coefficient via D
0
MSD ¼ L2MSD/12tm

(32).
Determination of domain size

Domain sizes were approximated through a circular fit of the recorded data

points, as follows:

1. The center of the circle is determined by averaging the position of all

points.

2. We then determine the radius R.95 of a circle containing 95% of the total

trajectory points.

3. The area of the confining domain is defined as the area that is enclosed

by the circle with radius R.95.
Determination of positioning noise

Experimental trajectories contain static positioning noise, B, due to the

error on the position determination that depends on the signal-to-noise ratio

(SNR) and the image analysis software and dynamic positioning noise due

to position-averaging resulting from the nonzero image acquisition time

(33). For Brownian motion and in the presence of these two sources of

noise, we have

MSDRðnDtÞ ¼ 4DnDt þ 4B2 � 4

3
DDt; (3)

where the second (third) term on the right reflects the static (dynamic) posi-

tioning noise. Using the offset of the linear fit of the MSD curve and the

diffusion coefficient to determine the value of the static positioning noise

is often not reliable (34). In addition, in the presence of a potential, Eq. 3

is no longer valid.

The experimental static positioning noise can be determined from static

nanoparticles in the same signal and noise conditions as experimental

ones. Static nanoparticles, however, are typically obtained by spincoating

on a bare coverslip. This situation does not correspond to the same SNR

as in cell experiments where cell fluorescence contributes. We therefore

generated numerical images of static nanoparticles with the same SNR as

in the cell experiments, run the particle localization algorithm on them,

and determined the localization precision from the error of the two-dimen-

sional Gaussian fit.

In this article, dynamic positioning noise was not included in numerical

trajectories. For experimental trajectories, we approximated it by �4/3DInf

Dt and incorporated it in the static noise (see Eq. 6). We could thus subtract

both noise contributions from the inferred D values before bias correction.

The inference scheme may be extended to better account for this dynamical

noise, especially its dependency with the diffusivity of the biomolecule.
Numerical trajectories

To simulate two-dimensional free Brownian motion, the length of each

step was taken from a Gaussian distribution with a SD of
ffiffiffiffiffiffiffiffiffiffiffi
4DDt

p
; where

the input diffusion coefficient D and the acquisition time Dt were chosen

according to experimental conditions. The angle of each step is randomly

distributed over [0, 2p]. Each particle takes 1000 substeps during

each Dt. The substeps are not averaged. The displacement due to the

force generated by the confining potential is added to each substep.

Confining potentials used as demonstration in this work are the

spring potential (V(x,y) ¼ 1/2kxx
2 þ 1/2*kyy

2) and the confining box
Biophysical Journal 102(10) 2288–2298
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(V(x,y) ¼ 0 for jxj < L/2 and jyj < L/2). Spring potentials were chosen

because, experimentally (see accompanying article (29)), they were the

best description for the motion of the receptor, and because it allows simple

evaluation of the properties of the inference. Yet, we emphasize that we are

not limited to spring potentials or to polynomial potentials. For the simula-

tion of the trajectory in a confining box, no force acted on the particle within

the box, but the particle was reflected at the boundary. Where mentioned,

static positioning noise was added to the trajectory by an additional

displacement taken from a Gaussian distribution with standard deviation

(SD) 2B with an angle randomly distributed over (0, 2p). This Gaussian-

noise models all sources of noise, i.e., Poissonian photon shot-noise due

to signal and fluorescence background, detector noise, pixelization effects,

and error of the localization algorithm using a Gaussian representation.
Calculation of the a posteriori probability
and inferred value

The inferred values are obtained from the a posteriori probability distribu-

tion. All variables are initialized at zero. The prior probability P0(Q) is

taken constant for the range of 0–10 pN/mm and of 0–10 mm2/s and zero

elsewhere. A quasi-Newtonian optimization using the Broyden-Fletcher-

Goldfarb-Shanno algorithm (35) finds the maximum of the a posteriori

distribution P(TjDij,Fij). Then, the a posteriori probability is sampled by

a Monte Carlo algorithm (36–38). At the end of the Monte Carlo algorithm,

we visualize the a-posteriori probability distribution for a given parameter

P(TjDij) or P(TjFij) for a given (i, j) pair, like those shown later in Fig. 2, D
and F, and Fig. 4 C, by building a histogram for that certain parameter. The

parameter value yielding the maximum of the parameter distribution is the

final inferred value for this parameter and the SD of the distribution gives its

precision.

Depending on the experimental conditions, bias may appear and the

inference may converge toward parameters shifted from their true values.

To check for the presence of bias in the inferred parameters, we generated

numerical trajectories for the same range of conditions as the experimental

ones. Then the inference was run and the inferred values were compared to

the input values. This comparison shows that systematic bias, analytically

correctable, may be present in certain conditions. In the subsection Perfor-

mance of the Technique (below), we show how this bias was corrected.

The inference algorithms were run on a personal computer (dual-core 3

GHz, 2 GB RAM) using C language. The inference of the force and poten-

tial map of a single trajectory with 1000 points requires, on average, a few

tens of seconds to converge.
MODEL

The single-molecule motion is modeled by the overdamped
Langevin equation,

dr

dt
¼ �VVðrÞ

gðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2DðrÞ

p
xðtÞ; (4)

with g(r)the spatially varying friction coefficient, D(r) the
spatially varying diffusion coefficient, V(r) the potential
acting on the biomolecule, and x(t) the rapidly varying
zero-average Gaussian noise. The fluctuation-dissipation
theorem gives D(r) ¼ kBT/g(r) (39). With respect to the
equation of motion that leads to the usual model for the
MSD fit of confined trajectories (6), we introduced an
additional term for an arbitrary potential (24). In contrast,
in the usual model for MSD analysis of confined motion,
the potential is assumed to have a square shape, i.e., no
Biophysical Journal 102(10) 2288–2298
forces inside the domain, a major assumption. By allowing
this potential to take an arbitrary form, this to our knowl-
edge new method makes far fewer assumptions on the
motion of the biomolecule and is thus much more versatile.

The associated Fokker-Planck equation, which governs
the evolution of the transition probability over time, is given
in Eq. 5 (39). Here, F(r) ¼ �7V(r),

vtPðr; tjr1; t1Þ ¼ �V$

�
� VVðrÞ

gðrÞ Pðr; tjr1; t1Þ

� VðDðrÞPðr; tjr1; t1ÞÞ
�
; (5)
where P(r,tjr1,t1) is the probability of going from (r1,t1) to

(r,t). This equation has no general solution for an arbitrary
potential and a spatially varying diffusion coefficient. We
therefore divide the confinement domain into subdomains
using a mesh grid and the points of the trajectory are attrib-
uted to their respective grid subdomains. Within each subdo-
main, we consider that the potential gradient and the
diffusion coefficient are constant. To avoid undersampling,
the size of the mesh should be chosen so that, on average,
adjacent space-time points (rn, tn and rnþ1, tnþ1) fall within
the same or direct neighboring subdomains. This assump-
tion enables us to solve Eq. 5, for a constant Fij and Dij

per subdomain (i, j). This, however, does not mean that
they are constant over the entire trajectory. Each subdomain
is free to have a different Fij and Dij, which is an approxima-
tion to inferring an arbitrary potential. The assumption leads
to the expression of the transition probability,

P
�ðr2; t2jr1; t1Þ��Fij;Dij

	 ¼ e
� ðr2�r1�Fijðt2�t1Þ=gijÞ2

4ðDijþs2=ðt2�t1ÞÞ ðt2�t1Þ

4p
�
Dij þ s2=ðt2 � t1Þ

	ðt2 � t1Þ
;

(6)
with s the amplitude of the positioning noise (see Section S3
in the Supporting Material). This expression is the proba-
bility of going from one space-time coordinate (r1, t1) to
the next (r2, t2) for a diffusivity Dij and a force Fij with
a positioning noise s. The overall probability of a trajectory
T consisting of N space-time points (rn, tn) due to a certain
set of variables is then computed by multiplying all the
probabilities of the individual subdomains P(TjDij,Fij) ac-
cording to Eq. 7. The probabilities in the individual subdo-
mains P(TjDij,Fij) are computed in turn for all individual
points in the data set that fall within a subdomain with
Eq. 8, where m is the index of the point in the trajectory
that falls within a certain subdomain Sij. This gives the like-
lihood function of

PðTjD;FÞ ¼
Yimax ;jmax
i;j¼ 1

P
�
T
��Dij;Fij

	
; (7)
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P
�
T
��D ;F

	 ¼
Y

P
�ðr ; t jr ; t Þ��D ;F

	
: (8)
ij ij

m:rm˛Sij
mþ1 mþ1 m m ij ij

Now that the likelihood is known, we may apply Bayes’

rule,

PðQjTÞ ¼ PðTjQÞP0ðQÞ
P0ðTÞ ; (9)

where P(QjT) is the posterior or a-posteriori probability of

the parameters, i.e., the probability that the parameters Q
take on a specific value given the recording of the trajectory
T. Here, P(TjQ) is the likelihood of the trajectory, i.e., the
probability of recording the trajectory T given a specific
value Q of the parameters, P0(Q) is the prior probability
of the parameters, and P0(T) is a normalization constant
called the ‘‘evidence of the model’’ (37,38). Without prior
knowledge on the parameters, the prior probability P0(Q)
is supposed to be constant over a broad range of possible
values. The process is visualized schematically in Fig. 1.

The parameter value that yields themaximumof the a-pos-
teriori probability is the inferred value for the parameter. The
SD of the distribution yields the uncertainty on the inferred
value. The optimization of the parameters maximizing the
a-posteriori probability is performed first with a quasi-New-
tonian optimization using the Broyden-Fletcher-Goldfarb-
Shanno algorithm (35). Then, Monte Carlo sampling of the
a-posteriori probability yields the SD of the parameters
(35). Numerical trajectories are used to analyze the quality
of the inference in Results and Discussion.

The model presented above is valid for the general case of
a confined trajectory. In the following, we introduce simpli-
fications valid for our experimental trajectories to be able to
compare the inferred parameters more easily.

The confinement domain is divided into subdomains
using a grid and the points of the trajectory are attributed
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FIGURE 1 Schematic representation of the inference approach. Bayes’ rule

the likelihood P(TjQ) by the prior distribution P0(Q) divided by the evidence P

P(r2,t2jr1,t1) for the complete trajectory. The peak of the a posteriori probability P

the uncertainty of this inferred value.
to their respective grid subdomains. In each subdomain,
we make the approximation that the potential gradient is
constant so that Eq. 6 is applicable. The choice of grid
subdomains depends on the type of trajectory, and should
be optimized for each experimental case so that each subdo-
main contains a sufficient number of data points to allow
obtaining meaningful inferred values for that subdomain.
In particular, it is important that the grid choice is such
that adjacent data points in time fall most frequently in
the same or adjacent subdomains. A reasonable size for
the mesh size can be obtained by first calculating the
mean displacement of the particle per frame and multiplying
it by 1.5. Note that nothing imposes a regular mesh, yet
simulations have to confirm that irregularities do not
generate local or global bias.

Experimental trajectories were analyzed with no assump-
tions on the diffusivity, i.e., varying diffusivities inside the
domain. When the diffusivity variations inside the confine-
ment domain are weak, an average diffusion coefficient DInf

can be evaluated globally for the trajectory

DInf ¼ 1

n2

X
i;j

Di;j

�
;

where n2 is the number of mesh squares. Note that, depend-
ing on experimental conditions, the inference performed

with a unique, constant diffusivity and the one performed
with diffusivities varying within the mesh to extract an
average diffusivity, may converge toward different values.
This is a consequence of the nonlinear optimization process.

For the inference of forces, two methods were applied.
The first method is used to extract the force maps and the
forces are optimized independently in each subdomain.
Overall, this method has to optimize n2 � 3 independent
variables for the forces and diffusion coefficients and, con-
cerning the forces, is the approach used in Masson et al.
(24). Note that, because each mesh square is independent
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0(T). The likelihood is equal to the product of the transition probabilities

(TjQ) yields the most likely value for the variableQ and its width represents
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of the other, optimization is performed on groups of vari-
ables (DInf, Fij) that are fast to compute and which converge
toward meaningful values when >25 points are present in
the mesh square.

For the second method, instead of inferring independent
forces in a subdomain grid dividing-up the confining zone,
we directly infer the parameters of a confining potential.
The inference procedure optimizes the parameters of the
potential, which governs the forces in each subdomain i,j
via Fij ¼ �7V(rij). The resulting forces are, however, still
evaluated in each subdomain during the optimization oper-
ation and are used to calculate the a-posteriori probability.
We use the polynomial potential

Vðx; yÞ ¼
X

lþm%C

akx
lym;

where k ¼ [(1 þ m)(l þ m þ 1)]/2 and C is the order of the

polynomial. This method is used to obtain a map of the
potential. In some cases, the potential can be projected on
a parabolic basis and the corresponding spring constant
extracted.

In most cases, confining potentials are well described by
potentials of order ranging from 2 or 8. The optimal order of
the polynomials can be determined by comparing the
evidence of the a-posteriori obtained with polynomials of
different orders (37,38). Yet, the fast convergence of the
inference scheme allows us to directly check that the poten-
tial does not evolve any longer with rising order of the
polynomials and that the error on the coefficients does not
decrease. When the potential can be approximated by a para-
bolic shape, optimization is performed on n2þ 5 parameters
with n2 the number of mesh squares. Furthermore, the radial
spring constant kr can be evaluated by allowing the compar-
ison of different trajectories with a single variable (see
Results and Discussion).
RESULTS AND DISCUSSION

The force, potential, and diffusivity map

A single-molecule trajectory of a nanoparticle-labeled
C. perfringens ε-toxin (CPεT) receptor is displayed in
Fig. 2 A. A map of the inferred forces that act on the receptor
within its confining domain is shown in Fig. 2 E. The forces
vary in direction and magnitude, typically ranging from 0 to
0.28 pN. The diffusivity map is displayed in Fig. 2 C. The
diffusivity variations within the domain are on the same
order as the widths of the a posteriori probabilities for the
diffusivities (Fig. 2 D and see Fig. S1 in the Supporting
Material). This justifies the use of a global, constant diffu-
sion coefficient in the accompanying article (29).

We have shown that experimental trajectories of CPεT
receptors can be accurately analyzed by a second-order
polynomial (29). The inferred confining potential of the
Biophysical Journal 102(10) 2288–2298
CPεT receptor is shown in Fig. 2 B. Three more receptor
trajectories and inferred confining potentials are shown in
Fig. S1. The radial spring constant kr can be calculated
from the second-order potential by kr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2X þ k2Y

p
; with

kX and kY the eigenvalues of the spring constant matrix
[kxx, kxy; kxy, kyy]. The linear terms are negligible for all
the experimental trajectories.
Performance of the technique

In the case of confined diffusion in a flat potential with in-
finite barriers at the domain boundaries, it was shown that
the inference method reaches the best performances theoret-
ically achievable (25). Here, we investigate with simulations
the inference scheme when a spatially varying potential V(r)
acts on the single molecule.

This section analyzes the performance with respect to the
dimensionless confinement factor u. This factor relates the
square displacement covered by the diffusing molecule
during the acquisition time Dt to the total area of the
confining domain:

u ¼ DDt

pðR:95Þ2
: (10)

As in all single-molecule experiments, the acquisition time
Dt and the related experimental parameters, like excitation
intensity and wavelength, should be chosen in such a way
that u ¼ 1.

Note that the vast parameter space, i.e., all possible
confining potentials, all possible diffusivity fields, prevents
us from discussing all possible cases. We will therefore
focus on simple cases that emphasize the possibilities of
the method. As shown in Voisinne et al. (25) for the case
without a potential, the accessible information decreases
exponentially with the confinement factor u.

For a large set of values for u, the inferred forces were
shown to converge to the input values of numerical trajecto-
ries (24). As the confinement factor u rises, bias can emerge
for some of the parameters. An example of bias is exposed
here for a simplified case. Numerical trajectories with a
confining harmonic potential and constant diffusivity were
generated. In this specific case, for u > 0.01, the inferred
D and kr values start deviating from the numerical input
values. Normalized values of inferred D and kr as a function
of u are shown in blue in Fig. 3, A and B, respectively. The
plot shows the summary of 1650 trajectories, with an input
diffusion coefficient of 0.075 mm2/s, 1000 data points, and
an acquisition time of 51.3 ms to match experimental condi-
tions. The confinement factor u was adjusted by varying the
input kr from 0.002 to 0.64 pN/mm. The results show that we
are underestimating D and overestimating kr. This bias is
analytically deterministic and is the consequence of the
constraints in the nonlinear optimization that acts on both
the diffusivity and the spring constant. Therefore, the bias
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FIGURE 2 Inference of the confining potential

(B), the diffusivity map (C) and the force map

(E) from an experimental single CPεT receptor

trajectory (A) at 21�. The average corrected

inferred diffusion coefficient DInf is 0.08 (0.003)

mm2/s and the inferred spring constant kr is

0.75 5 0.07 pN/mm. The value in parentheses

gives the SD of the Dij distribution. The trajectory

is 1500 frames long and is confined to an area of

0.15 mm2. The confinement factor u for this

receptor is 0.017. The magnitude of the inferred

forces is given by the length of the arrow in panel

E. The color-code of the arrows shows the SD of

the corresponding a-posteriori probability. (D and

F) Four representative a-posteriori probabilities

for the diffusivities (D) and the forces (F) found

in different subdomains.
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can be compensated for by correcting the inferred values
(see Fig. 3) with the functions

DD ¼ Au; (11)

Dkr ¼ Bu2; (12)
with, in our case, A ¼ 21.4 5 0.2, B ¼ �570 5 15. The
terms DD and Dkr indicate the deviation of the variables
D and kr from the real (input) values, respectively, and the
terms A and B are fit-parameters. The corrected inferred
parameters are shown in red in Fig. 3, A and B, for D and
kr, respectively. We have studied the behavior of the param-
eters A and B with respect to the length N of the trajectory,
the diffusion coefficient of the receptor, and the choice
of the mesh in Fig. S2, Fig. S3, and Fig. S4, respectively.
The correction parameters remain valid for u<0:02 for
trajectories longer than 400 points, for diffusion coefficients
ranging from 0.075 to 0.2 mm2/s, and for 6 � 6 to 10x10
mesh subdomains. For different experimental conditions
or a different optimization process, the bias should be eval-
uated again as discussed above by using numerical trajecto-
ries. We emphasize that, the bias being systematic, and
depending upon the accessible parameters only, it can be
automatically corrected.
Detection of the forces

The advantage of the inference technique is that it is not
limited to extracting the diffusivity field D(r), but also
extracts the confining potential V(r).

An important question is: Does the scheme tend to always
detect forces even when no forces are present? We show in
the following that the answer is negative.

To demonstrate that our scheme indeed finds zero forces
when no forces are present, we generate numerical trajecto-
ries confined in a square box without a potential. Fig. 4 A
Biophysical Journal 102(10) 2288–2298
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shows an example of such a trajectory generated for a
random two-dimensional Brownian walker with a diffusion
coefficient of 0.075 mm2/s confined to a square box of
600 nm � 600 nm, values close to the experimental ones.
The length of the trajectory is 1500 frames and the acquisi-
tion time is 51.3 ms. Fig. 4 shows the results of the inference
technique plotted in the same manner as the results inferred
from the experimental data in Fig. 2.

Within the confining box, the inferred force map in Fig. 4
B shows forces that are small with respect to inferred forces
from experimental trajectories. Furthermore, the inferred
forces have a random orientation. These forces are character-
ized by a large error bar, as can be seen from the color code in
Fig. 4 B and the a posteriori probability plots in Fig. 4 C. The
a posteriori probability distributions for the forces in the
domain are very broad and always include zero force. Forces
at the boundaries point toward the center of the domain and
are higher. They represent the force exerted by the boundary
on the Brownian walker, when it is reflected. Even restricting
ourselves to a potential described by a second-order polyno-
mial, the inferred potential in Fig. 4 D (blue) is almost flat
with respect to the potential inferred from experimental
data (red). When the influence of positioning noise is added
to simulated trajectories, the resulting potential is still flat
Biophysical Journal 102(10) 2288–2298
(black in Fig. 4 D). The spring value we find for the
second-order potential, kr ¼ 0.12 5 0.02 pN/mm, is well
inferior to the experimental spring values. We point out
that the use of a second-order polynomial for the no-force
case is motivated by the comparison with experimental
results. Indeed, higher-order polynomials lead to a much
flatter potential with rising values only near the limits of
the box. While Fig. 4 illustrates the results for a particular
set of experimental parameters, Section S4 in the Supporting
Material explores the value of this lower limit, restricted to
a second-order polynomial, as a function of domain size
and trajectory length. All the spring constants derived from
experimental trajectories lie well above this lower limit,
valid for a second-order polynomial analysis (see Fig. S6).

Thus, the inference scheme distinguishes between the
case with no forces and real forces within our confinement
domains. This in turn means that, if inference from experi-
mental data shows forces within the domain with narrow
a posteriori probabilities excluding zero as in Fig. 2 F, these
forces are real and not model-induced artifacts.
Inference versus MSD

The inference technique outperforms MSD analysis in the
case of a square box with no forces inside the domain, as
was shown in Voisinne et al. (25). We here consider the
case of confinement due to a potential. The motion of the
receptor is modeled by the overdamped Langevin equation
of motion (Eq. 4). This equation is much less restrictive in
terms of assumptions than the usual MSD analysis (6),
where the receptor is assumed to move in a Brownian
fashion in a box. Obviously, the standard MSD analysis
cannot find forces within the domain, simply because it
starts with the assumption that there are none. In addition,
this will lead to a difference in performance of the two
methods in the case of a Brownian walker, which is con-
strained by an attractive potential as shown in Fig. 5.

It is possible to include specific shapes of potentials
(mostly springlike potentials) into a modified form of the
MSD. This, however, requires an a-priori knowledge of
the potential form. The inference approach, in contrast,
can extract the coefficients of an arbitrary polynomial poten-
tial. Furthermore, the variability of the diffusion inside the
confinement domain cannot be included in the MSD anal-
ysis. We also emphasize that, if the diffusivity varies inside
the domain, MSD analysis would lead to a unique value that
would nontrivially depend on the diffusivity statistics in the
domain. The inference approach would be able to address
this diffusivity field.

We use 1650 simulated trajectories with 1000 points and
an input diffusion coefficient of 0.075 mm2/s. The range of u
is controlled by increasing the input spring constant of the
potential V(r) ¼ 1/2krr

2 that confines the Brownian walker.
The simulation takes 1000 substeps between adjacent
frames separated by 51.3 ms. The substeps are not averaged
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and no positioning noise is added. This analysis simply eval-
uates the performance of the methods on trajectories that
are not obscured by noise to show how they differ on
a fundamental level. Fig. 5 compares the results from both
techniques for the same trajectories: the deviation of DInf

obtained with the inference technique and corrected as dis-
cussed in Performance of the Technique is given in red, and
the deviation of DMSD and D

0
MSD are shown in black and

green, respectively.
Both techniques work equally well for the extremely low

or zero confinement limit and a constant diffusivity every-
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FIGURE 5 DInf, DMSD, and D
0
MSD normalized with the input values

for numerical trajectories confined by a spring potential. (Black curve)

DMSD obtained by fitting the first three points of the MSD data by a straight

line. (Green curve)D
0
MSD, obtained by fitting the MSD plot with Eq. 2. (Red

curve) Absence of bias for the corrected inferred diffusion coefficients.
where inside the domain. The SD of both techniques
converges to the limit predicted by the Fisher Information
and decreases with the square root of the number of data
points N in the trajectory. However, as confinement becomes
stronger, DMSD shows a bias. This bias in DMSD is due to the
increase of the potential’s impact on the trajectory. As forces
play a larger role in the motion of the receptor, fitting the
first three MSD data points with a straight line to extract
the Brownian diffusion coefficient is no longer valid. D

0
MSD

performs better than DMSD but, obviously, cannot give any
information about the potential. DInf outperforms both
DMSD and D

0
MSD.
Inference versus residence time analysis

The residence time or inversion-of-fraction technique is
based on Boltzmann statistics and provides an alternative
means to determine the confining potential, which is often
used in the field of optical tweezers (40). The underlying
assumption is that the probability of visiting a spot in an
arbitrary potential is governed by Boltzmann statistics and
given by the following equation:

Nij˛n ¼ N0e
�Vij
kBT : (13)

Here, the number of times that a subdomain ij is visited in
a n � n grid, Nij˛n, depends on the potential Vij and the
temperature T. N0 is the number of visits to the most visited
subdomain. The resulting potential in that grid subdomain
can then be determined via the expression
Biophysical Journal 102(10) 2288–2298
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Vij ¼ �kBT ln



Nij

N0

�
: (14)

Fig. 6 shows a comparison between the potentials extracted
with this residence-time technique and with the inference
technique for 60,000 numerical trajectories of 500 points
with an input diffusion coefficient 0.075 mm2/s and varying
input spring potential. The deviation from the input poten-
tial is computed by summing up the square difference
between the obtained potential and the input potential values
in each subdomain. For the inference technique, we used
a second-order polynomial potential (red line). For the resi-
dence-time technique, the potential was extracted either by
computing independently the Vij in Eq. 14 for each subdo-
main ij (arbitrary potential, black line) or by fitting the
data with a spring potential (blue line). Inference outper-
forms both of the residence-time approaches. As expected,
when the number of points in the trajectory is reduced, all
techniques show a greater deviation from the input potential
(data not shown).

The residence -time technique tends to overestimate the
potential in regions that were visited less frequently and to
underestimate it in the regions visited more frequently.
This is the consequence of the equilibrium assumption
underlying the residence time analysis. Yet, experimentally,
statistical equilibrium is almost never reached. Overall,
the inference technique is a valuable tool to evaluate the
confining potential of a biomolecule and outperforms the
residence-time technique.
CONCLUSION

The technique for inferring parameters from single-mole-
cule trajectories, based on the Langevin equation of motion
0.000 0.005 0.010 0.015 0.020
0.0

0.1

0.2

0.3

0.4

0.5

S
qu

ar
e 

de
vi

at
io

n 
fro

m
 in

pu
t (

k B
T)

Confinement Factor u

FIGURE 6 Square deviation from the input spring potential of confining

potentials extracted by the inference (after correction with Eq. 12) and resi-

dence-time techniques for numerical trajectories. The deviation is shown

for the residence time technique with an arbitrary potential (black), or

for a fit with a spring potential (blue), and for the inference method with

a second-order potential (red). The inference technique extracts a potential

that is closer to the input spring potential.

Biophysical Journal 102(10) 2288–2298
and using Bayes’ theorem, produces highly accurate results.
An extra term that allows the confining potential to take an
arbitrary form makes this model less constricting than
standard models in terms of assumptions. We have shown,
in the case of toxin receptors confined in cell membrane
microdomains, how the introduced inference method can
be used on experimental single-molecule trajectories to
extract the forces acting on a molecule and the confining
potential. It is further possible to obtain a direct measure-
ment of the uncertainty on the inferred values via the width
of the a-posteriori probability.

Furthermore, we showed that the inference technique
yields more information for a molecule in an arbitrary
confining potential than the typical MSD analysis of such
cases, because it uses more of the information stored in
the trajectories and is less restrictive in terms of the initial
assumptions. Note that the Fisher information in the pres-
ence of a potential cannot be calculated due to the size of
the parameter space. Therefore, optimality of the scheme
can only be tested numerically on restricted sets of parame-
ters. Furthermore, through extensive simulations, we can
quantify the efficiency, the convergence rate, and the pres-
ence of bias of the inference schemes for parameters corre-
sponding to our experiments. With respect to the shape of
the confining potential, we showed that the inference tech-
nique outperforms methods based on Boltzmann statistics.
This is not surprising because the equilibrium case implicit
in Boltzmann statistics is typically not reached in short
single-molecule trajectories.

We also showed that the diffusion coefficient can be in-
ferred locally instead of globally. It is also possible to test
for time variations of the diffusion coefficient by analyzing
sliding time-windows of the trajectory. Note, however, that,
in both cases of time and space variations of the diffusion
coefficient, evaluation of the diffusion coefficient in subdo-
mains or for specific time-windows leads to reduction in the
number of data points and, therefore, in the amount of infor-
mation available and in the precision of the results.

The determination of the confinement potential has
important implications for understanding the cell membrane
organization (see Türkcan et al. (29)). As dictated by the
Fisher information, the larger the number of data points in
the trajectory, the more precise the extracted information
(25). Extraction of the confining potential from very short
trajectories will probably be meaningless, unless multiple
trajectories explore the same domain. Long trajectories,
however, such as those obtained with nonblinking rare-
earth-doped nanoparticles, provide sufficient information
to yield accurate results (29). Furthermore, different short
trajectories can be included in a unique inference scheme
to extract diffusivity and potential fields (J.-B. Masson, P.
Dionne, M. Renner, A. Triller, and M. Dahan, unpublished).

The confinement of the CPεT and CSaT receptors
observed in the experimental trajectories can be attributed
to lipid rafts (29). Biochemical experiments show that
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lowering the level of cholesterol content in the membrane
decreases confinement, while actin depolymerization has
no influence on the confinement. This leads us to speculate
that hydrophobic interactions between the receptor and its
surrounding molecular environment create forces in the
confining domain.

It is important to note that the inference technique can be
applied to other cases of motion, where the receptor is not
confined (J.-B. Masson, P. Dionne, M. Renner, A. Triller,
and M. Dahan, unpublished). Furthermore, the scheme
could be extended to deal with motions modeled by the
overdamped generalized Langevin equation such asZ t

0

dsKðt � sÞ dr
dt

ðsÞ ¼ �VVðrÞ þ xðtÞ:

Obviously, in all these cases it is important to check the val-
idity of the inferred values using numerical trajectories with
the same characteristics as the experimental ones. Further-
more, terms can be added that directly model experimental
parameters, such as the localization precision and the
response of the detector.
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