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Abstract

The grand piano action has been developped empirically and provides a remarkably accurate control of the hammer velocity and the impact time [START_REF] Principeaud | Reproducibility of piano playing[END_REF]. The numerical simulation of the action is necessary to improve numerical keyboards and to better understand haptic controllability. Following previous efforts [START_REF] Hirschkorn | Dynamic modeling and experimental testing of a piano action mechanism[END_REF][START_REF] Lozada | Modélisation, contrôle haptique et nouvelles réalisation de claviers musicaux[END_REF], we propose a simulation based on an explicit model and a solver of non-smooth dynamical problems. We also discuss the physical quantity -force or displacementwith which the model is to be controlled.

A scheme of the grand piano key is presented in Figure 1, with the proposed corresponding kinematical diagram in Figure 2. The 2D model [START_REF] Lozada | Modélisation, contrôle haptique et nouvelles réalisation de claviers musicaux[END_REF] includes six rigid bodies in rotation with dry and viscous articular friction, thirteen contact zones with nonlinear springs (Equation 1), three of them (hammer-jack, jack-escapement button, hammer-check) being also subject to Coulomb friction. The reaction force F felts of a felt to a displacement δ is given by: Dry articular friction and Coulomb friction induce stick-slip transitions and therefore velocity discontinuities. Other potential discontinuities also arise when contacts occur. Therefore, the behaviour of the rigid bodies can only be described with piecewise regular functions. A decomposition in regular phases would be extremely tedious because of the numerous contacts and because dry friction cannot be written as a function of velocities. We overcome this difficulty by using a non-smooth approach [START_REF] Acary | Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics[END_REF]. The dynamics are written as a measure differential inclusion of the form:

F felts (δ) = k δ r + p δ δ 2 (1) 
M (q) d q + F (t, q, q) dt = di ( 2 
)
where q is the vector of generalised coordinates made of the angles of each rigid body, M (q) is the mass matrix, F (t, q, q) are the internal forces, dt is the Lebesgue measure and di is the reaction measure. The Lebesgue's decomposition theorem yields:

d q =γ dt+( q+ -q-) dν+dv s (3) di =f dt+ p dν+ di s ( 4 
)
where dν is a countable sum of weighted Dirac distributions and dv s and di s are neglected singular measures. Equation 3 is discretized in time using a theta-method [START_REF] Merlhiot | On some industrial applications of time-stepping methods for nonsmooth mechanical systems: issues, successes and challenges[END_REF]. Typical results of the simulation are presented in Figure 3, either for a force-driven simulation (top frames) or for a position-driven simulation (bottom frames). We discuss the fact that, for the same model, the qualitative differences between the simulation and the measurements are greater for position-driven simulations. 
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Figure 3. Experimental and simulation results F (t) and y(t) (see Figure 2). Left: p nuance. Right: f nuance. Top: control by the measured F (t). Bottom: control by the measured y(t). In blue: the displacement calculated from the measured F (t) on a simple model of the key with only one degree of freedom.

The time series F (t) or y(t) which has not been used for driving the simulation is considered as the output of the system. The dynamics of the whole mechanism is dominated by inertia and gravity (see the equivalent system of 1 d.o.f. subject only to inertia and gravity, blue curve in figure 3). Therefore, it mainly acts as a low-pass second order filter of the exerted force F (t) or as a second-order high-pass filter of the displacement y(t). Playing on recent numerical keyboards with "heavy touch" demonstrates that inertia and gravity alone are not enough to provide a realistic haptic feedback. Therefore, we hypothesize that the realistic quality of a key relies on small variations, of high-frequency content, in the time-series {F (t), y(t)}. Since the force control is mostly insensitive to such details (by virtue of the low-pass filtering), it follows that the model must be position-driven in order to account for significant details.
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 12 Figure 1. Grand piano action.