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Abstract

“Model-free control” and the corresponding “intelligent” PID con-
trollers (iPIDs), which already had many successful concrete applications,
are presented here for the first time in an unified manner, where the new
advances are taken into account. The basics of model-free control is now
employing some old functional analysis and some elementary differential
algebra. The estimation techniques become quite straightforward via a
recent online parameter identification approach. The importance of iPIs
and especially of iPs is deduced from the presence of friction. The strange
industrial ubiquity of classic PID’s and the great difficulty for tuning
them in complex situations is deduced, via an elementary sampling, from
their connections with iPIDs. Several numerical simulations are presented
which include some infinite-dimensional systems. They demonstrate not
only the power of our intelligent controllers but also the great simplicity
for tuning them.

Keywords:
Model-free control, PID controllers, intelligent PID controllers, intelligent
PI controllers, intelligent P controllers, estimation, noise, flatness-based
control, delay systems, non-minimum phase systems, fault accommoda-
tion, heat partial differential equations, operational calculus, functional
analysis, differential algebra.
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1 Introduction

Although model-free control was introduced only a few years ago (Fliess &
Join (2008b, 2009); Fliess, Join & Riachy (2011b)), there is already a quite
impressive list of successful concrete applications in most diverse fields, rang-
ing from intelligent transportation systems to energy management (Abouäıssa,
Fliess, Iordanova & Join (2012); Andary, Chemori, Benoit & Sallantin (2012);
d’Andréa-Novel, Boussard, Fliess, el Hamzaoui, Mounier & Steux (2010); Choi,
d’Andréa-Novel, Fliess, Mounier & Villagra (2009); De Miras, Riachy, Fliess,
Join & Bonnet (2012); Formentin, de Filippi, Corno, Tanelli & Savaresi (2013);
Formentin, de Filippi, Tanelli & Savaresi (2010); Gédouin, Delaleau, Bourgeot,
Join, Arab-Chirani & Calloch (2011); Join, Masse & Fliess (2008); Join, Robert
& Fliess (2010a,b); Lafont, Pessel, Balmat & Fliess (2013); Michel, Join, Fliess,
Sicard & Chériti (2010); Milanes, Villagra, Perez & Gonzalez (2012); Sorcia-
Vázquez, Garćıa-Beltrán, Reyes-Reyes & Rodŕıguez-Palacios (2010); Villagra,
d’Andréa-Novel, Choi, Fliess, & Mounier (2009); Villagra & Balaguer (2011);
Villagra & Herrero-Pérez (2012); Villagra, Milanés, Pérez & de Pedro (2010);
Wang, Mounier, Cela & Niculescu (2011)). Most of those references lead to
practical implementations. Some of them are related to patents.

Remark 1.1 The wording model-free control is of course not new in the lit-
erature, where it has already been employed by a number of authors. The cor-
responding literature is huge: see, e.g., Bilal Kadri (2009); Chang, Gao & Gu
(2011); Hahn & Oldham (2012); Hong-wei, Rong-min & Hui-xing (2011); Keel
& Bhattacharyya (2008); Killingsworth & Krstic (2006); Malis & Chaumette
(2002); dos Santos Coelho, Wicthoff Pessôa, Rodrigues Sumar & Rodrigues
Coelho (2010); Spall & Cristion (1998); Swevers, Lauwerys, Vandersmissen,
Maes, Reybrouck & Sas (2007); Syafiie, Tadeo, Martinez & Alvarez (2011);
Xu, Li & Wang (2012). The corresponding settings are quite varied. They
range from “classic” PIDs to robust and adaptative control via techniques stem-
ming from, e.g., neural nets, fuzzy systems, and soft computing. To the best of
our understanding, those approaches are rather far from what we are develop-
ing here. Let us emphasize however Remark 1.5 for a comment on some works
which are perhaps closer. See also Remark 1.3.

Let us now summarize some of the main theoretical ideas which are shaping
our model-free control. We restrict ourselves for simplicity’s sake to systems
with a single control variable u and a single output variable y. The unknown
“complex” mathematical model is replaced by an ultra-local model

y(ν) = F + αu (1)

1. y(ν) is the derivative of order ν ≥ 1 of y. The integer ν is selected by the
practitioner. The existing examples show that ν may always be chosen
quite low, i.e., 1, or, only seldom, 2. See Section 4 for an explanation.

2. α ∈ R is a non-physical constant parameter. It is chosen by the prac-
titioner such that αu and y(ν) are of the same magnitude. It should be
therefore clear that its numerical value, which is obtained by trials and
errors, is not a priori precisely defined. Let us stress moreover that con-
trolling industrial plants has always been achieved by collaborating with
engineers who know the system behaviour well.
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3. F , which is continuously updated, subsumes the poorly known parts of
the plant as well as of the various possible disturbances, without the need
to make any distinction between them.

4. For its estimation, F is approximated by a piecewise constant function.
Then the algebraic identification techniques due to Fliess & Sira-Ramı́rez
(2003, 2008) are applied to the equation

y(ν) = φ+ αu (2)

where φ is an unknown constant parameter. The estimation

• necessitates only a quite short time lapse,

• is expressed via algebraic formulae which contain low-pass filters like
iterated time integrals,

• is robust with respect to quite strong noise corruption, according to
the new setting of noises via quick fluctuations (Fliess (2006)).

Remark 1.2 The following comparison with computer graphics might be en-
lightening. Reproducing on a screen a complex plane curve is not achieved via
the equations defining that curve but by approximating it with short straight line
segments. Equation (1) might be viewed as a kind of analogue of such a short
segment.

Remark 1.3 Our terminology model-free control is best explained by the ultra-
local Equation (1) which implies that the need of any “good” and “global” mod-
eling is abandoned.

Assume that ν = 2 in Equation (1):

ÿ = F + αu (3)

Close the loop via the intelligent proportional-integral-derivative controller, or
iPID,

u = −
F − ÿ∗ +KP e+KI

∫
e+KD ė

α
(4)

where

• y∗ is the reference trajectory,

• e = y − y∗ is the tracking error,

• KP , KI , KD are the usual tuning gains.

Combining Equations (3) and (4) yields

ë+KD ė+KP e+KI

∫
e = 0 (5)

Note that F does not appear anymore in Equation (5), i.e., the unknown parts
and disturbances of the plant vanish. We are therefore left with a linear differ-
ential equation with constant coefficients of order 3. The tuning of KP , KI , KD

becomes therefore straightforward for obtaining a “good” tracking of y∗. This
is a major benefit when compared to the tuning of “classic” PIDs.
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Remark 1.4 Intelligent PID controllers may already be found in the literature
but with a different meaning (see, e.g., Åström, Hang, Persson & Ho (1992)).

Remark 1.5 See, e.g., Chang & Jung (2009); Han (2009); Youcef-Toumi &
Ito (1990); Zheng, Chen & Gao (2009) for some remote analogy with our cal-
culations. Those references assume however that the system order is finite and
moreover known.

Our paper is organized as follows. The general principles of model-free con-
trol and of the corresponding intelligent PIDs are presented in Section 2. The
online estimation of the crucial term F is discussed in Section 3. Section 4
explains why the existence of frictions permits to restrict our intelligent PIDs
to intelligent proportional or to intelligent proportional-integral correctors. The
numerical simulations in Section 5 examine the following case-studies:

• A part of the unknown system may be nevertheless known. If it happens
to be flat (Fliess, Lévine, Martin & Rouchon (1995), and Lévine (2009);
Sira-Ramı́rez & Agrawal (2004)), it will greatly facilitate the choice of the
reference trajectory and of the corresponding nominal control variable.

• Standard modifications including aging and an actuator fault keep the per-
formances, with no damaging, of our model-free control synthesis without
the need of any new calibration.

• An academic nonlinear case-study demonstrates that a single model-free
control is sufficient whereas many classic PIDs may be necessary in the
usual PID setting.

• Two examples of infinite-dimensional systems demonstrate that our model-
free control provides excellent results without any further ado:

– a system with varying delays,

– a one-dimensional semi-linear heat equation, which is borrowed from
Coron & Trélat (2004).

• A peculiar non-minimum phase linear system is presented.

Following d’Andréa-Novel, Boussard, Fliess, Join, Mounier & Steux (2010), Sec-
tion 6 explains the industrial capabilities of classic PIDs by relating them to our
intelligent controllers. This quite surprising and unexpected result is achieved
for the first time to the best of our knowledge. Section 7 concludes not only by
a short list of open problems but also with a discussion of the possible influ-
ences on the development of automatic control, which might be brought by our
model-free standpoint.

The appendix gives some more explanations on the deduction of Equation
(1). We are employing

• rather old-fashioned functional analysis, which goes back to Volterra (1910,
1930); Volterra & Pérès (1936). Note that this functional analysis is a
mainstay in engineering since the introduction of Volterra series (see, e.g.,
Barrett (1963));
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• some elementary facts stemming from differential algebra (Kolchin (1973)),
which has been quite important in control theory since the appearance
twenty years ago of flatness-based control (Fliess, Lévine, Martin & Rou-
chon (1995)).

2 Model-free control: general principles

Our viewpoint on the general principles on model-free control was developed in
(Fliess, Join & Sira-Ramı́rez (2006); Fliess, Join, Mboup & Sira-Ramı́rez (2006);
Fliess & Join (2008a,b, 2009); Fliess, Join & Riachy (2011a,b)).

2.1 Intelligent controllers

2.1.1 Generalities

Consider again the ultra-local model (1) . Close the loop via the intelligent
controller

u = −F − y
∗(ν) + C(e)

α
(6)

where

• y∗ is the output reference trajectory;

• e = y − y∗ is the tracking error;

• C(e) is a causal, or non-anticipative, functional of e, i.e., C(e) depends on
the past and the present, and not on the future.

Remark 2.1 See, e.g., Volterra (1910, 1930); Volterra & Pérès (1936) for an
intuitive and clever presentation of the early stages of the notion of functionals,
which were also called sometimes line functions. See Section A.1 in the appendix
for more details.

Remark 2.2 Imposing a reference trajectory y∗ might lead, as well known, to
severe difficulties with non-minimum phase systems: see, e.g., Fliess & Marquez
(2000); Fliess, Sira-Ramı́rez & Marquez (1998); Sira-Ramı́rez & Agrawal (2004)
from a flatness-based viewpoint (Fliess, Lévine, Martin & Rouchon (1995); Sira-
Ramı́rez & Agrawal (2004)). See also Remarks 2.4, 5.7, and Section 7.

Combining Equations (1) and (6) yields the functional equation

e(ν) + C(e) = 0

C should be selected such that a perfect tracking is asymptotically ensured, i.e.,

lim
t→+∞

e(t) = 0 (7)

This setting is too general and might not lead to easily implementable tools.
This shortcoming is corrected below.
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2.1.2 Intelligent PIDs

Set ν = 2 in Equation (1). With Equation (3) define the intelligent proportional-
integral-derivative controller, or iPID, (4). Combining Equations (3) and (4)
yields Equation (5), where F does not appear anymore, i.e., the unknown parts
and disturbances of the plant are eliminated. The tracking condition expressed
by Equation (7) is therefore easily fulfilled by an appropriate tuning of KP , KI ,
KD. It boils down to the stability of a linear differential equation of order 3,
with constant real coefficients. If KI = 0 we obtain an intelligent proportional-
derivative controller, or iPD,

u = −F − ÿ
∗ +KP e+KD ė

α
(8)

Assume now that ν = 1 in Equation (1):

ẏ = F + αu (9)

The loop is closed by the intelligent proportional-integral controller, or iPI,

u = −
F − ẏ∗ +KP e+KI

∫
e

α
(10)

Quite often KI may be set to 0. It yields an intelligent proportional controller,
or iP,

u = −F − ẏ
∗ +KP e

α
(11)

Results in Sections 4 and 6 explain why iPs are quite often encountered in
practice. Their lack of any integration of the tracking errors demonstrate that
the anti-windup algorithms, which are familiar with “classic” PIDs and PIs, are
no more necessary.

Remark 2.3 There is, as well known, a huge literature on “classic” PIDs and
PIs in order to give efficient rules for the gain tuning. Those recipes are too
often rather intricate. See, e.g., the two books by Åström & Hägglund (2006),
O’Dwyer (2009), and the numerous references therein.

Remark 2.4 Output reference trajectories of the form y∗ do not seem to be
familiar in industrial applications of classic PIDs. This absence often leads to
disturbing oscillations, and mismatches like overshoots and undershoots. Se-
lecting y∗ plays of course a key rôle in the implementation of the control syn-
thesis. Mimicking for this tracking the highly effective feed-forward flatness-
based viewpoint (see, e.g., Fliess, Lévine, Martin & Rouchon (1995), and Lévine
(2009); Sira-Ramı́rez & Agrawal (2004), and the numerous references in those
two books) is achieved in Section 5.1 where a part of the system, which happens
to be flat, is already known. This is unfortunately impossible in general: are
systems like (31) and/or (32) in the appendix flat or not? Even if the above
systems were flat, it might be difficult then to verify if y is a flat output or not.

Remark 2.5 For obtaining a suitable trajectory planning, impose to y to satisfy
a given ordinary differential equation. It permits moreover if the planning turns
out to be poor because of some abrupt change to replace quite easily the preceding
equation by another one.

6



2.2 Other possible intelligent controllers

The generalized proportional-integral controllers, or GPIs, were introduced by
Fliess, Marquez, Delaleau & Sira-Ramı́rez (2002) in order to tackle some tricky
problems like those stemming from non-minimum phase systems. Several prac-
tical case-studies have confirmed their usefulness (see, e.g., Sira-Ramı́rez (2003);
Morales & Sira-Ramı́rez (2011)). Although it would be possible to define their
intelligent counterparts in general, we are limiting ourselves here to a single case
which will be utilized in Section 5.6. Replace the ultra-local model (9) by

ẏ = F + αu+ β

∫
u (12)

where α, β ∈ R are constant. Set in Equation (6)

C(e) = KP e+KI

∫
e+KII

∫ ∫
e (13)

where KI ,KII ∈ R are suitable constant gains. See Section 6.3 for an analogous
regulator.

3 Online estimation of F

Our first publications on model-free control were proposing for the estimation of
F recent techniques on the numerical differentiations of noisy signals (see Fliess,
Join & Sira-Ramı́rez (2008), and Mboup, Join & Fliess (2009); Liu, Gibaru &
Perruquetti (2011)) for estimating y(ν) in Equation (1). Existing applications
were until today based on a simple version of this differentiation procedure,
which is quite close to what is presented in this Section, namely the utilization
of the parameter identification techniques by Fliess & Sira-Ramı́rez (2003, 2008).

3.1 General principles

The approximation of an integrable function, i.e., of a quite general function
[a, b]→ R, a, b ∈ R, a < b, by a step function Fapprox, i.e., a piecewise constant
function, is classic in mathematical analysis (see, e.g., the excellent textbooks
by Godement (1998) and Rudin (1976)). A suitable approximate estimation
of F in Equation (1) boils down therefore to the estimation of the constant
parameter φ in Equation (2) if it can be achieved during a sufficiently “small”
time interval. Analogous estimations of F may be carried on via the intelligent
controllers (4)-(8)-(10)-(11).

3.2 Identifiability via operational calculus

3.2.1 Operatational calculus

In order to encompass all the previous equations, where F is replaced by Fapprox,
consider the equation, where the classic rules of operational calculus are utilized
(Mikusiński (1983); Yosida (1984)),

L1(s)Z1 + L2(s)Z2 =
φ

s
+ I(s) (14)
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• φ is a constant real parameter, which has to be identified;

• L1, L2 ∈ R[s, s−1] are Laurent polynomials;

• I ∈ R[s] is a polynomial associated to the initial conditions.

Multiplying both sides of Equation (14) by dN

dsN
, where N is large enough, per-

mits to get rid of the initial conditions. It yields the linear identifiability (Fliess
& Sira-Ramı́rez (2003, 2008)) of φ thanks to the formula

(−1)NN !

sN+1
φ =

dN

dsN
(L1(s)Z1 + L2(s)Z2) (15)

Multiplying both sides of Equation (15) by s−M , where M > 0 is large enough,
permits to get rid of positive powers of s, i.e., of derivatives with respect to
time.

Remark 3.1 Sometimes it might be interesting in practice to replace s−M by
a suitable rational function of s, i.e., by a suitable element of R(s).

3.2.2 Time domain

The remaining negative powers of s correspond to iterated time integrals. The
corresponding formulae in the time domain are easily deduced thanks to the
correspondence between dκ

dsκ , κ ≥ 1, and the multiplication by (−t)κ in the time
domain (see some examples in Section 3.4). They may be easily implemented
as discrete linear filters.

3.3 Noise attenuation

The notion of noise, which is usually described in engineering and, more gener-
ally, in applied sciences via probabilistic and statistical tools, is borrowed here
from Fliess (2006) (see also Lobry & Sari (2008), and the references therein on
nonstandard analysis). Then the noise is related to quick fluctuations around
zero. Such a fluctuation is a Lebesgue-integrable real-valued time function F
which is characterized by the following property:
its integral

∫ τf
τi
F(τ)dτ over any finite interval is infinitesimal, i.e., very “small”.

The robustness with respect to corrupting noises is thus explained thanks to
Section 3.2.2.

Remark 3.2 This standpoint on denoising has not only been confirmed by sev-
eral applications of model-free control, which were already cited in the intro-
duction, but also by numerous ones in model-based linear control and in signal
processing (see, e.g., Fliess, Join & Mboup (2010); Gehring, Knüppel, Rudolph
& Woittennek (2012); Morales, Nieto, Trapero, Chichamo & Pintado (2011);
Pereira, Trapero, Muñoz & Feliu (2009, 2011); Trapero, Sira-Ramı́rez & Battle
(2007a,b, 2008)). Note moreover that the nonlinear estimation techniques advo-
cated by Fliess, Join & Sira-Ramı́rez (2008) exhibit for the same reason “good”
robustness properties, which were already illustrated by several case-studies (see,
e.g., Menhour, d’Andréa-Novel, Boussard, Fliess & Mounier (2011); Morales,
Feliu & Sira-Ramı́rez (2011), and the references therein).

8



3.4 Some more explicit calculations

3.4.1 First example

With Equation (9), Equation (14) becomes

sY =
φ

s
+ αU + y0

where

• y0 is the initial condition corresponding to the time interval [t− L, t],

• φ is a constant.

Get rid of y0 by multiplying both sides by d
ds :

y + s
dy

ds
= − φ

s2
+ α

du

ds

Multiplying both sides by s−2 for smoothing the noise yields in time domain
yields

φ = − 6

L3

∫ t

t−L
((L− 2σ)y(σ) + ασ(L− σ)u(σ)) dσ

where L is quite small.

Remark 3.3 L depends of course on

• the sampling period,

• the noise intensity.

Both may differ a lot as demonstrated by the numerous references on concrete
case-studies given at the beginning of the introduction.

3.4.2 Second example

Close the loop with the iP (11). It yields

φ =
1

L

[∫ t

t−L
(ẏ? − αu−KP e) dσ

]

4 When is the order ν = 1 enough?

A most notable exception in the choice of a first order ultra-local model, i.e.,
ν = 1 in Equation (1), is provided by the magnetic bearing studied by De Miras,
Riachy, Fliess, Join & Bonnet (2012), where the friction is almost negligeable.
Start therefore with the elementary constant linear system

ÿ + cẏ + 4y = u (16)

where cẏ stands for some elementary friction. Figures 1 and 2 yield satisfactory
numerical simulations with a iPI corrector. The following values were selected
for the parameters: c = 3, α = 1, KP = 16, KI = 25. With a harmonic
oscillator, where c = 0, Figure 3 displays on the other hand a strong degradation
of the performances with an iPI. Lack of friction in a given system might be
related to the absence of ẏ in the unknown equation. Taking ν = 1 in Equation
(1) would therefore yield an “algebraic loop,” which adds numerical instabilities
and therefore deteriorates the control behavior.
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Figure 1: System output and reference

Figure 2: iPI control

Figure 3: System output and reference
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5 Numerical experiments

In the subsequent simulations the sampling time is Te = 0.01s. The corrupting
noise is additive, normal, zero-mean, with a standard deviation equal in Sections
5.1 and 5.5 to 0.01, and to 0.03 elsewhere.

5.1 Control with a partially known system

5.1.1 A crude description

Consider the non-linear Duffing spring with friction:

mÿ = −K(y) + F(ẏ)− dẏ + Fext (17)

where

• y is the length of the spring,

• m is a point mass,

• Fext = u is the control variable,

• K(y) = k1y + k3y
3 is the resulting force from the Hooke law and the

Duffing cubic term,

• dẏ is a classic linear friction and F(ẏ) a non-linear one. The term F(ẏ) cor-
responds to the Tustin friction (Tustin (1947)) (see, also, Olsson, Aström,
Canudas de Wit, Gäfvert & Lischinsky (1998)), which is rather violent
with respect to the sign change of the speed (see Figure 4).

Set m = 0.5, k1 = 3. The partially known system

mÿ = k1y + u

is flat, and y is a flat output. It helps us to determine a suitable reference
trajectory y? and the corresponding nominal control variable u? = mÿ? + k1y

?.
In the numerical simulations, we utilize k̂1 = 2, d = 1, k3 = 2, which are in fact
unknown.

5.1.2 A PID controller

Set u = u? + v. Associate to v a PID corrector for alleviating the tracking error
e = y−y? by imposing a denominator of the form (s+1.5)3. The corresponding
tuning gains are kP = 1.375, kI = 1.6875, kD = 2.25.

5.1.3 iPID

The main difference of the iPID is the following one: The presence of F which is
estimated in order to compensate the nonlinearities and the perturbations like
frictions. For comparison purposes, its gains are the same as previously.

5.1.4 iP

We do not take any advantage of Equation (17). The error tracking dynamics
is again given with a pole equal to −1.5, i.e., by the denominator (s+ 1.5).
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Figure 4: Model and time evolution of friction

5.1.5 Numerical experiments

Figure 5 shows quite poor results with the PID of Section 5.1.2 . They become
excellent with the iPID, and correct with iP. The practician might be right to
prefer this last control synthesis

• where the implementation is immediate,

• if a most acute precision may be neglected.

Remark 5.1 See also Villagra, d’Andréa-Novel, Choi, Fliess, & Mounier (2009)
and Villagra & Balaguer (2011) for concrete examples related to guided vehicles.

5.2 Robustness with respect to system’s changes

The examples below demonstrate that if the system is changing, our intelligent
controllers behave quite well without the need of any new calibration.

5.2.1 Scenario 1: the nominal case

The nominal system is defined by the transfer function

(s+ 2)2

(s+ 1)3
(18)

A tuning of a classic PID controller

u = kpe+ ki

∫
e+ kdė (19)

where

• e = y − y∗ is the tracking error,

• kp, ki, kd ∈ R are the gains,

yields via standard techniques (see, e.g., Åström & Hägglund (2006)) kp =
1.8177, ki = 0.7755, kd = 0.1766. A low-pass filter is moreover added to the
derivative ė in order to attenuate the corrupting noise. Our model-free approach
utilizes the ultra-local model ẏ = F + u and an iP (11) where KP = 1.8177.
Figure 6 shows perhaps a slightly better behavior of the iP.
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Figure 5: Partially known system: comparisons
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Figure 6: Scenario 1: comparisons
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5.2.2 Scenario 2: modifying the pole

A system change, aging for instance, might be seen by as new pole −2.2 in the
transfer function (18) which becomes

(s+ 2)2

(s+ 2.2)3

As shown in Figure 7, without any new calibration the performances of the PID
worsen whereas those of the iP remain excellent.

5.2.3 Scenario 3: actuator’s fault

A power loss of the actuator occurs at time t = 8s. It is simulated by dividing
the control by 2 at t = 8s. Figure 8 shows an accommodation of the iP which
is much faster than with the PID.

Remark 5.2 Sections 5.2.2 and 5.2.3 may be understood as instances of fault
accommodation, which contrarily to most of the existing literature are not model-
based (see, also, Moussa Ali, Join & Hamelin (2012)). It is perhaps worth
mentioning here that model-based fault diagnosis has also benefited from the
estimation techniques summarized in Section 3 (see Fliess, Join & Sira-Ramı́rez
(2004, 2008)).

5.3 A non-linear system

Take the following academic unstable non-linear system

ẏ − y = u3

The clssic PID (19) is tuned with kp = 2.2727, ki = 1.8769, kd = 0.1750.
The simulations depicted in Figure 9 shows a poor trajectory tracking for small
values of the reference trajectory. The iP, which is related to the ultra-local
model ẏ = F + u, corresponds to KP = 2.2727. Its excellent performances in
the whole operating domain are also shown in Figure 9.

5.4 Delay systems

Consider the system
ẏ(t) = y(t) + 5y(t− τ) + u

where moreover the delay τ , 0 ≤ τ ≤ 5s is not assumed to be

• known,

• constant.

Set for the numerical simulations (see Figure 10)

τ(t) = τ(t− Te) + 10Tesign(N(t)), τ(0) = 2.5s

where N is a zero-mean Gaussian distribution with standard deviation 1. An
iP where KP = 1 is deduced from the ultra-local model ẏ = F + u. The results
depicted in Figure 11 are quite satisfactory.
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Figure 7: Scenario 2: comparisons
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Figure 8: Scenario 3: comparisons
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Figure 10: Delay function

Remark 5.3 Extending the above control strategy to non-linear systems and to
neutral systems is straightforward. It will not be developed here.

Remark 5.4 The delay appearing with the hydro-electric power plants studied
by Join, Robert & Fliess (2010b) was taken into account via an empirical knowl-
edge of the process. Some numerical tabulations were employed in order to get
in some sense “rid” of the delay. Such a viewpoint might be the most realistic
one in industry.

Remark 5.5 We only refer here to “physical” delays and not to the familiar
approximation in engineering of “complex” systems via delays ones (see, e.g.,
Shinskey (1996)). Let us emphasize that this type of approximation is loosing
its importance in our setting.

5.5 A one-dimensional semi-linear heat equation

The heat equation is certainly one of the most studied topic in mathematical
physics. It would be pointless to review its corresponding huge bibliography even
in the control domain, where many of the existing high-level control theories
have been tested. Consider with Coron & Trélat (2004) the one-dimensional
semi-linear heat equation

∂w

∂t
=
∂2w

∂x2
+ f(w) (20)

where

• 0 ≤ x ≤ L,

• w(t, 0) = c,

• w(t, L) = u(t) is the control variable,

• w(0, x) = sin(πx) + (u(0)− c)x+ c, where c ∈ R is a constant..

We want to obtain given time-dependent temperature at x = xc. Consider the
following scenarios:

1. xc = 1/3L, f = 0, c = 0,

2. xc = 1/3L, f = 0, c = 0.5,
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Figure 11: Delay system: Model-free control
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3. xc = 2/3L, f = 0, c = 0,

4. xc = 2/3L, f = y3, c = 0.

The control synthesis is achieved thanks to the elementary one-dimensional
ultra-local model

ẏ = F + 10u

and the straightforward iP, where Kp = 10. The four numerical simulations,
displayed by Figures 12, 13, 14, and 15, are quite convincing.

5.6 A peculiar non-minimum phase system

Consider the non-minimum phase system defined by the transfer function

(s− 1)

(s+ 1)(s+ 2)
(21)

Utilize Equations (12) and (13). Set α = −β = 10, KP = 3 and KI = KII = 5.
Figure 16 displays good performances.

Remark 5.6 It is easy to check that the above calculations work only for a
single unstable zero, like in Equation (21). Our approach cannot be extended to
arbitrary non-minimum phase systems.

Remark 5.7 It is well known that the control synthesis of a non-minimum
phase system is even a difficult task with a perfectly known mathematical model.
Among the many solutions which have been suggested in the literature, let us
mention a flatness-based output change (see Fliess & Marquez (2000); Fliess,
Sira-Ramı́rez & Marquez (1998)). When a mathematical model is unknown or
poorly known, the non-minimum phase character of an output cannot be deduced
mathematically but only via a “bad” qualitative behavior of this output. Selecting
a minimum phase output, i.e., an output with “good” qualitative properties,
might be a more realistic alternative. It necessitates nevertheless an excellent
“practical” knowledge of the plant behaviour.

6 Connections between classic and intelligent con-
trollers

The results below connect classic PIDs to our intelligent controllers. They ex-
plain therefore why classic PIDs are used in rather arbitrary industrial situations
thanks to a fine gain tuning, which might be quite difficult to achieve in practice.

6.1 PI and iP

6.1.1 A crude sampling of PIs

Consider the classic continuous-time PI controller

u(t) = kpe(t) + ki

∫
e(τ)dτ (22)
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Figure 12: Heat equation: scenario 1
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Figure 13: Heat equation: scenario 2
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Figure 14: Heat equation: scenario 3

24



0

0.5

1

0
0.5

1
1.5

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Distance x
Time

(a) Time evolution without measurement noise

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

Time (Te)

(b) Control u(t)

0 20 40 60 80 100 120 140 160 180 200
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (Te)

(c) Controlled heat at distance xc (–, blue), setpoint (- .,
black), and reference (- -, red)
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A crude sampling of the integral
∫
e(τ)dτ through a Riemann sum I(t) leads to∫

e(τ)dτ ' I(t) = I(t− h) + he(t)

where h is the sampling interval. The corresponding discrete form of Equation
(22) reads:

u(t) = kpe(t) + kiI(t) = kpe(t) + kiI(t− h) + kihe(t)

Combining the above equation with

u(t− h) = kpe(t− h) + kiI(t− h)

yields
u(t) = u(t− h) + kp (e(t)− e(t− h)) + kihe(t) (23)

Remark 6.1 A trivial sampling of the “velocity form” of Equation (22)

u̇(t) = kpė(t) + kie(t)

yields
u(t)− u(t− h)

h
= kp

(
e(t)− e(t− h)

h

)
+ kie(t)

which is equivalent to Equation (23).

6.1.2 Sampling iPs

Utilize, if ν = 1, the iP, which may be rewritten as

u(t) =
ẏ∗(t)− F +KP e(t)

α

Replace F by ẏ(t)− αu(t− h) and therefore by

y(t)− y(t− h)

h
− αu(t− h)

It yields

u(t) = u(t− h)− e(t)− e(t− h)

hα
+
KP

α
e(t) (24)

6.1.3 Comparison

FACT.- Equations (23) and (24) become identical if we set

kp = − 1

αh
, ki =

KP

αh
(25)

Remark 6.2 It should be emphasized that the above property, defined by Equa-
tions (25), does not hold for continuous-time PIs and iPs. This equivalence is
strictly related to time sampling, i.e., to computer implementation, as demon-
strated by taking h ↓ 0 in Equations (25).
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6.2 PID and iPD

Extending the calculations of Section 6.1 is quite obvious. The velocity form of
the PID

u(t) = kpe(t) + ki

∫
e(τ)dτ + kdė

reads u̇(t) = kpė(t) + kie(t) + kdë(t). It yields the obvious sampling

u(t) = u(t− h) + kphė(t) + kihe(t) + kdhë(t) (26)

ν = 2 on the other hand, Equation yields u(t) =
1

α
(ÿ∗(t)− F +KP e(t) +KD ė(t)).

From the computer implementation F = ÿ(t)− αu(t− h), we derive

u(t) = u(t− h)− 1

α
ë(t) +

KP

α
e(t) +

KD

α
ė(t) (27)

FACT.- Equations (26) and (27) become identical if we set

kp =
KD

αh
, ki =

KP

αh
, kd = − 1

αh
(28)

6.3 iPI and iPID

Equation (27) becomes with the iPID

u(t) = u(t− h)− 1

α
ë(t) +

KP

α
e(t) +

KI

α

∫
e+

KD

α
ė(t) (29)

Introduce the PI2D controller

u(t) = kpe(t) + ki

∫
e(τ)dτ + kii

∫∫
edτdσ + kdė(t)

The double integral, which appears there, seems to be quite uncommon in con-
trol engineering. To its velocity form u̇(t) = kpė(t) + kie + kii

∫
edτ + kdë(t)

corresponds the sampling

u(t) = u(t− h) + kphė(t) + kihe+ kiih

∫
edτ + kdhë(t)

which is identical to Equation (29) if one sets

kp =
KD

αh
, ki =

KP

αh
, kii =

KI

αh
, kd = − 1

αh
(30)

The connection between iPIs and PI2s follows at once.

6.4 Table of correspondence

The previous calculations yield the following correspondence (Table 1) between
the gains of our various controllers:

Remark 6.3 Due to the form of Equation (22), it should be noticed that the
tuning gains of the classic regulators ought to be negative.
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iP iPD iPI iPID

PI kp −1/αh
ki KP /αh

PID kp KD/αh
ki KP /αh
kd −1/αh

PI2 kp −1/αh
ki KP /αh
kii KI/αh

PI2D kp KD/αh
ki KP /αh
kii KI/αh
kd −1/αh

Table 1: Correspondence between the gains of sampled classic and intelligent
controllers.

7 Conclusion

Several theoretical questions remain of course open. Let us mention some of
them, which appear today to be most important:

• The fact that multivariable systems were not studied here is due to a lack
until now of concrete case-studies. They should therefore be examined
more closely.

• Even if some delay and/or non-minimum phase examples were already
successfully treated (see Sections 5.4, 5.6, and (Andary, Chemori, Benoit
& Sallantin (2012); Join, Robert & Fliess (2010b); Riachy, Fliess, Join
& Barbot (2010))), a general understanding is still missing, like, to the
best of our knowledge, with any other recent setting (see, e.g., Åström
& Hägglund (2006); O’Dwyer (2009), and Xu, Li & Wang (2012)). We
believe as advocated in Remarks 5.4 and 5.7 that

– looking for a purely mathematical solution might be misleading,

– taking advantage on the other hand of a “good” empirical under-
standing of the plant might lead to a more realistic track.

It goes without saying that comparisons with existing approaches should be
further explored. It has already been done with

• classic PIDs here, and by Gédouin, Delaleau, Bourgeot, Join, Arab-Chirani
& Calloch (2011); Milanes, Villagra, Perez & Gonzalez (2012) for some ac-
tive spring and vehicles,

• some aspects of sliding modes by Riachy, Fliess & Join (2011),

• fuzzy control for some vehicles by Milanes, Villagra, Perez & Gonzalez
(2012); Villagra & Balaguer (2011).
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Those comparisons were until now always favourable to our setting.
If model-free control and the corresponding intelligent controllers are further

reinforced, especially by numerous fruitful applications, the consequences on the
future development and teaching (see, e.g., the excellent textbook by Åström &
Murray (2008)) of control theory might be dramatic:

• Questions on the structure and on the parameter identification of linear
and nonlinear systems might loose their importance if the need of a “good”
mathematical modeling is diminishing.

• Many effort on robustness issues with respect to a “poor” modeling and/or
to disturbances may be viewed as obsolete and therefore less important.
As a matter of fact those issues disappear to a large extent thanks to the
continuously updated numerical values of F in Equation (1).

Another question, which was already raised by Abouäıssa, Fliess, Iordanova &
Join (2012), should be emphasized. Our model-free control strategy yields a
straightforward regulation of industrial plants whereas the corresponding digi-
tal simulations need a reasonably accurate mathematical model in order to feed
the computers. Advanced parameter identification and numerical analysis tech-
niques might then be necessary tools (see, e.g., Join, Robert & Fliess (2010b);
Abouäıssa, Fliess, Iordanova & Join (2012)). This dichotomy between elemen-
tary control implementations and intricate computer simulations seems to the
best of our knowledge to have been ignored until today. It should certainly be
further dissected as a fundamental epistemological matter in engineering and,
perhaps also, in other fields.
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modèle restreint’, e-STA, 5 (n◦ 4): 1–23. Available at
http://hal.archives-ouvertes.fr/inria-00288107/en/

Fliess, M., and Join, C. (2009), ‘Model-free control and intelligent PID con-
trollers: towards a possible trivialization of nonlinear control?’, in 15th IFAC
Symp. System Identif., Saint-Malo. Available at
http://hal.archives-ouvertes.fr/inria-00372325/en/

Fliess, M., Join, C., Mboup, M. (2010), ‘Algebraic change-point detection’,
Appl. Algebra Engin. Communic. Computing, 21, 131–143.

Fliess, M., Join, C., Mboup, M., and Sira-Ramı́rez, H. (2006), ‘Vers une com-
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Doré Landau, Springer, pp. 143–164.

Formentin, S., de Filippi, P., Corno, M., Tanelli, M., and Savaresi, S. (2013),
‘Data-driven design of braking control systems’, IEEE Trans. Control Syst.
Techno., 21, 186-193.

Formentin, S., de Filippi, P., Tanelli, M., and Savaresi, S. (2010), ‘Model-free
control for active braking systems in sport motorcycles’, in 8th IFAC Symp.
Nonlinear Control Systems, Bologne.

Gédouin, P.-A., Delaleau, E., Bourgeot, J.-M., Join, C., Arab-Chirani, S., and
Calloch, S. (2011), ‘Experimental comparison of classical pid and model-free
control: position control of a shape memory alloy active spring’, Control Eng.
Practice, 19, 433–441.
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Pereira, E., Trapero, J.R., Muñoz, I., and Feliu, V. (2009), ‘Adaptive input
shaping for maneuvering flexible structures using an algebraic identification
technique’, Automatica, 45, 1046–1051.
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dos Santos Coelho, L., Wicthoff Pessôa, M., Rodrigues Sumar, R., and Ro-
drigues Coelho, A.A. (2010), ‘Model-free adaptive control design using
evolutionary-neural compensator’, Expert Systems Appl., 37, 499–508.

Shinskey, F.G.(1996), Process Control Systems – Application, Design, and Tun-
ing (4th ed.), McGraw-Hill.

35



Sira-Ramı́rez, H. (2003), ‘Sliding modes, delta-modulators, and generalized pro-
portional integral control of linear systems’, Asian J. Control, 5, 467–475.

Sira-Ramı́rez, H., and Agrawal, S. (2004), Differentially Flat Systems, Marcel
Dekker.
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A An approximation property

A.1 Functionals

We restrict ourselves to a SISO system, i.e., to a system with a single control
variable u and a single output y. Even without knowing any “good” math-
ematical model we may assume that the system corresponds to a causal, or
non-anticipative, functional, i.e., for any time instant t > 0,

y(t) = F (u(τ) | 0 ≤ τ ≤ t) (31)

where F depends on

• the past and the present, and not on the future,

• various perturbations,

• initial conditions at t = 0.
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Example A.1 A popular representation of rather arbitrary nonlinear systems
in engineering is provided by Volterra series (see, e.g., Barrett (1963), Rugh
(1981) and Lamnabhi-Lagarrigue (1995)). Such a series may be defined by

y(t) =h0(t) +

∫ t

0

h1(t, τ)u(τ)dτ+∫ t

0

∫ t

0

h2(t, τ2, τ1)u(τ2)u(τ1)dτ2dτ1 + . . .∫ t

0

. . .

∫ t

0

hν(t, τν , . . . τ1)u(τν) . . . u(τ1)dτν . . . dτ1

+ . . .

Solutions of quite arbitrary differential equations may be expressed as Volterra
series.

A.2 The Stone-Weierstraß theorem

Let

• I ⊂ [0,+∞[ be a compact subset,

• C ⊂ C0(I) be a compact subset, where C0(I) is the space of continu-
ous functions I → R, which is equipped with the topology of uniform
convergence.

Consider the Banach R-algebra S of continuous causal functionals (31) I×C →
R. If a subalgebra contains a non-zero constant element and separates points
in I × C, then it is dense in S according to the Stone-Weierstraß theorem (see,
e.g., the excellent textbooks by Choquet (2000) and Rudin (1967)).

A.3 Algebraic differential equations

Let A ⊂ S be the set of functionals which satisfy an algebraic differential
equation of the form

E(y, ẏ, . . . , y(a), u, u̇, . . . , u(b)) = 0 (32)

where E is a polynomial function of its arguments with real coefficients. Satis-
fying Equation (32) is equivalent saying that y is differential algebraic over the
differential field R〈u〉.

Remark A.1 Remind that a differential field (see, e.g., the two following books
by Chambert-Loir (2005) and Kolchin (1973), and the papers by Delaleau (2002),
Fliess, Join & Sira-Ramı́rez (2008) and Fliess, Lévine, Martin & Rouchon
(1995)) is a commutative field which is equipped with a derivation. A typi-
cal element of R〈u〉 is a rational function of u, u̇, . . . , u(ν), . . . , with real
coefficients.

It is known (Kolchin (1973)) that the sum and the product of two elements
which are differentially algebraic over R〈u〉 is again differentially algebraic over
R〈u〉. It is obvious moreover that any constant element, which satisfies ẏ = 0,
belongs to A.

38



Take two distinct points (τ, u), (τ ′, u′) ∈ I × C. If τ 6= τ ′, then y = t, which
satisfies ẏ = 1, separates the two points. If τ = τ ′, then assume that u 6= u
on the interval [0, τ ]. It follows from Lerch’s theorem (Lerch (1903)) (see, also,
Mikusiński (1983)) that there exists a non-negative integer ν such that∫ t

0

σνu(σ)dσ 6=
∫ t

0

σνu′(σ)dσ

The classic Cauchy formula demonstrates the existence of a non-negative integer
ν such that y, which satisfies y(ν) = u, separates (τ, u), (τ, u′).

This proof, which mimics to some extent Fliess (1976, 1981) (see, also, Suss-
mann (1976)), shows that A is dense in S.

B Justification of the ultra-local model

Assume that our SISO system is “well” approximated by a system described by
Equation (32). Let ν be a non-negative integer such that

∂E

∂y(ν)
6≡ 0

The implicit function theorem yields then locally

y(ν) = E(y, ẏ, . . . , y(ν−1), y(ν+1), . . . , y(a), u, u̇, . . . , u(b))

It may be rewritten as Equation (1).
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