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‘Model-free control’and the corresponding ‘intelligent” PID controllers (iPIDs), which already had many successful concrete
applications, are presented here for the first time in an unified manner, where the new advances are taken into account.
The basics of model-free control is now employing some old functional analysis and some elementary differential algebra.
The estimation techniques become quite straightforward via a recent online parameter identification approach. The importance
of iPIs and especially of iPs is deduced from the presence of friction. The strange industrial ubiquity of classic PIDs and the
great difficulty for tuning them in complex situations is deduced, via an elementary sampling, from their connections with
iPIDs. Several numerical simulations are presented which include some infinite-dimensional systems. They demonstrate not
only the power of our intelligent controllers but also the great simplicity for tuning them.

Keywords: Model-free control; PID controllers; intelligent PID controllers; intelligent PI controllers; intelligent P controllers;
estimation; noise; flatness-based control; delay systems; non-minimum phase systems; fault accommodation; heat partial
differential equations; operational calculus; functional analysis; differential algebra

1. Introduction

Although model-free control was introduced only a few
years ago (Fliess & Join, 2008a, 2009; Fliess, Join, &
Riachy, 2011b), there is already a quite impressive
list of successful concrete applications in most diverse
fields, ranging from intelligent transportation systems
to energy management (Abouaissa, Fliess, lordanova, &
Join, 2012; Andary, Chemori, Benoit, & Sallantin, 2012;
Choi, d’Andréa-Novel, Fliess, Mounier, & Villagra, 2009;
d’Andréa-Novel et al., 2010; De Miras, Riachy, Fliess,
Join, & Bonnet, 2012; Formentin, de Filippi, Corno,
Tanelli, & Savaresi, 2013; Formentin, de Filippi, Tanelli,
& Savaresi, 2010; Gédouin et al., 2011; Join, Masse, &
Fliess, 2008; Join, Robert, & Fliess, 2010a, 2010b; La-
font, Pessel, Balmat, & Fliess, 2013; Michel, Join, Fliess,
Sicard, & Chériti, 2010; Milanes, Villagra, Perez, & Gonza-
lez, 2012; Sorcia-Vazquez, Garcia-Beltran, Reyes-Reyes,
& Rodriguez-Palacios, 2010; Villagra, d’Andréa-Novel,
Choi, Fliess, & Mounier, 2009; Villagra & Balaguer, 2011;
Villagra & Herrero-Pérez, 2012; Villagra, Milanés, Pérez,
& de Pedro, 2010; Wang, Mounier, Cela, & Niculescu,
2011). Most of those references lead to practical imple-
mentations. Some of them are related to patents.

Remark 1: The wording model-free control is of course not
new in the literature, where it has already been employed
by a number of authors. The corresponding literature is

huge: see Bilal Kadri (2009), Chang, Gao, and Gu (2011),
Hahn and Oldham (2012), Hong-wei, Rong-min, and Hui-
xing (2011), Keel and Bhattacharyya (2008), Killingsworth
and Krstic (2006), Malis and Chaumette (2002), dos Santos
Coelho, Wicthoff Pessoa, Rodrigues Sumar, and Rodrigues
Coelho (2010), Spall and Cristion (1998), Swevers et al.
(2007), Syafiie, Tadeo, Martinez, and Alvarez (2011), and
Xu, Li, and Wang (2012). The corresponding settings
are quite varied. They range from ‘classic’ proportional-
integral-derivative (PIDs) to robust and adaptative control
via techniques stemming from, e.g., neural nets, fuzzy sys-
tems, and soft computing. To the best of our understanding,
those approaches are rather far from what we are developing
here. Let us emphasise, however, Remark 5 for a comment
on some works which are perhaps closer. See also Remark 3.

Let us now summarise some of the main theoretical
ideas which are shaping our model-free control. We restrict
ourselves for simplicity’s sake to systems with a single
control variable u and a single output variable y. The
unknown ‘complex’ mathematical model is replaced by an

ultra-local model
8

(1) ™ is the derivative of order v > 1 of y. The in-
teger v is selected by the practitioner. The existing
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examples show that v may always be chosen quite
low, i.e., 1, or, only seldom, 2. See Section 4 for an
explanation.

(2) @ € R is a non-physical constant parameter. It is
chosen by the practitioner such that ¢ and ") are
of the same magnitude. It should be therefore clear
that its numerical value, which is obtained by tri-
als and errors, is not a priori precisely defined. Let
us stress moreover that controlling industrial plants
has always been achieved by collaborating with en-
gineers who know the system behaviour well.

(3) F, which is continuously updated, subsumes the
poorly known parts of the plant as well as of the
various possible disturbances, without the need to
make any distinction between them.

(4) Forits estimation, F'is approximated by a piecewise
constant function. Then the algebraic identification
techniques due to Fliess and Sira-Ramirez (2003,
2008) are applied to the equation

YW = ¢ +au, 2)

where ¢ is an unknown constant parameter. The
estimation

e necessitates only a quite short time lapse,

e is expressed via algebraic formulae which con-
tain low-pass filters like iterated time integrals,

e is robust with respect to quite strong noise cor-
ruption, according to the new setting of noises
via quick fluctuations (Fliess, 2006).

Remark 2: The following comparison with computer
graphics might be enlightening. Reproducing on a screen a
complex plane curve is not achieved via the equations defin-
ing that curve but by approximating it with short straight
line segments. Equation (1) might be viewed as a kind of
analogue of such a short segment.

Remark 3: Our terminology model-free control is best ex-
plained by the ultra-local Equation (1) which implies that
the need of any ‘good’ and ‘global’ modelling is abandoned.

Assume that v = 2 in Equation (1):
y=F 4+ au. 3)

Close the loop via the intelligent proportional-integral-
derivative controller, or iPID,

_F—).}*+KP€+K1f€+KDé
o

u =

“4)

where

e y* is the reference trajectory,
e ¢ =y — y* is the tracking error,
e Kp, K;, Kp are the usual tuning gains.

Combining Equations (3) and (4) yields
é+KDé+er+K1/e=0. %)

Note that F' does not appear anymore in Equation (5),
i.e., the unknown parts and disturbances of the plant
vanish. We are, therefore, left with a linear differen-
tial equation with constant coefficients of order 3. The
tuning of Kp, K;, and Kp becomes, therefore, straight-
forward for obtaining a ‘good’ tracking of y*. This
is a major benefit when compared to the tuning of
‘classic’PIDs.

Remark 4: Intelligent PID controllers may already be
found in the literature but with a different meaning (see
Astrom, Hang, Persson, & Ho, 1992).

Remark 5: See Chang and Jung (2009), Han (2009),
Youcef-Toumi and Ito (1990), and Zheng, Chen, and Gao
(2009) for some remote analogy with our calculations.
Those references assume, however, that the system order
is finite and moreover known.

Our paper is organised as follows. The general prin-
ciples of model-free control and of the corresponding in-
telligent PIDs are presented in Section 2. The online es-
timation of the crucial term F is discussed in Section 3.
Section 4 explains why the existence of frictions permits
to restrict our intelligent PIDs to intelligent proportional
or to intelligent proportional-integral correctors. The nu-
merical simulations in Section 5 examine the following
case-studies:

e A part of the unknown system may be nevertheless
known. If it happens to be flat (Fliess, Lévine, Martin,
& Rouchon, 1995; Lévine, 2009; Sira-Ramirez &
Agrawal, 2004), it will greatly facilitate the choice
of the reference trajectory and of the corresponding
nominal control variable.

e Standard modifications including aging and an actu-
ator fault keep the performances, with no damaging,
of our model-free control synthesis without the need
of any new calibration.

e An academic nonlinear case study demonstrates that
a single model-free control is sufficient, whereas
many classic PIDs may be necessary in the usual
PID setting.

e Two examples of infinite-dimensional systems
demonstrate that our model-free control provides ex-
cellent results without any further ado:
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e a system with varying delays,
e a one-dimensional semi-linear heat equation,
which is borrowed from Coron and Trélat (2004).

e A peculiar non-minimum phase linear system is pre-
sented.

Following d’Andréa-Novel, Boussard, Fliess, Join,
Mounier, and Steux (2010), Section 6 explains the industrial
capabilities of classic PIDs by relating them to our intelli-
gent controllers. This quite surprising and unexpected result
is achieved for the first time to the best of our knowledge.
Section 7 concludes not only by a short list of open prob-
lems but also with a discussion of the possible influences
on the development of automatic control, which might be
brought by our model-free standpoint.

The appendix gives some more explanations on the de-
duction of Equation (1). We are employing

e rather old-fashioned functional analysis, which goes
back to Volterra (1910, 1930) and Volterra and Péres
(1936). Note that this functional analysis is a main-
stay in engineering since the introduction of Jolterra
series (see Barrett, 1963);

e some elementary facts stemming from differential al-
gebra (Kolchin, 1973), which has been quite impor-
tant in control theory since the appearance 20 years
ago of flatness-based control (Fliess et al., 1995).

2. Model-free control: general principles

Our viewpoint on the general principles on model-free
control was developed in Fliess, Join, and Sira-Ramirez
(2006b), Fliess, Join, Mboup, and Sira-Ramirez (2006a),
Fliess and Join (2008a, 2008b), Fliess and Join (2009),
Fliess, Join, and Riachy (2011a), Fliess et al. (2011b).

2.1. Intelligent controllers
2.1.1 Generalities

Consider again the ultra-local model (1) . Close the loop
via the intelligent controller

F—y* 4 ¢(e)
a b

u =

(6)

where

e y* is the output reference trajectory;

e ¢ =y — y* is the tracking error;

e (e) is a causal, or non-anticipative, functional of e,
i.e., €(e) depends on the past and the present, and not
on the future.

Remark 6: See Volterra (1910, 1930) and Volterra and
Péres (1936) for an intuitive and clever presentation of the
early stages of the notion of functionals, which were also
called sometimes line functions. See Section A.l in the
appendix for more details.

Remark 7: Imposing a reference trajectory y* might lead,
as well known, to severe difficulties with non-minimum
phase systems: see Fliess and Marquez (2000), Fliess,
Sira-Ramirez, and Marquez (1998), and Sira-Ramirez and
Agrawal (2004) from a flatness-based viewpoint (Fliess
et al., 1995; Sira-Ramirez & Agrawal, 2004). See also Re-
marks 9, 20, and Section 7.

Combining Equations (1) and (6) yields the functional
equation:

e +&(e) = 0.

¢ should be selected such that a perfect tracking is asymp-
totically ensured, i.e.,

lim e(r) = 0. (7

t—+00

This setting is too general and might not lead to easily
implementable tools. This shortcoming is corrected below.

2.1.2  Intelligent PIDs

Set v =2 in Equation (1). With Equation (3) define the intel-
ligent proportional-integral-derivative controller, or iPID,
(4). Combining Equations (3) and (4) yields Equation (5),
where F' does not appear anymore, i.e., the unknown parts
and disturbances of the plant are eliminated. The tracking
condition expressed by Equation (7) is, therefore, easily
fulfilled by an appropriate tuning of Kp, K, and Kp. It boils
down to the stability of a linear differential equation of or-
der 3, with constant real coefficients. If K; = 0 we obtain
an intelligent proportional-derivative controller, or iPD:

F—j}*—i-er—f-KDé
o

u =

(®)

Assume now that v = 1 in Equation (1):

g

The loop is closed by the intelligent proportional-integral
controller, or iPI-

F—3*+Kpet+K;[e
o

(10)

u =
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Quite often K; may be set to 0. It yields an intelligent
proportional controller, or iP:

F—y*"+K
Mz_ﬂ (11)

o

Results in Sections 4 and 6 explain why iPs are quite often
encountered in practice. Their lack of any integration of
the tracking errors demonstrate that the anti-windup algo-
rithms, which are familiar with ‘classic’ PIDs and PlIs, are
no more necessary.

Remark 8: There is, as well known, a huge literature on
‘classic’ PIDs and Pls in order to give efficient rules for the
gain tuning. Those recipes are too often rather intricate. See
the two books by Astréom and Higglund (2006), O’Dwyer
(2009), and the numerous references therein.

Remark 9: Output reference trajectories of the form y* do
not seem to be familiar in industrial applications of classic
PIDs. This absence often leads to disturbing oscillations,
and mismatches like overshoots and undershoots. Selecting
y* plays of course a key role in the implementation of the
control synthesis. Mimicking for this tracking the highly
effective feed-forward flatness-based viewpoint (see, Fliess
etal., 1995; Lévine, 2009; Sira-Ramirez & Agrawal, 2004;
and the numerous references in those two books) is achieved
in Section 5.1 where a part of the system, which happens to
be flat, is already known. This is unfortunately impossible
in general: are systems like (31) and/or (32) in the appendix
flat or not? Even if the above systems were flat, it might be
difficult then to verify if y is a flat output or not.

Remark 10: For obtaining a suitable trajectory planning,
impose to y to satisfy a given ordinary differential equation.
It permits moreover if the planning turns out to be poor
because of some abrupt change to replace quite easily the
preceding equation by another one.

2.2 Other possible intelligent controllers

The generalised proportional-integral controllers, or GPls,
were introduced by Fliess, Marquez, Delaleau, and Sira-
Ramirez (2002) in order to tackle some tricky problems
like those stemming from non-minimum phase systems.
Several practical case studies have confirmed their useful-
ness (see Morales & Sira-Ramirez, 2011; Sira-Ramirez,
2003). Although it would be possible to define their in-
telligent counterparts in general, we are limiting ourselves
here to a single case which will be utilised in Section 5.6.
Replace the ultra-local model (9) by

y'=F+om+,3/u, (12)

where «, 8 € R are constant. Set in Equation (6)

@(e)=er+K,/e+K,,//e, (13)

where K;, K;; € Rare suitable constant gains. See Section
6.3 for an analogous regulator.

3. Online estimation of F

Our first publications on model-free control were propos-
ing for the estimation of F recent techniques on the nu-
merical differentiations of noisy signals (see Fliess, Join,
& Sira-Ramirez, 2008; Liu, Gibaru, & Perruquetti, 2011;
Mboup, Join, & Fliess, 2009) for estimating y*) in Equa-
tion (1). Existing applications were until today based on
a simple version of this differentiation procedure, which
is quite close to what is presented in this section, namely,
the utilisation of the parameter identification techniques by
Fliess and Sira-Ramirez (2003, 2008).

3.1 General principles

The approximation of an integrable function, i.e., of a quite
general function [a,b] — R, a,b € R, a < b, by a step
function Fypprox, 1.€., @ piecewise constant function, is clas-
sic in mathematical analysis (see the excellent textbooks by
Godement, 1998 and Rudin, 1976). A suitable approximate
estimation of F in Equation (1) boils down, therefore, to
the estimation of the constant parameter ¢ in Equation (2)
if it can be achieved during a sufficiently ‘small’ time inter-
val. Analogous estimations of /' may be carried on via the
intelligent controllers (4)-(8)-(10)-(11).

3.2 Identifiability via operational calculus

3.2.1 Operational calculus

In order to encompass all the previous equations, where F'is
replaced by Fypprox, consider the equation, where the classic

rules of operational calculus are utilised (Mikusinski, 1983;
Yosida, 1984):

Li$)Z1 + La(s)Zs = ? 1), (14)

where

e ¢ is a constant real parameter, which has to be iden-
tified;

e L, L, € R[s, s"'] are Laurent polynomials;

e [ € R[s]isapolynomial associated to the initial con-
ditions.

Multiplying both sides of Equation (14) by i—’i,, where
N s large enough, permits to get rid of the initial conditions.
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It yields the linear identifiability (Fliess & Sira-Ramirez,
2003, 2008) of ¢ thanks to the formula:

—-HVN! avy
= ez + L0z, 09)

Multiplying both sides of Equation (15) by s~ where
M > 0 is large enough, permits to get rid of positive powers
of s, i.e., of derivatives with respect to time.

Remark 11: Sometimes it might be interesting in practice
to replace s~ by a suitable rational function of s, i.e., by a
suitable element of R(s).

3.2.2 Time domain

The remaining negative powers of s correspond to iterated
time integrals. The corresponding formulae in the time do-
main are easily deduced thanks to the correspondence be-

tween %, k > 1, and the multiplication by (— £)* in the
time domain (see some examples in Section 3.4). They may

be easily implemented as discrete linear filters.

3.3 Noise attenuation

The notion of noise, which is usually described in engi-
neering and, more generally, in applied sciences via prob-
abilistic and statistical tools, is borrowed here from Fliess
(2006) (see also Lobry & Sari, 2008 and the references
therein on nonstandard analysis). Then the noise is related
to quick fluctuations around zero. Such a fluctuation is a
Lebesgue-integrable real-valued time function F which is
characterised by the following property:

its integral [/ F(v)dt over any finite interval
is infinitesimal, 1.e., very ‘small’.
The robustness with respect to corrupting noises is thus
explained thanks to Section 3.2.2.

Remark 12: This standpoint on denoising has not only
been confirmed by several applications of model-free con-
trol, which were already cited in the introduction, but also
by numerous ones in model-based linear control and in sig-
nal processing (see Fliess, Join, & Mboup, 2010; Gehring,
Kniippel, Rudolph, & Woittennek, 2012; Morales, Nieto,
Trapero, Chichamo, & Pintado, 2011; Pereira, Trapero,
Mufioz, & Feliu, 2009, 2011; Trapero, Sira-Ramirez, &
Battle, 2007a, 2007b, 2008). Note moreover that the nonlin-
ear estimation techniques advocated by Fliess et al. (2008)
exhibit for the same reason ‘good’ robustness properties,
which were already illustrated by several case studies (see
Menhour, d’Andréa-Novel, Boussard, Fliess, & Mounier,
2011; Morales, Feliu, & Sira-Ramirez, 2011; and the refer-
ences therein).

3.4 Some more explicit calculations
3.4.1 First example
With Equation (9), Equation (14) becomes

sY:£+ozU+y0,
S

where

e ) is the initial condition corresponding to the time
interval [t — L, {],
e ¢ is a constant.

Get rid of yy by multiplying both sides by %:

Multiplying both sides by s =2 for smoothing the noise yields
in time domain yields

¢ = _% /,:L (L = 20)y(0) + ao(L — o)u(0))do

where L is quite small.

Remark 13: L depends of course on

e the sampling period,
e the noise intensity.

Both may differ a lot as demonstrated by the numerous
references on concrete case-studies given at the beginning
of the introduction.

3.4.2 Second example
Close the loop with the iP (11). It yields

gb:%[/tL(y'*—om—er)da]

4. When is the order v = 1 enough?

A most notable exception in the choice of a first order ultra-
local model, i.e., v =1 in Equation (1), is provided by the
magnetic bearing studied by De Miras et al. (2012), where
the friction is almost negligible. Start, therefore, with the
elementary constant linear system:

V4+cy+4y =u, (16)
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0.8

0.6

0.4

0.2

Figure 1. System output and reference.

where ¢y stands for some elementary friction. Figures 1
and 2 yield satisfactory numerical simulations with a iPI
corrector. The following values were selected for the pa-
rameters: ¢ =3, o = 1, Kp = 16, K; = 25. With a harmonic
oscillator, where ¢ = 0, Figure 3 displays on the other hand
a strong degradation of the performances with an iPI. Lack
of friction in a given system might be related to the absence
of y in the unknown equation. Taking v = 1 in Equation (1)
would, therefore, yield an ‘algebraic loop’, which adds nu-
merical instabilities and, therefore, deteriorates the control
behaviour.

5. Numerical experiments

In the subsequent simulations, the sampling time is 7, =
0.01s. The corrupting noise is additive, normal, zero-mean,
with a standard deviation equal in Sections 5.1 and 5.5 to
0.01, and to 0.03 elsewhere.

5.1 Control with a partially known system
5.1.1 A crude description

Consider the nonlinear Duffing spring with friction:
my = —K(y)+ F() —dy + Fext. (17
where

v is the length of the spring,

m is a point mass,

Fext = u is the control variable,

K(y) = kiy + k3y? is the resulting force from the
Hooke law and the Duffing cubic term,

dy is a classic linear friction and F(y) a nonlinear
one. The term JF(y) corresponds to the Tustin friction
(Tustin, 1947) (see also Olsson, Astrom, Canudas de
Wit, Gifvert, & Lischinsky, 1998), which is rather

Figure 2. iPI control.
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Figure 3. System output and reference.

violent with respect to the sign change of the speed
(see Figure 4).

Set m = 0.5, k; = 3. The partially known system
my =kiy+u

is flat, and y is a flat output. It helps us to determine a suit-
able reference trajectory y* and the corresponding nominal
control variable u* = mj* + k;y*. In the numerical simu-
lations, we utilise k; = 2, d = 1, k3 = 2, which are in fact
unknown.

5.1.2 A PID controller

Setu=u* + v. Associate to vaPID corrector for alleviating
the tracking error e = y — »* by imposing a denominator

dy/dt

Tustin’smodel

-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5

of the form (s + 1.5)°. The corresponding tuning gains are
kp = 1.375, ky = 1.6875, kp = 2.25.

5.1.3 iPID

The main difference of the iPID is the following one:
The presence of F which is estimated in order to com-
pensate the nonlinearities and the perturbations like fric-
tions. For comparison purposes, its gains are the same as
previously.

514 iP

We do not take any advantage of Equation (17). The error
tracking dynamics is again given with a pole equal to —1.5,
i.e., by the denominator (s + 1.5).

(b) s

i

e

A

4 6 8 10 12 14 16 18 20

Time
FrictionwiththeiPID

Figure 4. Model and time evolution of friction. (a) Tustin’s model. (b) Friction with the iPID.
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5.1.5 Numerical experiments

Figure 5 shows quite poor results with the PID of Section
5.1.2. They become excellent with the iPID and correct with
iP. The practician might be right to prefer this last control
synthesis

e where the implementation is immediate,
e if a most acute precision may be neglected.

Remark 14: See also Villagra et al. (2009) and Villa-
gra and Balaguer (2011) for concrete examples related to
guided vehicles.

5.2 Robustness with respect to system’s changes

The examples below demonstrate that if the system is
changing, our intelligent controllers behave quite well with-
out the need of any new calibration.

5.2.1 Scenario 1: the nominal case

The nominal system is defined by the transfer function

(s +2)°
. 18
(s+1) (18)
A tuning of a classic PID controller
u :k,,e—}—k,-/e—}—kdé, (19)
where
e ¢ =y — y* is the tracking error,
® ky, ki, kg € R are the gains,

yields via standard techniques (see Astrom & Higglund,
2006) k, = 1.8177, k; = 0.7755, kg = 0.1766. A low-
pass filter is moreover added to the derivative é in order
to attenuate the corrupting noise. Our model-free approach
utilises the ultra-local model y = F + u and an iP (11),
where Kp = 1.8177. Figure 6 shows perhaps a slightly
better behaviour of the iP.

5.2.2 Scenario 2: modifying the pole

A system change, aging for instance, might be seen by as
new pole —2.2 in the transfer function (18) which becomes

(s +2)°
(s +2.2)%
As shown in Figure 7, without any new calibration the

performances of the PID worsen whereas those of the iP
remain excellent.

5.2.3 Scenario 3: actuator’s fault

A power loss of the actuator occurs at time ¢ = 8s. It is
simulated by dividing the control by 2 at r = 8s. Figure 8
shows an accommodation of the iP which is much faster
than with the PID.

Remark 15: Sections 5.2.2 and 5.2.3 may be understood
as instances of fault accommodation, which contrarily to
most of the existing literature are not model-based (see also
Moussa Ali, Join, & Hamelin, 2012). It is perhaps worth
mentioning here that model-based fault diagnosis has also
benefited from the estimation techniques summarised in
Section 3 (see Fliess, Join, & Sira-Ramirez, 2004; Fliess
et al., 2008).

5.3 A nonlinear system

Take the following academic unstable nonlinear system

y—y=u.

The clssic PID (19) is tuned with k, = 2.2727, k; =
1.8769, k; = 0.1750. The simulations depicted in Figure
9 shows a poor trajectory tracking for small values of the
reference trajectory. The iP, which is related to the ultra-
local model y = F + u, corresponds to Kp = 2.2727. Its
excellent performances in the whole operating domain are
also shown in Figure 9.

5.4 Delay systems
Consider the system

(@) = y() + 5yt — t) + u,

where moreover the delay t, 0 < t < 5s is not assumed to
be

e known,
e constant.

Set for the numerical simulations (see Figure 10)

(1) = t(t — T,) + 10T,sign(N(t)), 7(0) =2.5s,
where N is a zero-mean Gaussian distribution with standard
deviation 1. An iP where Kp = 1 is deduced from the ultra-
local model y = F + u. The results depicted in Figure 11
are quite satisfactory.

Remark 16: Extending the above control strategy to non-
linear systems and to neutral systems is straightforward. It
will not be developed here.

Remark 17: The delay appearing with the hydro-electric
power plants studied by Join et al. (2010b) was taken into
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account via an empirical knowledge of the process. Some
numerical tabulations were employed in order to get in some
sense ‘rid’ of the delay. Such a viewpoint might be the most
realistic one in industry.

Remark 18: We only refer here to ‘physical’ delays and
not to the familiar approximation in engineering of ‘com-
plex’ systems via delays ones (see Shinskey, 1996). Let
us emphasise that this type of approximation is loosing its
importance in our setting.

5.5 A one-dimensional semi-linear heat equation

The heat equation is certainly one of the most studied topic
in mathematical physics. It would be pointless to review
its corresponding huge bibliography even in the control do-
main, where many of the existing high-level control theories
have been tested. Consider with Coron and Trélat (2004)
the one-dimensional semi-linear heat equation:

ow 9w
— = — , 20
=+ f(w) 20)
where

e 0<x<IL,

e w(t,0)=c,

e w(t, L) = u(¥) is the control variable,

e w(0, x) = sin(mrx) + (u(0) — c)x + ¢, wherec e R

is a constant.

We want to obtain given time-dependent temperature at
x = x.. Consider the following scenarios:

(1) x.=13L,f=0,c=0,
) x.=1/3L,f=0,c =05,

(3) x.=2/3L,f=0,c=0,
(4) x. =2/3L,f=)%, ¢ =0.

The control synthesis is achieved thanks to the elemen-
tary one-dimensional ultra-local model

y=F + 10u

and the straightforward iP, where K,, = 10. The four numer-
ical simulations, displayed by Figures 12, 13, 14, and 15,
are quite convincing.

5.6 A peculiar non-minimum phase system

Consider the non-minimum phase system defined by the
transfer function:

(s—=1

(s +D(s+2) @D

Utilise Equations (12) and (13). Sete = —p =10, Kp =3
and K; = Kj; = 5. Figure 16 displays good performances.

Remark 19: It is easy to check that the above calcula-
tions work only for a single unstable zero, like in Equation
(21). Our approach cannot be extended to arbitrary non-
minimum phase systems.

Remark 20: It is well known that the control synthesis
of a non-minimum phase system is even a difficult task
with a perfectly known mathematical model. Among the
many solutions which have been suggested in the litera-
ture, let us mention a flatness-based output change (see
Fliess & Marquez, 2000; Fliess et al., 1998). When a
mathematical model is unknown or poorly known, the
non-minimum phase character of an output cannot be de-
duced mathematically but only via a ‘bad’ qualitative be-
haviour of this output. Selecting a minimum phase out-
put, i.e., an output with ‘good’ qualitative properties,
might be a more realistic alternative. It necessitates nev-
ertheless an excellent ‘practical’ knowledge of the plant
behaviour.

6. Connections between classic and intelligent
controllers

The results below connect classic PIDs to our intelligent
controllers. They explain, therefore, why classic PIDs are
used in rather arbitrary industrial situations thanks to a fine
gain tuning, which might be quite difficult to achieve in
practice.
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6.1 PIandiP where 4 is the sampling interval. The corresponding discrete

6.1.1 A crude sampling of Pls form of Equation (22) reads

Consider the classic continuous-time PI controller: u(t) = kye(t) + ki 1(1) = kpe(t) + ki [t — ) + kihe(t).
u(t) = kpe(r) + ki / e(t)dr. 22) Combining the above equation with

A crude sampling of the integral [e(t)dr through a Rie- u(t —h) =kpe(t —h) + ki I(t — h)
mann sum /(¢) leads to
yields

/e(f)df =@ =1t = h) + he(t), u(t) = u(t — h) +k, (e(t) — e(t — b)) + kihe(t). (23)
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Remark 21: A trivial sampling of the ‘velocity form’ of 6.1.2 Sampling iPs
Equation (22) Utilise, if v = 1, the iP, which may be rewritten as

u(t) = kpé(r) + ke(r) V(1) — F + Kpe(r)

u(t) =
yields o
u(t) —u(t —h) e(ty—e(t —h) Replace F by y(t) — au(t — h) and therefore by
——— =k, | ————— ) + kie(?),
h h
) —y(t—nh
which is equivalent to Equation (23). w —au(t — h),

h
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it yields for continuous-time PIs and iPs. This equivalence is
strictly related to time sampling, i.e., to computer
implementation, as demonstrated by taking 420 in

u(t) = u(t —h) — Equations (25).

e(t) —e(t —h) n % o). (24)

ha

6.1.3 Comparison

FACT. Equations (23) and (24) become identical if we set 6.2 PID and iPD

Extending the calculations of Section 6.1 is quite obvious.

k, = — L k= % 25) The velocity form of the PID

Remark 22: It should be emphasised that the above .
property, defined by Equations (25), does not hold u(t) =kpe() + ki [ e(r)dr +kqe
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reads i(t) = kpé(t) + kie(t) + kqé(t). It yields the obvious
sampling

u(t) = u(t — h) + kyhé(t) + kihe(t) + kahé(t)  (26)

v = 2 on the other hand, Equation yields u(f) =
é (3*(t) — F + Kpe(t) + Kpé(t)). From the computer im-
plementation F = j(t) — au(t — h), we derive

u(t) = u(t —h) — éé(t) + %e(r) + %é(r). 27)

FACT. Equations (26) and (27) become identical if we set

Kp Kp 1
R T T 28
P~ ah d ah 28)

6.3 iPI and iPID
Equation (27) becomes with the iPID

u(t) = ut —h) — éé(t) + %e(t) + % / e+ %é(t).
(29)
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Table 1. Correspondence between the gains of sampled classic
and intelligent controllers.

iP iPD iPI iPID
PI ko —lah
ki Kplah
PID k, Kplach
ki Kplah
kq —1/ah
PP k, —1/ah
ki Kplah
kii K[/(Xh
PED  k, Kplah
kl' K p/ ah
kii K[/Oth
ka —1/ah

Introduce the PI?D controller
u(t) =kpe(t) + k; / e(t)dt + k;; // edtdo + kié(t).

The double integral, which appears there, seems to be quite
uncommon in control engineering. To its velocity form
w(r) = kpé(t) + kie + ki; [ edt + kqé(r) corresponds the
sampling

u(t) = ult — h) + kphé(t) + kihe + kith / edt
+ kahé(r),

which is identical to Equation (29) if one sets

K K K 1
=22 k=—-L ki=—, ky=——. (30)
ah ah ah

The connection between iPIs and PIs follows at once.

6.4 Table of correspondence

The previous calculations yield the following correspon-
dence (Table 1) between the gains of our various controllers.

Remark 23: Due to the form of Equation (22), it should be
noticed that the tuning gains of the classic regulators ought
to be negative.

7. Conclusion

Several theoretical questions remain of course open. Let
us mention some of them, which appear today to be most
important:

e The fact that multi-variable systems were not studied
here is due to a lack until now of concrete case studies.
They should, therefore, be examined more closely.

e Even if some delay and/or non-minimum phase ex-
amples were already successfully treated (see Sec-
tions 5.4 and 5.6; Andary et al., 2012; Join et al.,
2010b; Riachy, Fliess, Join, & Barbot, 2010), a gen-
eral understanding is still missing, like, to the best
of our knowledge, with any other recent setting (see
Astrom & Hiagglund, 2006; O’Dwyer, 2009; Xu et al.,
2012). We believe as advocated in Remarks 17 and
20 that

e looking for a purely mathematical solution might
be misleading,

e taking advantage on the other hand of a ‘good’
empirical understanding of the plant might lead to
a more realistic track.

It goes without saying that comparisons with existing
approaches should be further explored. It has already been
done with

e classic PIDs here, and by Gédouin et al. (2011),
Milanes et al. (2012) for some active spring and ve-
hicles,

e some aspects of sliding modes by Riachy, Fliess, and
Join (2011),

e fuzzy control for some vehicles by Milanes et al.
(2012) and Villagra and Balaguer (2011).

Those comparisons were until now always favourable
to our setting.

If model-free control and the corresponding intelligent
controllers are further reinforced, especially by numerous
fruitful applications, the consequences on the future devel-
opment and teaching (see the excellent textbook by Astrom
& Murray, 2008) of control theory might be dramatic:

e Questions on the structure and on the parameter iden-
tification of linear and nonlinear systems might loose
their importance if the need of a ‘good’” mathematical
modelling is diminishing.

e Many effort on robustness issues with respect to
a ‘poor’ modelling and/or to disturbances may be
viewed as obsolete and therefore less important. As a
matter of fact those issues disappear to a large extent
thanks to the continuously updated numerical values
of Fin Equation (1).

Another question, which was already raised by
Abouaissa et al. (2012), should be emphasised. Our model-
free control strategy yields a straightforward regulation of
industrial plants, whereas the corresponding digital simu-
lations need a reasonably accurate mathematical model in
order to feed the computers. Advanced parameter iden-
tification and numerical analysis techniques might then
be necessary tools (see Abouaissa et al., 2012; Join
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et al., 2010b). This dichotomy between elementary control
implementations and intricate computer simulations seems
to the best of our knowledge to have been ignored until
today. It should certainly be further dissected as a funda-
mental epistemological matter in engineering and, perhaps
also, in other fields.
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Appendix A. An approximation property

A.1 Functionals

We restrict ourselves to a SISO system, i.e., to a system with
a single control variable # and a single output y. Even without
knowing any ‘good’ mathematical model we may assume that the
system corresponds to a causal, or non-anticipative, functional,
i.e., for any time instant # > 0,

YO =Fu@l0=t=<1), (A1)
where F depends on

e the past and the present, and not on the future,
e various perturbations,
e initial conditions at = 0.

Example A.1: A popular representation of rather arbitrary non-
linear systems in engineering is provided by Volterra series (see
Barrett, 1963; Rugh, 1981; Lamnabhi-Lagarrigue, 1995). Such a
series may be defined by

y(t) = ho(t) —I—/ hi(t, Du(r)dr
0
+ '/0 /0 hz(t, T3, Tl)u(fz)u(fl)d‘[zdl'l + ...

t t
// hy(t, Ty, ... u(ty) ... u(t))de, ...dno
0 0
+ ...

Solutions of quite arbitrary differential equations may be ex-
pressed as Volterra series.
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A.2  The Stone-Weierstraf} theorem
Let

e 7 C [0, +o00[ be a compact subset,

e C C C%Z) be a compact subset, where C°(Z) is the space
of continuous functions Z — R, which is equipped with
the topology of uniform convergence.

Consider the Banach R-algebra & of continuous causal function-
als (31) Z x C — R. If a subalgebra contains a non-zero constant
element and separates pointsinZ x C, thenitis dense in S accord-
ing to the Stone-WeierstraB3 theorem (see the excellent textbooks
by Choquet, 2000 and Rudin, 1967).

A.3  Algebraic differential equations

Let 2 C G be the set of functionals which satisfy an algebraic
differential equation of the form

EGy, ¥, ...,y u, i, ..., u®)=0, (A2)

where E is a polynomial function of its arguments with real co-
efficients. Satisfying Equation (A2) is equivalent saying that y is
differential algebraic over the differential field R(u).

Remark Al: Remind that a differential field (see the two fol-
lowing books by Chambert-Loir, 2005 and Kolchin, 1973, and
the papers by Delaleau, 2002, Fliess et al., 2008 and Fliess et al.,
1995) is a commutative field which is equipped with a derivation.
A typical element of R{u) is a rational function of u, , ..., u®"), ...,
with real coefficients.

It is known (Kolchin, 1973) that the sum and the product
of two elements which are differentially algebraic over R{u)

is again differentially algebraic over R(u). It is obvious more-
over that any constant element, which satisfies y = 0, belongs
to 2.

Take two distinct points (z,u), (r,u') e Z xC. If t # 7/,
then y = ¢, which satisfies y = 1, separates the two points. If T =
7/, then assume that  # u on the interval [0, ]. It follows from
Lerch’s theorem (Lerch, 1903) (see also Mikusinski, 1983) that
there exists a non-negative integer v such that

/0[ o'u(o)do # /0 o"u'(0)do.

The classic Cauchy formula demonstrates the existence of a non-
negative integer v such that y, which satisfies ") = u, separates

(7, u), (z,u).
This proof, which mimics to some extent Fliess (1976, 1981)
(see also Sussmann, 1976), shows that 2 is dense in &.

Appendix B. Justification of the ultra-local model
Assume that our SISO system is ‘well” approximated by a system
described by Equation (B2). Let v be a non-negative integer such
that
oE
ay(")

£0.

The implicit function theorem yields then locally

YO =&,y .,y D@ L u®).

It may be rewritten as Equation (1).





