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On the Model-free Control
of an Experimental Greenhouse

Frédéric Lafont, Nathalie Pessel, Jean-François Balmat, and Michel Fliess

Abstract—In spite of a large technical literature, an efficient
climate control of a greenhouse remains a very difficult task.
Indeed, this process is a complex nonlinear system with strong
meteorological disturbances. The newly introduced “model-free
control” setting is employed here. It is easy to implement,
and has already shown excellent performances in many other
concrete domains. Successful experimental tests are presented
and discussed. They are compared to a Boolean approach,
which is often utilized in practice.

Index Terms—Greenhouse, climate control, model-free con-
trol, intelligent PI controller.

I. INTRODUCTION

THE main objective of a greenhouse crop production
(see, e.g., [1]) is to increase economic benefits for the

farmer when compared to more traditional techniques. An ad-
equate regulation should not only improve the production and
its quality but also reduce pollution and energy consumption.
Controlling the internal hygrometry and the carbon dioxide
should optimize therefore the photosynthesis. The resulting
system should:

• remain open for exploiting the advantages of some
external disturbances, like radiation and temperature,

• filter possible adverse conditions, like wind and rain.
There is already an enormous literature (see, e.g., [2], [3])

on this important topic from an applied viewpoint. A large
variety of tools has been utilized. Many studies have been
devoted to obtain a “good” knowledge model. It might be

• static, and based on a thermic balance (see, e.g., [4]),
• dynamic, and based on an energy balance (see, e.g., [5]).

The obtained physical models are nonlinear, and strongly
disturbed, i.e., often by weather conditions which are impos-
sible to forecast precisely (see, e.g., [6]). Complex calibra-
tions prevent moreover to utilize those models for writing
down efficient control laws. Multi-models were also pro-
posed (see, e.g., [7], [8], [9], [10]), as well as black box
models (see, e.g., [7], [10], [11]). Here also it is difficult
to deduce a control synthesis. Fig. 1, which is borrowed
from [3], displays the most popular viewpoints. Among the
“conventional” control synthesis methods, let us point out
the well-known PID controllers and On/Off techniques. See
also:
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Fig. 1. Greenhouse control theories classification

• [6], [8], [9], [12], [13] for the modeling,
• [7], [14], [15], [16], [17] for the control.

This communication is devoted to the control of an
experimental greenhouse via a newly introduced technique,
called model-free control ([18], [19], [20], [21]), where
the need of any mathematical model disappears. It should
be emphasized that this setting, which yields easily
implementable intelligent PID controllers, has been within a
few years successfully applied in a number of practical case-
studies, which cover a large variety of domains (see, e.g., the
references in [21], and [22], [23], [24], [25], [26], [27], [28]).

Our paper is organized as follows. Section II is devoted
to a brief review of model-free control. Section III presents
our experimental greenhouse system and the corresponding
modeling problems. The intelligent PI controllers are im-
plemented in Section IV. A comparison with a Boolean
controller is discussed in Section V. Section VI provides a
short conclusion.

II. MODEL-FREE CONTROL: A SHORT REVIEW

Let us restrict ourselves for simplicity’s sake to single-
input single-output systems.

A. The ultra-local model

The unknown global description of the plant is replaced
by the ultra-local model:

y(ν) = F + αu (1)

where:
• the derivation order ν ≥ 1 is selected by the practitioner;
• α ∈ R is chosen by the practitioner such that αu and
y(ν) are of the same magnitude.



Remark 2.1: Note that ν has no connection with the order
of the unknown system, which may even be with distributed
parameters, i.e., which might be best described by partial
differential equations (see, e.g., [29] for hydroelectric power
plants).

Remark 2.2: The existing examples show that ν may
always be chosen quite low, i.e., 1 or 2. In almost all existing
concrete case-studies ν = 1. The only counterexample until
now where ν = 2 is provided by magnetic bearings [24]
where frictions are almost negligible. See the explanation in
[20], [21].
Some comments on F are in order:

• F is estimated via the measure of u and y;
• F subsumes not only the unknown structure of the

system but also of any perturbation.

B. Intelligent PIDs

Set ν = 2 in Equation (1):

ÿ = F + αu (2)

Close the loop via the intelligent proportional-integral-
derivative controller, or iPID,

u = −
F − ÿ∗ +KP e+KI

∫
e+KD ė

α
(3)

where:

• e = y − y? is the tracking error,
• KP , KI , KD are the usual tuning gains.

Combining Equations (2) and (3) yields:

ë+KD ė+KP e+KI

∫
e = 0

where F does not appear anymore. The tuning of KP , KI ,
KD is therefore quite straightforward. This is a major benefit
when compared to the tuning of “classic” PIDs (see, e.g.,
[30], [31], and the references therein).

Set now ν = 1 in Equation (1):

ẏ = F + αu (4)

The loop is closed by intelligent proportional-integral con-
troller, or iPI,

u = −
F − ẏ∗ +KP e+KI

∫
e

α
(5)

If KI = 0, it yields an intelligent proportional controller, or
iP,

u = −F − ẏ
∗ +KP e

α
(6)

Remark 2.3: Equation (4) and the corresponding iPs (6)
are most common in practice. This is again a major simpli-
fication with respect to “classic” PIDs.

Remark 2.4: See [20], [21], [32] for an analysis of the
connections with “classic” PIDs and PIs.

Fig. 2. Our experimental greenhouse system

C. Estimation of F

1) First example: F in Equation (1) is assumed to be
“well” approximated by a piecewise constant function Fest.
According to the algebraic parameter identification devel-
oped in [33], [34], rewrite, if ν = 1, Equation (4) in the
operational domain (see, e.g., [35]):

sY =
Φ

s
+ αU + y(0)

where Φ is a constant. We get rid of the initial condition
y(0) by multiplying both sides on the left by d

ds :

Y + s
dY

ds
= − Φ

s2
+ α

dU

ds

Noise attenuation is achieved by multiplying both sides on
the left by s−2. It yields in the time domain the realtime
estimate:

Fest(t) = − 6

τ3

∫ t

t−τ
[(τ − 2σ)y(σ) + ασ(τ − σ)u(σ)] dσ

where τ > 0 might be quite small. This integral may of
course be replaced in practice by a classic digital filter.

2) Second example: Close the loop with the iP (6). It
yields:

φ =
1

L

[∫ t

t−L
(ẏ? − αu−KP e) dσ

]
Remark 2.5: Another possibility for estimating F , which

was employed in the first stages of model-free control, is the
estimation of the differentiation of the noisy output signal y
(see [36], [37]).

III. OUR EXPERIMENTAL GREENHOUSE SYSTEM

Fig. 2 shows our experimental plastic greenhouse which is
manufactured by the French company Richel. Its area is equal
to 80 m2. It is the property of the Laboratoire des Sciences de
l’Information et des Systèmes (LSIS), to which the first three
authors belong.1 This experimental greenhouse is controlled
by a microcomputer and interfaced with the FieldPoint FP-
2000 network module developed by the company National
Instruments Corporation. The FP-2000 network module is
associated with two analog input modules (FP-AI-110, FP-
AI-111), for the acquisition, and two relay output modules
(FP-RLY-420), for the control. The acquisition and control
system is developed with the LabView language. See Fig.
3 for the control interface. The sampling period is equal
to 1 minute. The inside air temperature and humidity are
controlled via our techniques.

1This laboratory is located at the Université du Sud-Toulon-Var, France.



Fig. 3. Control interface
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Fig. 4. System variables

A. Description of the system
The greenhouse is a multi-input and multi-output (MIMO)

system which is equipped with several sensors and actuators
(see Fig. 4). There are

• 4 actuators:
1) Heating (thermal power 58 kw): Ch (Boolean),
2) Opening (50 % max): Ov (%),
3) Shade: Om (%),
4) Fog system: Br (Boolean).

• 4 meteorology disturbances sensors:
1) External temperature: Te (oC),
2) External hygrometry: He (%),
3) Solar Radiation: Rg (W/m2),
4) Speed of the wind: Vv (km/h).

• 2 internal climate sensors:
1) Internal temperature: Ti (oC),
2) Internal hygrometry: Hi (%).

This system is moreover nonstationary and strongly dis-
turbed.

B. Control of temperature and hygrometry

In the greenhouse system, the temperature and hygrometry
management are treated together, because these two quanti-
ties are strongly correlated:

• The heating has a dehumidifier effect.
• The opening system has a cooling and dehumidifier

effect.
• The fog system has a cooling effect.

Controlling the temperature and the hygrometry is therefore
of utmost importance.

1) Hygrometry reference: There is no real recommenda-
tions by species. It appears nevertheless that

• for the multiplication phase, the hygrometry must be
greater than 80 %,

• for the growth phase, the reference is comprised be-
tween 60 and 80 %,

• for the tomato, the reference is rather comprised
between 50 and 70 %.

Let us mention some other advices:
• avoid condensations,
• avoid a humidity level close to saturation (100 %),
• avoid a humidity level below 40 % for seedlings,
• absolutely avoid a hygrometry below 20 %.

2) Temperature reference: Table I displays references
among suppliers, which are based on the species.2 Observe

2The temperatures are expressed with degrees Celsius.



TABLE I
TEMPERATURE REFERENCE (SEE [1])

Species Night Day Remarks
reference reference

Aubergine 21oC 22oC During 4 weeks
after the plant.

19oC 21oC To the end

Cucumber 21oC 23oC During 4 weeks
After the plant.

20oC 22oC During the next
6 weeks.

19oC 21oC To the end.

Lettuce 10oC 10oC During 2 weeks
After the plant.

6oC 12oC To the end.

Pepper 20oC 23oC During 3 weeks
after the plant.

18oC 22oC To the end.

Tomato 20oC 20oC During 1 week
after the plant.

18.5oC 19.5oC During the next
5 weeks.

17.5oC 18.5oC To the end.

Azalea 18/21oC >18oC

Chrysanthemum 17oC 18oC

Gerbera 13/15oC

Antirrhinum 10/11oC

Carnation 12/13oC 18oC

Rosebush 17oC 21oC

that the difficulties for tuning an efficient controller may be
attributed to the following causes:

• various references
– in a day,
– according to the species,

• system parameter variations according to the plant
growth.

IV. APPLYING INTELLIGENT PROPORTIONAL-INTEGRAL
CONTROLLERS

Two iPIs (5) are implemented for independent regulations
of the temperature and of the hygrometry. We are estimating
F via the technique sketched in Section II-C2.

A. Temperature

The estimation F temp
approx is given by

F temp
approx = 1

δ

∫ T
T−δ

(
−αCh+ Ṫ i

∗ −KP eTi

−KI

∫
eTi
)
dτ

(7)

B. Hygrometry

Here

F hygro
approx = 1

δ

∫ T
T−δ

(
−αBr + Ḣi

∗ −KP eHi

−KI

∫
eHi
)
dτ

(8)

TABLE II
SETTING VALUES

Variable Value

δ 12 minutes

α 10

KI 0.1

KP 2

Fig. 5. Internal temperature with model-free control (Te: black line - Ti:
grey line)

Fig. 6. Internal hygrometry with model-free control (He: black line - Hi:
grey line)

C. Setting values

The controllers Ch and Br are deduced from Equations
(4), (5), (7), and (8). These controllers are Pulse Width
Modulation (PWM) controllers. Table II displays the same
setting values for the two controllers.

The reference outputs are 20o for the temperature and 50%
for the hygrometry. The simulation lasts 12 hours, from 8:00
pm until 8:00 am. We chose the night in order to compare
the obtained results with Boolean control (see Section V) in
similar weather conditions. During this season in the south of
France the outside temperature is moreover too hot during
the day in order to reach the chosen reference inside the
greenhouse.

Fig. 5 and Fig. 6 show the internal/external temperature
and the internal/external hygrometry evolution on the night
of March 19th, 2013.

Fig. 7 and Fig. 8 show the control sequences for heating
and fog.

We can observe that, at 4:00 am, He is close to 100 %: it
started to rain. The internal hygrometry Hi is also above the
reference output and the fog system Br stops. The heating
control allows to lower and stabilize the internal humidity



Fig. 7. Heating control with model-free control

Fig. 8. Fog control with model-free control

TABLE III
RESULTS EVALUATION FOR THE MODEL-FREE CONTROL

Output mean variance

εTi 0.35o 0.07o

εHi 5.11% 6.92%

level. Finally, the internal temperature Ti and the internal
hygrometry Hi are close to their reference output.

Table III shows the mean and the variance of the error
between Ti and the output reference of Ti and between Hi

and the reference output of Hi.

V. SOME COMPARISONS

A classic Boolean control law with thresholds is employed
for the comparisons. This type of technique is quite often
used in agriculture. Experiments have been carried on
during two different nights, i.e., March 18th and 19th ,
2013, respectively for the Boolean and model-free settings.
The temperature reference output is 20o, as in Section IV.
For the hygrometry, a dehumidification reference should
be selected. The fog control is periodic (3 minutes on,
and 27 minutes off) whatever the internal hygrometry. This
Boolean control of the humidity is based on the grower
rules. The dehumidification reference allows to set the
desired maximum hygrometry inside the greenhouse. In this
test, we choose 50%.

Fig. 9 and Fig. 10 show results for the internal temperature
and the internal hygrometry. Fig. 11 and Fig. 12 show results
for the two controls. Fig. 9 and Fig. 10 show results for
the internal temperature and the internal hygrometry. Fig.
11 and Fig. 12 show results for the two controls. Table IV

Fig. 9. Internal temperature with a Boolean controller (Te: Black line -
Ti: Grey line)

Fig. 10. Internal hygrometry with a Boolean controller (He: Black line -
Hi: Grey line)

Fig. 11. Heating control with a Boolean controller

Fig. 12. Fog control with a Boolean controller

shows the mean and the variance of the error between Ti
and the output reference of Ti and between Hi and the
reference output of Hi.

Tables III and IV demonstrate that our model-free control
strategy behaves better than its Boolean counterpart. Let us



TABLE IV
RESULTS EVALUATION WITH A CLASSIC BOOLEAN CONTROL

Output mean variance

εTi 0.98o 0.57o

εHi 11.63% 6.62%

TABLE V
COMPARISONS OF THE ENERGY

Actuator Model-free control Classical Boolean control

Heat 221 min 209 min

emphasize two more points:
• As already explained in Section III, one of the goals

of control climate is to reduce the energy consumption.
Table V shows that the heating is on only during 30%
of the time with the model-free setting.

• For a given operating time, model-free control ensures
a better tracking of the reference signals.

VI. CONCLUSION

This paper presents a model-free control of the climate
of an experimental greenhouse. This setting turns out to be
more efficient than a classic Boolean control. It is moreover
much more easier to tune than a classic PID controller.
Future publications will develop our viewpoint, and compare
it to several other existing approaches. They will also study
fault diagnosis and accommodation (see, e.g., [20], [21]), and
data mining for climate control (see, e.g., [38]).
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[1] L. Urban, Introduction à la production sous serre, Lavoisier, 1997.
[2] D.L. Critten, B.J. Bailey, A review of greenhouse engineering develop-

ments during the 1990s, Agric. Forest Meteorology, 112, 1-22, 2002.
[3] C. Duarte-Galvan, I. Torres-Pacheco, R.G. Guevara-Gonzalz, R.J.

Romero-Troncoso, L.M. Contreras-Medina, M.A. Rios-Alcaraz, J.R.
Millan-Almaraz, Advantages and disadvantages of control theories
applied in greenhouse climate control systems, Spanish J. Agri. Res.,
10, 926-938, 2012.

[4] B.A. Kimball, Simulation of the energy balance of a greenhouse, Agric.
Meteorology, 11, 243-260, 1973.

[5] C. Viard-Gaudin, Simulation et commande auto-adaptative d’une serre
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