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A new theory is proposed to describe spectral effects of the coupling between molecular rotations
and OH̄ O motions in liquid water. The correlation function approach is employed together with
a special type of development in which the coupling energy of these two motions is the expansion
parameter. The isotropy of the liquid medium plays an essential role in this study. Based on this
theory, a new infrared pump–probe experiment is described permitting a visualization of molecular
rotations at subpicosecond time scales. Full curves relating the mean squared rotational angle and
time, and not only the rotational relaxation time, are measured by this experiment. However, very
short times where the incident pulses overlap must be avoided in this analysis. The lifetime of
OH¯O bonds in water is rotation–limited. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1522378#

I. INTRODUCTION

The past decade has contributed much new information
about short time hydrogen bond dynamics in liquid water.
This is due to the development of new powerful lasers, gen-
erating pico- and femto-second pulses in the mid-infrared
spectral region. It now became possible to study this liquid,
so essential for the life on our planet, on tiny time scales
extending from a few hundreds of femto-seconds to a few
tens of pico-seconds. Employing pump–probe techniques,
the OH̄ O motions in liquid water were studied in real
time;1,2 the procedure was similar to that employed by
Zewail et al. in their breakthrough work on the ICN
dissociation.3,4 No oscillations of the hydrogen bond were
detected. Moreover, the coupling between molecular rota-
tions and OH̄ O motions in water was examined on the
same time scales.5–7 The forces hindering them depend on
the distance between the two oxygen atoms, which intro-
duces a correlation between these degrees of freedom. From
the other side, physico–chemical properties of various short
lived structures present in liquid water were studied too: the
hydrogen bond network generates irregularly fluctuating
tetrahedral assemblies around each water molecule.8–10 Fi-
nally, recent photon echo experiments brought out unexpect-

edly fast dynamics of the OH̄O grouping, not yet seen
before.11 Femtochemistry of water thus remains a very active
branch of science.

The purpose of the present paper is to pursue this effort
by describing a new statistical theory of couplings between
molecular rotations and the OH̄O motions. The correlation
function approach is employed all along as well as a special
type of expansion in which the energy of coupling between
rotational and OH̄ O motions is the expansion parameter.
The isotropy of the liquid system plays a crucial role. Based
on theoretical results, a new pump–probe experiment is pro-
posed permitting to visualize HDO rotations in HDO/D2O
solutions in real time. Full curves relating mean squared ro-
tational angles and times, and not only the rotational relax-
ation time, are measured. However, the overlap of incident
pulses at short times severely complicates the analysis. The
lifetime of the OH̄ O bonds in water is shown to be rotation
limited.

II. GENERALITIES

Femtosecond dynamics of OH̄O bonds in water are
most often studied by using ultrafast pump–probe tech-
niques.1,2 The procedure is based on a well-known relation-
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ship linking the hydrogen stretching frequencyV of an
OH¯O bond and its lengthr. The stronger the hydrogen
bond, the softer the OH link and the lower is its frequency
V. Following the initial proposal of Rundle and Parasol, a
number of empirical relationships were published; the one
adopted here is the recent relationship due to Mikenda12 il-
lustrated in Fig. 1. The experiment then goes as follows. An
ultrafast pump pulse of frequencyV1 , belonging to the con-
ventional OH stretching band of HDO, is used to excite OH
vibrations; this excitation results in selecting OH̄O bonds
of a given lengthr1 . However, the system does not conserve
this nonequilibrium geometry, but returns progressively to
the equilibrium; the OH̄ O bond length then passes from its
initial value r1 to the equilibrium valuer0 . Simultaneously,
the OH band shifts from the pump frequencyV1 to its equi-
librium frequencyV0 . Thus, probing the position of the OH
band as a function of the pump–probe delayt and using the
Mikenda relation, the value of the OH̄O bond length can
be deduced in each moment. It is thus possible to follow its
temporal variations directly.

The above experiment was also adapted to the study of
HDO rotations in liquid HDO/D2O solutions.5–7 The method
consists in selecting hydrogen bonds of a specified lengthr1

by pumping the system with an appropriate frequencyV1 .
Molecular rotations of the subset of hydrogen bonds created
in this way are analyzed next by measuring the rotational
anisotropyR5(S i2S')/(S i12S') of the system for differ-
ent probe frequenciesV2 and for different time delayst; the
signalsS i andS' correspond to the parallel and perpendicu-
lar electric field configurations, respectively. This quantity is
an important indicator of molecular rotations in liquid
systems.13–15 In fact, if ~i! the couplings between molecular
rotations and other degrees of freedom are absent, and~ii !
the time delayt between the pump and probe pulses are long
enough to avoid their overlap, then in very general
conditions16,17

R~t !5~2/5!^P2~cos~u~t !!!&5~2/5!exp~23/2̂ u2~t !& !, ~1!

whereP2 is the second-order Legendre polynomial andu~t!
the angle between the transition moment vectors in times 0
andt. MeasuringR(t) as a function of timet thus provides
the square averaged rotation angle^u(t)2&; this experiment

has the intrinsic power of visualizing molecular rotations.
The above relation simplifies for timest long as compared to
the correlation time of the molecular angular velocityv
5du/dt. Molecular rotations then transform into rotational
diffusion, and Eq.~1! takes the well known formR(t)
5(2/5)exp(2t/tO) where tO is the rotational relaxation
time. MeasuringR(t) as a function oft in these conditions
then providestO , but not the full curvê u(t)2&. Finally, it
should be stressed that this theory predictsR(t) to be inde-
pendent ofV1 andV2 .

However, all these conclusions only apply if the condi-
tions ~i!, ~ii ! underlying the derivation of Eq.~1! hold true.
Are they satisfied in the case of water? The condition~ii !
certainly fails at smallt’s where the pump and probe pulses
overlap, whatever the material under consideration. Unfortu-
nately, the condition~i! is not satisfied neither for water,
although the coupling between molecular rotations and re-
maining degrees of freedom may be absent in other liquids.
In fact, R(t) was measured as a function ofV1 andV2 ; it
was found to be distinctlyV1 , V2 dependent, which proves
the presence of couplings. How to proceed in these condi-
tions? Can Eq.~1! still be applied in spite of this difficulty?
A possible, although approximate, way out is to maintain the
expressionR(t)5(2/5)exp(2t/tO) and to considertO , or
equivalently the rotational diffusion constantDR , to depend
on the OH̄ O distance;R(t) then becomes in fact fre-
quency dependent. However, introducing a model of this
type, does not exempt one of the necessity to construct a
fully statistical theory of couplings between molecular rota-
tions and OH̄ O motions. The purpose of this paper is to
present a theory of this kind.

III. THEORY

A. Basic formulas

The system under consideration is a diluted isotopic so-
lution HDO/D2O in thermal equilibrium. It containsN solute
molecules in a volumeV. A pump pulse of frequencyV1

brings the system in an excited state; and a probe pulse of
frequencyV2 explores its return in its ground state at timet.
The pump and probe electric fields areE15(E1x ,E1y ,E1z)
and E25(E2x ,E2y ,E2z), and the total electric field is
E5(E1x1E2x ,E1y1E2y ,E1z1E2z). These two fields are
not parallel to each other in general.

The quantity measured experimentally is the pump–
probe signalS(V1 ,V2 ,t). It is defined as the total probe
absorptionW(V1 ,V2 ,t) in presence of the pump minus the
probe absorptionW(V2) in absence of the pump. Then, if
M(M x ,M y ,M z) denotes the electric dipole moment of the
system, the following formula applies:18,19

S~V1 ,V2 ,t !5~2/\3!ImE
2`

` E
0

`E
0

`E
0

`

dt dt1 dt2 dt3

3^Ė2i~r,t !E j~r,t2t3!

3Ek~r,t2t32t2!E l~r,t2t32t22t1!&E

3^M l~0!@M k~t1!,@M j~t11t2!,

3M i~t11t21t3!##&S . ~2!

FIG. 1. Relation between the OH̄O hydrogen bond lengthr and the OH
link frequencyV. r0 andV0 designate the equilibrium values ofr andV.
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This expression involves two kinds of 4-time correlation
functions: the correlation functions of the total and the probe
electric fieldsE~r,t! and E2(r,t) and those of the electric
dipole momentM(t) of the system. The indicesi, j , k, l
denote the Cartesian components of these vectors; the Ein-
stein convention is employed all along indicating a summa-
tion over doubled indices. The average^ &S is over states of
the nonperturbed liquid system, and the average^ &E is over
all possible realizations of the incident electric fields. The
symbol @,# denotes a commutator and the dot a time deriva-
tive. Choosing the electric fieldsE1 , E2 of appropriate form,
all possible cases of polarization may be treated. It should be
noted that Eq.~2! represents an exact third-order perturbation
theory result.

B. Model

The above equation will now be employed to study ro-
tational anisotropy of an isotopic water solution. The pump
electric fieldE1(r,t)5(0,0,Epump(r,t)) is supposed to be po-
larized along the laboratory fixedz axis, and the probe elec-
tric field to be eitherE2(r,t)5(0,0,Eprobe(r,t)) in the paral-
lel electric field configuration orE2(r,t)5(0,Eprobe(r,t),0)
in the perpendicular electric field configuration. The total
electric field is thenE(r,t)5(0,0,Epump(r,t)1Eprobe(r,t))
in the first case, andE(r,t)5(0,Eprobe(r,t),Epump(r,t)) in
the second. In all circumstances one hasEprobe!Epump.

Unfortunately, Eq.~2! cannot be applied to the present
case without approximations, and a model must be used; it
involves the following assumptions:~i! The OH vibrator of
HDO/D2O is assimilated to a two-level quantum system, per-
turbed by random solvent–solute interactions. All remaining
degrees of freedom of the system constitute a classical ther-
mic bath. ~ii ! Time evolution of the dipole momentM is
governed by the modified Heisenberg equation

d

dt
M5

i

\
@H,M#2GM, ~3!

whereH is an adiabatic Hamiltonian andG the Pauli relax-
ation operator. Theith componentM i of M is written M i

5Mu i , whereM is the length ofM and u its unit vector.
The variableM is quantum-mechanical whereasu is classi-
cal. ~iii ! The pump and probe electric fields have slowly
varying Gaussian amplitudesEpump(t), Eprobe(t) and random
phasesfpump(t), fprobe(t), independent of each other

Epump~r,t !52 Re@Epump~ t8!

3exp~ ikpumpr2iVpumpt8!exp~ ifpump~ t8!!#,
~4!

Eprobe~r,t !52 Re@Eprobe~ t !

3exp~ ikprober2iVprobet !exp~ ifprobe~ t !!#,

where t85t1t. Models of this type are of current use in
laser physics. However, it only applies if thev50↔v51,
but not thev51→v52, transition is involved in the experi-
ment; a three-level model would be required otherwise. In
practice, this means the excitation be must be confined to the
3500 cm21 spectral region.

The above model still needs to be completed by present-

ing time scales of the problem. The hydrogen bond dynamics
in liquid water are controlled by three relaxation times. The
first of them is the life timetp of the OH vibrator in its first
excited state. It is surprisingly short: according to the most
recent determinations it is of the order of 1.0 ps.1,2,9,10,20

Another characteristic time is the solvent relaxation timetV :
intermolecular forces are feebly modified by vibrational ex-
citation, which leads to a rupture of thermic equilibrium.
Experiment and molecular dynamics simulations proposed
values of the order of 0.7 ps for it.1,2,21–25Finally, the rota-
tional relaxation timetO measures the progressive loss of
orientational coherence; it corresponds to the correlation
time of the second spherical harmonics. Involved in many
experimental situations, it has been measured or calculated
by a number of authors.26–31 The values of the order of 2.5
ps may be considered as representative. A last time playing a
role in the present context, although only indirectly, is the
dephasing timetd : this is the time in which the phase co-
herence of thenOH vibrations is lost due to the frequency
dispersion, and is of the order of 15 fs. It results from the
above data that very short laser pulses, not longer than a few
hundreds of femtoseconds, are required in this study. For
convenience, the paper is written as to permit to skip, at first
reading, the technical details which follow and pass to Sec.
IV directly.

C. Dipole moment correlation functions
1. Liouville pathways of the system

It is convenient to start this calculation by studying di-
pole moment correlation functions. As the coupling between
rotations and OH̄ O motions has to be fully accounted for,
a considerable effort is required to do it. The calculation
involves the following steps.~i! The dipole moment of the
system is writtenM5M u, whereM is quantum-mechanical
andu classical. Then:

^M l~o !@M k~t1!,@M j~t11t2!,M i~t11t21t3!##&S

5^u l~0!uk~t1!u j~t11t2!u i~t11t21t3!

3M ~0!@M ~t1!,@M ~t11t2!,M ~t11t21t3!##&S . ~5!

The quantitiesu i , u j , uk , u l are Cartesian components of
the unit vectoru; as they are classical, they may be shifted at
will. The operation̂ &S involves the average over the quan-
tum states of the OH vibrator as well as that over the bath
degrees of freedom; one has^ &S5^Trr &, wherer is the
vibrational density matrix and̂ & designates the averaging
over the bath.~ii ! The incident electric fields are polarized
either along thez or along they axis. In these conditions,
correlation functions in which the indicesi, j , k, l are all
equal to z, as well as those in which two indices are equal to
y and two toz only survive. This is a consequence of the
isotropy of a liquid system.~iii ! The above expression for
correlation functions can be given a more explicit form by
developing it over the quantum states of the OH vibrator.
The matrix elementsM 00 and M 11 do not contribute to the
OH band intensity and can safely be neglected. The matrix
elementsM 01(t) and M 10(t)5M 01(t)* may be determined
by solving Eq. ~3!, which gives M (t)015M 01

3exp@2i*0
t dt v(t)2Gt# where\v5H112H00. Then, if only

the ground vibrational state is thermally occupied, one finds
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^M l~0!@M k~t1!,@M j~t11t2!,M i~t11t21t3!##&S

52~M 01M 10!
2exp~23Gt122Gt22Gt3!

3H K u l~0!uk~t1!u j~t11t2!u i~t11t21t3!expF iE
0

t1
dt v~ t !G2iE

0

t11t2
dt v~ t !G1iE

0

t11t21t3
dt v~ t)&

1K u l~0!uk~t1!u j~t11t2!u i~t11t21t3!expF iE
0

t11t21t3
dt v~ t !2iE

0

t11t2
dt v~ t !1iE

0

t1
dt v~ t !G L

2K u l~0!uk~t1!u j~t11t2!u i~t11t21t3!expF iE
0

t11t2
dt v~ t !2E

0

t11t21t3
dt v~ t !1E

0

t1
dt v~ t !G L

2K u l~0!uk~t1!u j~t11t2!u i~t11t21t3!expF iE
0

t1
dt v~ t !2iE

0

t11t21t3
dt v~ t !1iE

0

t11t2
dt v~ t !G L J . ~6!

The four terms entering in this expression correspond to four
different pathways in the Liouville space of operators.32

2. Series expansion for rotation–vibration
correlations

Where are the effects of the rotation–vibration correla-
tion hidden? In their absence, the terms of Eq.~6! would all
factorize into a rotational and a vibrational correlation func-
tion, respectively; this is usually assumed to be legitimate.
On the contrary, if the correlation is present, this step is
strictly forbidden. A method must then be invented to treat
the problem in its increased complexity. The one employed
here consists of introducing a particular sort of series expan-
sion, the principle of which is as follows.33 Let X and Y be
two correlated stochastic variables andl a real number.
Moreover, let the average over the stochastic process (X,Y )
be designated bŷ &. Then, using the cumulant expansion
theorem and expressing the cumulant average by the symbol
^ &c , one can write

I~l !5^exp~ iX1lY !& ⇒ S dI

dl
D

l50

5^Yexp~ iX !&,

I~l !5expF ^iX1lY &c1

1

2!
^~ iX1lY !2&c

1

1

3!
^~ iX1lY !3&c1¯G

⇒ ^Y exp~ iX !&

[S dI

dl
D

l50

5F ^Y &c1 i^XY &c2

1

2
^X2Y &c1¯G

3^exp~ iX !&. ~7!

This is the series expansion which was desired. Its leading
term ^Y & ^exp(iX)& expresses the average^Y exp(iX)& in ab-
sence of correlation; and its higher order terms
i^XY &c^exp(iX)&,21/2̂ X2Y &c^exp(iX)&, etc., describe the
correlation effects. The stronger the correlation, the slower is
the convergence. On the contrary, only the zero and first

order terms need to be considered if it is weak. This last
condition will be taken as granted in what follows.

The above technique will now be applied in the
present study. In fact, the terms in curly brackets of Eq.~6!
can all be given the form̂Y exp(iX)& by simply choosing
the variables X,Y properly. It suffices to take X
5*0

t1dt v(t)2*0
t11t2dt v(t)1*0

t11t21t3dt v(t) and Y
5u l(0)uk(t1)u j(t11t2)u i(t11t21t3) in its first term,
and to proceed similarly in the three others. The problem
then reduces to that of determining the averages^Y &c ,
^XY &c , ^exp(iX)& for each possible choice ofX,Y , i.e., for
each Liouville pathway of the system. Detailed calculations
are given below.

3. Details of calculations

One starts by calculating the quantities^exp(iX)&. They
represent vibrational 4-time correlations functions in absence
of rotation–vibration coupling. Occurring frequently in vari-
ous domains of nonlinear spectroscopy, these functions are
well known; see, e.g., Refs. 32 and 34. The cumulant expan-
sion theorem leads to the following result:

^exp~ iX !&5e iv0(t16t3)expF2

1

2E0

t1E
0

t1
dt dt8b~ t,t8!

2

1

2E0

t3E
0

t3
dt dt8b~ t,t8!

6E
0

t1E
0

t3
dt dt8b~ t1t11t2 ,t8!G , ~8!

where v05^v& is the mean frequency of the transitionv
51→v50 in solution, andb(t,t8)5^v(t)v(t8)&c is the
frequency shift correlation function; in what follows, it
will be given a simple exponential formb(t)5^v2&c

3exp(2t/tV). The signs6 depend on the Liouville pathway
which was chosen. Vibrational correlation functions vanish
for t1 ,t3 large as compared totd andtV. . These variables
are thus limited which is important for subsequent develop-
ments of the theory.

The quantitieŝ Y &c are studied next. They correspond to
various rotational 4-time correlation functions in absence of
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rotation–vibration coupling. For example,^Y &c is equal to
^uz(0)uz(t1)uz(t11t2)uz(t11t21t3)& in the parallel
electric field configuration, whatever the Liouville pathway;
this simplicity is lost in the perpendicular electric field con-
figuration. The dependence of these functions ont1 , t3 can
safely be suppressed: these variables are limited by the times
td , tV , which in their turn are small compared to the rota-
tional relaxation timetO . The resulting 2-time correlation
functions may be calculated by assuming that dynamic vari-
ablesu luk2^u luk&, etc., obey the simple Langevin equation
of motion. Proceeding in this way one finds

^uz~0!uz~0!uz~t2!uz~t2!&5
1
9~11

4
5e2zt2! ~ i !,

^uz~0!uz~0!uy~t2!uy~t2!&5
1
9~12

2
5 e2zt2! ~' !, ~9!

^uz~0!uy~0!uz~t2!uy~t !&5
1

15e
2zt2 ~' !,

wherez51/tO . The first of these three rotational correlation
functions occurs in problems in which the pump and probe
electric fields are parallel to each other, and the latter two are
present in those in which the two fields are perpendicular.

Finally, the quantitieŝ XY &c still remain to be treated.
As they express rotational–vibrational coupling effects, they
are central objects of the present theory. Their form varies
when going from one Liouville pathway to another, but their
general aspect is always the same,

^XY &c56iE
0

t1
dt8^u l~0!uk~t1!u j~t11t2!

3u i~t11t21t3!Dv~ t8!&

1iE
0

t3
dt8^u l~0!uk~t1!u j~t11t2!

3u i~t11t21t3!Dv~ t81t11t2!&, ~10!

whereDv(t)5v(t)2^v&. Detailed calculations involve the
following steps.~i! The variablest1 , t3 , andt8 entering into
the 5-time correlation functions of Eq.~10! are limited by the
times td ,tV . From the other side, the correlation times as-
sociated with them are expected to be of the order of, or only
slightly smaller thantO . Then, astd ,tV are small as com-
pared totO , the dependence ont1 , t3 , andt8 may be sup-
pressed in all integrands, and the 5-time correlation functions
become simple 2-time correlation functions. This time scale
argument reduces massively the complexity of the problem,
and makes calculations practicable.~ii ! The variablesu luk

2^u lukDv&, etc., are supposed to obey the simple Langevin
equation of motion, and to decay with the same decay con-
stant z8. The quantitieŝ uz

2Dv&, ^uz
4Dv&, and ^uz

2uy
2Dv&

which appear in the calculation can be determined by con-
sidering the isotropy of the liquid medium. One finds, for
example,^Dv&5^Dv(ux

2
1uy

2
1uz

2)&50⇒^Dvuz
2&50, etc.

Settinga5^uz
4Dv& there results

^XY &c52ia~6t11t3!exp~22z8t2! ~ i !,
~11!

^XY &c5
1
2 ia~6t11t3!exp~22z8t2! ~' !.

The upper of the above two expressions for^XY &c is valid if

the electric fieldsE1 ,E2 are parallel to each other, and the
lower if they are perpendicular. From the other side, the
signs6 refer to different Liouville pathways of the system,
i.e., to different terms in curly brackets of Eq.~6!. Rotation–
vibration coupling effects thus depend on the 2-time correla-
tion function ^uz

2(0)uz
2(t2)Dv(t2)&5a exp(22z28t2) and

vanish at timest2 such thatt2@1/z8. The quantitya can
thus be interpreted as a rotation–vibration coupling constant.
Astonishingly enough, in spite of its complexity the present
analysis leads to comparatively simple, although nontrivial,
results. Treating this complexity–simplicity is entirely sub-
mitted to the isotropy of liquid medium.

The final expressions for dipole moment correlation
functions may be obtained by collecting the above results
for ^exp(iX)&, ^Y &c , and ^XY &c . The sums (̂Y &c1^XY &c)
exp(iX) have to be evaluated for all possible Liouville path-
ways, i.e., for each of the four terms of Eq.~6!. As stated
earlier, the dipole moment correlation functions required for
determination of rotational anisotropy in present conditions
are those which correspond to the indiceszzzz, zzyy , zyzy ,
and zyyz; other combinations of indicesi, j ,k,l are irrel-
evant for the present problem. This ends the study of dipole
moment correlation functions in the presence of rotational–
vibrational couplings.

D. Electric field correlation functions

The calculation of these functions is based on the fact
that the wavelengthl of the optical radiation is much longer
than molecular dimensions, but much smaller than experi-
mental cell dimensions. However, molecular motions are
probed over distancesl!l. A system experiencing a spa-
tially varying electric field is then dynamically equivalent to
an ensemble of subsystems submitted to a spatially constant
electric field, but different when going from one subsystem
to another. The vectorr in E1(r,t), E2(r,t) no longer de-
notes a space point, but selects a given subsystem. It is thus
legitimate to work with a spatially constant electric fields
and to average the results overr at the end of the calculation.
If the incident electric fields are coherent, the electric field
correlation function takes its simplest possible form. Re-
calling that in the parallel electric field configuration
the pump and probe electric fields areE1(r,t)
5(0,0,Epump(r,t)) and E2(r,t)5(0,0,Eprobe(r,t)), whereas
in the perpendicular electric field configuration they are
E1(r,t)5(0,0,Epump(r,t)) and E25(0,Eprobe(r,t),0), one
finds

^Ė2i~r,t !E j~r,t2t3!Ek~r,t2t32t2!E l~r,t2t32t22t1!&

5(
s

(
t

(
u

CstuEprobe* ~ t !Eprobe~ ts!Epump* ~t1t t!

3Epump~t1tu!exp~ iVprobe~ t2ts!1iVpump~ t t2tu!!,

~12!

where t15t3 , t25t2t32t2 , t35t2t32t22t3 and Cstu

are constant coefficients; the indicessÞtÞu run from 1 to 3.
These coefficientsCstu depend on the choice ofi, j , k, l.
They are thus different according to whether the function
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under consideration is ^EzEzEzEz&, ^EyEyEzEz&,
^EyEzEyEz&, and ^EyEzEzEy&. As stated earlier, Eq.~12!
only applies if the laser fields are coherent. If they are not,
the quantity between the square brackets must still be aver-
aged over the random processes which are at the origin of the
incoherence. The results depend on the physical nature of
this latter process. This ends the study of 4-time electric field
correlation functions; for a more detailed discussion, see the
review in Ref. 18.

E. Numerical integrations

Before starting numerical work, various numerical data
must still be fixed. Different relaxation times entering into
the definition of dipole moment correlation functions were
taken, whenever possible, from the published computer
simulation work. This is true for the solvent relaxation time
tV and the rotational relaxation timetO . The value of 0.7 ps
was adopted for the former as suggested by Diraisonet al.;22

and the value of 2.5 ps was ascribed to the latter, following
Impey et al. as well as many others.27 Unfortunately, this
purely theoretical attitude could not be maintained up to the
end. Computer simulated population relaxation timestp are
not accurate enough and the constantsa, z8 were never cal-
culated. tp was thus transferred from our previous
experiments1,2 where it was given the value of 1.3 ps, 1/z8
was assimilated totO , and a constanta of 20.7 cm21 per-
mitted to fit the experimental data. The duration of the inci-
dent pulses was supposed to be 150 fs for both pump and
probe; and the phasesfpump(t), fprobe(t) were assumed to
be slowly modulated.

It remains to sketch procedures employed to perform
multidimensional integrations over the variablest, t1 , t2 , t3

involved in Eq. ~2! for S(V1 ,V2 ,t). The integration over
the variablet appearing only in the field’s terms was realized
analytically using a symbolic computation software~Maple!.
The integration overt1 , t2 , t3 was performed numerically
by employing the Romberg integration method, after two
changes of variables on eacht i . Proceeding in this way, an
extremely robust and fast integration C11 program was
provided from a large number of analytical expressions given
by Maple. The time needed to compute a time step on a
personal computer was of the order of a second. This method
of integration can easily be extended to any nonlinear experi-
ment such as photon echo or transient grating.

IV. THEORETICAL RESULTS

The principal results of the present theory will now be
described. The main questions requiring a theoretical inter-
pretation are as follows: Which are spectral effects of corre-
lations between molecular rotations and the OH¯O motions
in HDO/D2O solutions? What happens at the very shortest
times? Does rotational anisotropyR(t) permit a real time
visualization of molecular rotations in presence of correla-
tions? A first flavor of what the final answer could be comes
from a theory generated result stating that, even if HDO
rotations and OH̄ O motions are correlated, the quantity
S i12S' remains independent of rotational dynamics,
whereasS i –S' does depend on it. This can easily be proved

by adding in Eq.~11! for ^XY &c the first expression and
twice the second; this sum vanishes. One concludes that at
least some basic properties ofR(t) survive in presence of
correlations. This result is due to the isotropy of the liquid
medium, and is by no means model dependent.

A more complete answer to the above questions is con-
tained in Fig. 2; the insert illustrates the simple theory in
absence of correlations. The following comments refer to
two-color experiments realized at a fixedVpump and variable
Vprobe’s. ~i! Three time domains have to be distinguished.
The first of them corresponds to timest,200 fs: the pump
and probe pulses overlap, or overlap partially, in this region.
The second extends from 200 to 1500 fs, approximately: the
pump-generated wave packets are available in a great num-
ber, as are the compressed or elongated OH¯O bonds. Fi-
nally, in the third time domaint.1500 fs, the wave packets
are destroyed and the statistical equilibrium is reached again.
~ii ! In the first domain, ln(R(t)) deviates from the limiting
value of ln~2/5!, increasing or decreasing at negativet’s as a
function of Vprobe. This seemingly erratic behavior, not yet
reported in the literature, is due to the pump–probe coher-
ence and is illustrated in Fig. 3. The dotted curves designate
the anisotropy calculated by the complete theory, and the full
curves that obtained by neglecting the coherent contribu-
tions. The ‘‘anomalous’’ behavior ofR(t) at shortt’s disap-
pears in the latter case.~iii ! In the second time domain,
ln(R(t)) measures the square averaged rotation angle^u2(t)&
of the OH link. These rotations cannot be assimilated to a
rotational diffusion: the dependence of^u2(t)& on t is not
linear. Rotational anglesu~t! are smaller for the low than for
the high Vprobe’s; this behavior was expected:5–7 hydrogen
bonds ‘‘seen’’ are shorter in the former case than in the latter
~Fig. 1!. ~iv! In the third time domain, a family of parallel
straight lines with a slope corresponding totO52.5 ps is
observed. Individual straight lines are shifted vertically with
respect to each other, as a function ofVprobe; the straight
lines corresponding to small probe frequencies are placed
higher than those associated with large ones. This observa-

FIG. 2. Schematic presentation ofR in presence of rotation–vibration cou-
pling effects. The insert reproduces the results of the simple theory. Coher-
ent effects dominate in the time domain 1, wave packet dynamics governs
the time domain 2, whereas rotational diffusion is characteristic of the time
domain 3. In this figureVprobe 1 and Vprobe 2 represent two values of the
probe frequencyVprobe.
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tion indicates that in this time period water molecules ex-
ecute a normal rotational diffusion with a normal relaxation
time tO . However, the short time memory of the system is
not entirely lost: molecules having rotated faster in the sec-
ond time period are deflected more than those which were
slower, and the corresponding straight lines lie lower. An
approximate analysis permits to guess the size of this effect:
if the difference of the probe frequencies is equal toDV,
the separation of the straight lines is equal toD(ln(R))
5~45/4!~a/b!~DV!. The experimentally obtained coupling
constanta is negative: the hydrogen bonds shorter than the
average of 2.86 A thus contribute more to the coupling con-
stant than the long hydrogen bonds.

In summary, three main effects are predicted by this
theory. The first is that correlations between rotations and
OH¯O motions transform an initially unique curveR
5R(t) into a family of curvesR5R(t,Vpump,Vprobe). This
effect can be considered as a signature of correlated motions.
The second effect is the interference of the pump and probe
pulses at short times where they overlap. Rotational anisot-
ropy R(t,Vpump,Vprobe) no longer remains a useful indicator
of rotational dynamics at these time scales. Finally, if this
short time domain is eliminated, rotational anisotropy per-
mits to visualize molecular rotations even if correlations are
present. In fact, outside the overlap region, the quantity
ln R(t,Vpump,Vprobe)2 ln(2/5) is still equal to 3/2 times
^u2(t)& at givenVpump,Vprobe. Then using the relation of
Fig. 1, the curves just described may be transformed into
those relatingA^u2(t)& and t. A monocolor experiment is
required to monitor molecular rotations in hydrogen bonds of
a fixed length; a two-color experiment is needed to follow
these motions in contracting or expanding hydrogen bonds.
One concludes that, if the necessary precautions are taken,
ultrafast laser spectroscopy permits to ‘‘film’’ molecular ro-
tations in water.

V. VISUALIZING MOLECULAR ROTATIONS
IN REAL TIME

In view of the very explicite nature of the above state-
ments, it was decided to check them experimentally. A

pump–probe experiment was thus set up having the follow-
ing characteristics: Its central element was a titanium–
sapphire amplifier, delivering 130 fs pulses at 800 nm with a
repetition rate of 1 kHz. It drived two lines of pulses, tuned
independently in the midinfrared. The principle of the gen-
eration was the parametric amplification of a quasicontinuum
in the near infrared, followed by a frequency mixing in the
midinfrared. The features of the sources were as follows. The
more energetic line~the pump! produced pulses having du-
ration of 150 fs and a spectral width of 65 cm21. It delivered
more than 10mJ between 2800 and 4800 cm21. The weaker
line ~the probe! had similar characteristics but with a maxi-
mum energy 10 times less. A motorized optical delay line
precisely controlled the delay between the pump and the
probe. In order to measure the anisotropy, the probe was
turned at 45° from the pump by a midinfrared half-wave
plate; the state of polarization was controlled by filtration
after a Glan–Taylor prism, which compensated for a possible
ellipticity of the outgoing beam. The sample was 100mm
thick and contained 1% HDO in D2O at room temperature; it
was circulated to avoid heating problems. It should be
stressed that this experiment is intrinsically difficult. The an-
isotropyR being defined as a ratio of two signals, the error
bars become excessive whenever the latter are weak; this is
always the case for negative pump–probe delay times as well
as for times exceeding 2 ps. Nevertheless, the results are of a
good quality in the interval between 0 and 2.5 ps; the accu-
racy is smaller out of this interval.

The anisotropy curves obtained with excitation at 3510
cm21 are illustrated in Fig. 4. In spite of the complexity of
the present problem, the agreement between theory and ex-
periment is excellent. The theory can thus be accepted with
much confidence. Finally, two ‘‘films’’ showing molecular
rotations are given in Fig. 5. The mean squared rotational
angleA^u2(t)& of the OH bond of HDO is illustrated as a
function of timet. The OH̄ O bond length is kept constant
and equal to 2.99 A in curve~a!, whereas it contracts from
2.99 A to 2.86 A in curve~b!. One notices that rotational
angles of the order of 35° are attained in times of the order of
700 fs. As a bending of this magnitude leads to a breaking of

FIG. 3. Rotational anisotropyR(t,V1 ,V2)calculated by the full theory
~dotted curves! and by a theory in which the coherent contributions are
suppressed~full curves!. The pump frequencyVpump is equal to 3510 cm21

andVprobe frequencies are equal to~a! 3510,~b! 3450, and~c! 3410 cm21,
respectively.

FIG. 4. ~Color! Rotational anisotropyR measured experimentally~symbols
O, h, n, L!, and calculated theoretically~full curves!. The pump frequency
Vpump is equal to 3510 cm21, and the probe frequenciesVprobeare equal to
3510, 3480, 3450, and 3410 cm21, respectively.
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hydrogen bonds, one concludes that their lifetime in water is
rotation limited. Unfortunately, our camera is blind at very
short times where the pump and probe interact coherently: no
‘‘filming’’ is possible at those time scales. Note however that
A^u2(0)& is larger than zero for any finite pump and probe
pulse duration. It is thus possible to ‘‘film’’ the HDO rota-
tions in HDO/D2O solutions. Not only the OH̄ O stretching
motions but also the HDO rotations can be monitored by
ultra-fast laser spectroscopy. Here again, the original Zewail
approach proves extremely useful in visualizing molecular
motions.

VI. DISCUSSION

Only a limited number of papers have yet been pub-
lished concerning the coupling between molecular rotations
and OH̄ O motions. In fact, the discovery of this subtle
effect is recent5–7 and its analysis remains partial. The fol-
lowing points merit attention.~i! The theory was first elabo-
rated in a semiempirical form. A model was proposed in
which the reorientation time is supposed to depend on fre-
quency and in which the spectral diffusion is incorporated.
Formulated in this way, the model was able to confirm that
water molecules rotate in fact slower in short hydrogen
bonds than in long ones. The activation energy of molecular
reorientations was also derived.6 However, the notion of an
r-dependent rotational relaxation timetO remains to be pre-
cised.~ii ! The possibility of monitoring rotational anglesu~t!
as a function oft has been also envisaged in classical infra-
red and Raman spectroscopy. However, their band shapes
depend on rotational and on vibrational dynamics, simulta-
neously. The two types of motion must thus be disentangled
from each other, if rotations are to be studied. This is usually
done by employing the so-called VV–VH separation
technique.16 Rotational self-correlation functions obtained in
this way arê P1(cos(u(t)))& for infrared and̂ P2(cos(u(t)))&
for Raman; the latter is exactly the same as in pump–probe
experiments. Rotational anglesu~t! can thus be, and have

occasionally been, determined by employing the two classi-
cal techniques. Of course, the OH̄O bond length selection
is impossible in this case. For further reading, see Ref. 35.
~iii ! Molecular dynamics simulations of^P1(cos(u(t)))& and
^P2(cos(u(t)))& showed that these functions exhibit a bump
at time scales of the order of 100 fs; it was attributed to
librational dynamics of water molecules; see Refs. 27 and 31
and many others. Unfortunately, this interesting feature is
undetectable by the present technique. The present discus-
sion may be closed by emphasizing the importance in the
present context of short time domains below 200 fs. Normal-
izing the anisotropy to 2/5 at zero time propagates experi-
mental errors to the rest of the spectrum and should be
avoided.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the
GDR 1017 of the CNRS during this work. The Laboratoire
d’Optique et Biosciences is a Unite´ Mixte de Recherche No.
7645 of the CNRS and the Laboratoire de Physique The´or-
ique des Liquides is a Unite´ Mixte de Recherche No. 7600 of
the CNRS.

1G. Gale, G. Gallot, F. Hache, N. Lascoux, S. Bratos, and J-Cl. Leicknam,
Phys. Rev. Lett.82, 1068~1999!.

2S. Bratos, G. Gale, G. Gallot, F. Hache, N. Lascoux, and J-Cl. Leicknam,
Phys. Rev. E61, 5211~2000!.

3M. Dantus, M. Rosker, and A. H. Zewail, J. Chem. Phys.87, 2395~1987!.
4R. Bernstein and A. H. Zewail, J. Chem. Phys.90, 829 ~1989!.
5S. Woutersen, U. Emmerichs, and H. Bakker, Science278, 658 ~1997!.
6H. K. Nienhuys, R. V. Santen, and H. Bakker, J. Chem. Phys.112, 8487
~2000!.

7H. Bakker, S. Woutersen, and H. K. Nienhuys, Chem. Phys.258, 233
~2000!.

8H. Graener, G. Seifert, and A. Laubereau, Phys. Rev. Lett.66, 2092
~1991!.

9R. Laenen, C. Rauscher, and A. Laubereau, Phys. Rev. Lett.80, 2622
~1998!.

10R. Laenen, C. Rauscher, and A. Laubereau, J. Phys. Chem. B102, 9304
~1998!.

11J. Stenger, D. Madsen, P. Hamm, E. T. J. Nibbering, and Th. Elsaesser,
Phys. Rev. Lett.87, 027401~2001!.

12W. Mikenda, J. Mol. Struct.147, 1 ~1986!.
13T. Tao, Biopolymers8, 609 ~1969!.
14G. Fleming, J. Morris, and G. Robinson, Chem. Phys.17, 91 ~1976!.
15A. Tokmakoff, J. Chem. Phys.105, 1 ~1996!.
16S. Bratos and E. Mare´chal, Phys. Rev. A4, 1078~1971!.
17J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, J. Phys. Chem.

102, 4158~1998!.
18S. Bratos and J-Cl. Leicknam, J. Chim. Phys. Phys.-Chim. Biol.93, 1737

~1996!.
19S. Bratos and J-Cl. Leicknam, J. Chem. Phys.109, 9950~1998!.
20H. K. Nienhuys, S. Woutersen, R. V. Santen, and H. Bakker, J. Chem.

Phys.111, 1494~1999!.
21S. Woutersen and H. J. Bakker, Phys. Rev. Lett.83, 2077~1999!.
22M. Diraison, Y. Guissani, J-Cl. Leicknam, and S. Bratos, Chem. Phys.

Lett. 258, 348 ~1996!.
23A. Geiger, P. Mausbach, J. Schnitker, R. L. Blumberg, and H. Stanley, J.

Phys.~France! 45, C7 ~1984!.
24J. Marti, J. Padro, and E. Guardia, J. Chem. Phys.105, 639 ~1996!.
25A. Luzar and D. Chandler, Nature~London! 379, 55 ~1996!.
26M. Nakahara, inPhysical Chemistry of Aqueous Solutions, edited by H.

White, J. Sengers, D. Neumann, and J. Bellows~Begell House, New York,
1995!, p. 449.

27R. Impey, P. Madden, and I. McDonald, Mol. Phys.46, 513 ~1982!.

FIG. 5. Real time ‘‘filming’’ of HDO rotations. The measured quantity is the
mean squared rotation angleA^u2(t)& of the OH bond of HDO at timet,
starting from the initial OH bond direction; this angle is measured in de-
grees. The OH̄ O bond length is equal to 2.99 A in the curve~a!, whereas
it contracts from 2.99 A to 2.86 A in the curve~b!. As expected, the OH
rotations are slower in short OH̄O bonds.

11308 J. Chem. Phys., Vol. 117, No. 24, 22 December 2002 Gallot et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.1 On: Mon, 19 May 2014 08:59:47



28H. Berendsen, J. Grigera, and T. Straatsma, J. Phys. Chem.91, 6269
~1992!.

29K. Watanabe and M. Klein, Chem. Phys.131, 157 ~1989!.
30D. V. Belle, M. G. Froeyen, G. Lippens, and S. Wodak, Mol. Phys.77, 239

~1992!.
31I. Svishchev and P. Kusalik, J. Phys. Chem.98, 728 ~1994!.

32S. Mukamel,Principles of Nonlinear Optical Spectroscopy ~Oxford Uni-
versity Press, New York, 1995!.

33G. Tarjus and S. Bratos, Phys. Rev. A30, 1087~1984!.
34S. Bratos and J-Cl. Leicknam, J. Chem. Phys.101, 4536~1994!.
35W. C. Rothschild,Dynamics of Molecular Liquids ~Wiley, New York,

1984!, p. 135.

11309J. Chem. Phys., Vol. 117, No. 24, 22 December 2002 Molecular rotations and OH¯O motions in water

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.1 On: Mon, 19 May 2014 08:59:47


