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Application of classical models of chirality to surface
second harmonic generation

F. Hache,® H. Mesnil, and M. C. Schanne-Klein
Laboratoire d’ Optique et Biosciences—CNRSINSERM/Ecole Polytechnique/ENSTA, 91128 Palaiseau Cedex,
France

(Received 12 September 2000; accepted 30 July 2001

Two classical model$Kkuhn and Kauzmannare extended to calculate the second-order nonlinear
response of an isotropic layer of chiral molecules. Calculation of the various nonlinear
susceptibilities(electric dipolar, magnetic dipolar, and electric quadrupolar performed and
applied to the derivation of the second harmonic field radiated by the molecules. It is shown that the
two models give strikingly different results about the origin of the chiral response in such
experiments. Previously published results are analyzed in view of this calculation which allows to
understand the different interpretations proposed. This calculation emphasizes the interest of surface
second harmonic generation to access information about the microscopic origin of optical activity in
chiral molecules. ©2001 American Ingtitute of Physics. [DOI: 10.1063/1.1404983

I. INTRODUCTION fects cannot account for all experimental cabesndeed,
nonlocal effects exist and one must introduce electric and

Chiral molecules which have no plane of symmetry andmagnetic second-order responses which are both comprised
occur as right- or left-handed enantiomers are very intriguingyt chiral and achiral components to interpret such

from a physicist's viewpoint. They display chiroptical prop- gyneriment£:5 Chiral components are those which cancel
erties such as optical rotatory dispersion or circular dichrog, \+ it there exists a plane of symmetry on the surface

E?rr]n that are currentl_y _use?l tﬁ. contrpl (I:hlral_lty Ofl.mOI?CuLes'whereas achiral ones are those which do not cancel. One of
e microscopic origin of this optical activity lies In the o striking features of SHG on chiral surfaces is the follow-

nonlocality of the light—matter interaction; one must Con'ing: Playing around with the polarizations of the fundamen-

sider the variation of the electric field associated to the light " .« < 12 monic beams. it is possible to separate the elec-
across the spatial extension of the molecule. By such nonlot— i

S . .. tric and magnetic contributions on one hand and the achiral
cal effects, the light is able to probe the spatial organization . L .
. - and chiral ones on the other hand. Utilizing this procedure,
of the molecule and is sensitive to the handedness of th

: N . ﬁauranenet al. showed for example that magnetic contribu-
molecular arrangement. As far as linear optics in isotropic

liquids is concerned, nonlocality translates into the influencéIons wefrf(_a QOT;nar;: Ilr'] Chm:)l. polymeﬁrs whereas electric ones
of the magnetic dipole on the light—matter interaction andVe'e suflicient for neticenebisquinone.

molecules must possess together an electric and a magnetic The r(lilffererrllce between these .eprerlr:nenta.I relsult§ is to
allowed dipolar transition to display optical activity. be sought in the microscopic origin of the optical activity.

Surface second harmonic generatit®BHG) has been Two main classical approaches have been proposed to model
used for some times to study thin layers of chiral moleculedh® méchanisms of optical activifyin the coupled-oscillator

and has proved to be very sensitive to the chirality and tg"0del, the optical activity arises from the coupling of two
bring new interesting featurés® In particular, one can get a separate, noncollinear oscillatérin the one-electron model,
chiral signature with purely electric dipolar response withouta" electron is bound on a helix giving electric and magnetic
considering nonlocal effects. This feature is due to the facgharacters to the optical transitichhe former model has
that second-order optics involves three electromagnetic fielddeen successfully applied to describe excitonic coupling and
that can probe the three directions of space. Such phenorthe latter helical polymers for example. However, extension
enon has been utilized to explain experimental results suchf these models to second-order nonlinear optics has not
as the rotation of the polarization of the second harmonideen fully undertaken. It is the purpose of the present paper
beam with respect to the fundamental one on &0 introduce nonlinearity in these two models so as to gain
enantiomerically-pure dihydroxy-binaphtyl surfaceThis  insight in the origin of the nonlinear optical activity and to
electric dipolar response has, however, proved not to be sufinderstand better the differences observed in the previously
ficient to explain all the results obtained in SHG experimentgeported experimental results. In the next section, we will
on chiral surfaces. In particular, careful analyses of the exfirst introduce the general framework; starting from the clas-
perimental results, especially in terms of the phase of thaical equations of motion and taking nonlocal effects into
nonlinear susceptibilities, have shown that pure electric efaccount, we explain how to get the microscopic hyperpolar-
izabilities and the macroscopic nonlinear susceptibilities and
YFax:  (+331-69-33-30-17:  electronic  mail:  francois.hache@ t© calculate the second harmonic radiation. This calculation
polytechnique.fr is then applied to the Kuhftoupled-oscillatorsmodel(Sec.
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Il and to the Kauzmanthelix) one (Sec. I\V). These two
calculations give very different results as for the origin of the
second-order optical activity. Finally, Sec. V provides a dis-
cussion in relation with former experimental results.

Il. GENERAL FRAMEWORK

In this section, we want to give a general account of the
calculation of the second harmonic generation by an isotro-
pic layer of chiral molecules, starting from the microscopic
response of individual molecules. Sl units are used through-
out this C,alcwatlon' TO begln with, one cpn5|ders the Class'leG. 1. Geometry of surface SHG. The thick bar represents a molecule
cal equations of motion for the electrons in the system undefeserenced by the Euler angles.
consideration. The internal forces which constrain this mo-
tion depend on the particular model, as described in the fol-
lowing sections. On the other hand, the driving force alwaysirst evaluate the tensaﬁeeq and then deducg®™ and 8¢9,
originates from the Lorentz force acting on the electronsas the origin of the nonlocality appears more readily.

Note that only the electric field plays a role as the magnetic  Beside this induced electric dipole, we must also calcu-
term is perpendicular to the electron motion. The followinglate the induced magnetic dipole and electric quadrupole,
g;sérgent is therefore quite general and applicable to many mi(2w)=eoﬁﬂ-‘ﬁeEj(w)Ek(w), (2.4

First of all, as we are interested in the chiroptical phe- Qij(20) = BYEw)Ey(w). (2.5
nomena, we must introduce nonlocal effects in the calcula- _ )
tion. This is readily done by expanding the electric field ~ The above expressions describe the second-order re-

along the spatial directions, sponse of an individual molecule. To get the total response of
an assembly of such molecules, we have now to average
E=E(0)+r-VE. (2.1) these expressions over the distribution of molecules and to

Use of this first-order expansion is justified as the mo-derive the macroscopic electric and magnetic polarizations as

lecular extension is small compared to the wavelength of th&vell as the quadrupolarization. Nonlinear susceptibilities are
light. Higher-order terms are therefore negligible. then defined by connecting these latter to the electric and
So as to introduce nonlinear response in the system, w&agnetic fields.

suppose that the internal forces can be described by anhar- Let us consider a surface perpendicular to the axis 3 in
monic oscillators. In that case, considering a monochromatighe laboratory frameFig. 1). Considering the usual Euler
electric field oscillating at fundamental frequenay the  anglesé (polar anglg, ¢ (azimuthal angle and ¢ (rotation
electronic response displays terms which oscillate at the se@nglé to describe the molecular orientation, we suppose that
ond harmonic frequencya2 From this second harmonic mo- the last two angles are uniformly distributed whereaes
tion, it is possible to calculate the induced electric dipolefixed. This corresponds to a simple isotropic surface. If the

and, according to Eq2.1), we write molecules in the layer are not chiral, the symmetrgis, ,
cce ~ eeq all the planes perpendicular to the surface become symmetry
wi(2w) = €oBijk Ej( @) Ex(w) + 2€0Bij Ej(@) VE|(@).  planes. For chiral molecules, such symmetries are no longer

allowed and the symmetry i8,,. Calculation of the macro-
Beside the usual electric dipolar hyperpolarizability scopic nonlinear susceptibilities follows the general rules of
3%, we have introduced a nonlocal opé® that takes the tensor analysis and one has, for example,
electric field gradient contribution into account. We neglect eee _ N((1-1) (I (K -k eee 26
the terms with two gradients as they correspond to higher- X”'_( _ ((EDEDE))abilic 2.9
order contributions. Note that there is no particular symmetryvhere i,j,k(=x,y,z) refer to the molecular frame and

for the rank-4 tensorg®d and that, for exampleged 1.J,K(=1,2,3) to the laboratory oné,), representing the

r ijki . . . .
# B30 in general. However, we can rewrite E@.2) by averaging operatiorN is the _number of molecules per unit
surface. Similar relations exist to connect the nonlinear sus-

symmetrizing and antisymmetrizing the gradient term, s X
ceptibilities y ™, ™€, x4, and x9¢€ (the latter two being

wi(20) = €oBiEj( @) Ex(w) + 260 B "Ej(w)By(w) rank-4 tensorsto their microscopic counterparts. It is pos-
ce sible to reduce the number of nonvanishing independent
+2€0BijdEj(«) ViEi(). 2.3 components by taking the symmetry of tht;\:J surfaze into
This expression corresponds to the usual multipolar exaccount® The results in the case of SHG are given in Table
pansion where beside the electric dipole term, one has thie Note that fory®®¢, ¥™€, andx9¢, the last two indices can
magnetic dipole and the electric quadrupole ones. The fadse interchanged without changing the value of the compo-
tors 2 take into account the fact that the magnetic field nent as both indices refer to the sarffandamental fre-
the gradient termcan originate from one of the two funda- quency, further reducing the number of nonzero components.
mental photons. The tens@®*? is now symmetrical with It is not true for the first two indices gf**™ and x*®9 which
respect to the inversion of the last two indices. We choose toefer to the harmonic and fundamental frequencies, respec-
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TABLE I. Nonvanishing components of the nonlinear susceptibilitiesCioy andC.. symmetries.

Achiral component<.,, Chiral component£.,
x&ee 333, 311322, 113-131=223=232 123=132=—-213=-231
xem 123=-213, 132=-231, 312-321 333, 31¥322, 113-223, 13%232
xmee 123=132=-312=-231 333, 31322, 113=131=223=232
x&eae 1111,3333, 1122, 12121221, 1133, 1222, 2122, 22122221, 1233,
1313=1331, 3311, 313%3113 1323=1332, 3123-3132
xoeea 1111,3333, 1122, 12121221, 1133, 1222=2122, 2212, 2221, 13233123,
1313=3113, 133+3131, 3311 1332=3132

4nterchanging 1 and 2 change signs in the chiral components, but not in the achiral ones.

tively. In the first column, the “achiral” components are cisely the signature of chirality in the SHG signal and to
given, i.e., the components that do not vanish fo€g, understand better the role of quadrupolarization in it.
symmetry. In the second column, we have written the addi- From the above discussion, we can define a procedure to
tional components that do not vanish for e symmetry, study surface SHG from a microscopic modg):derive the
which we call the “chiral” components. The first three lines nonlinear motion equation for the modéi;) derive the cor-
correspond to electric and magnetic dipolar contributiongesponding hyperpolarizabilitiegiii) average over the iso-
(rank-3 tensorsand the last two correspond to the electric tropic layer of molecules to get the nonlinear surface suscep-
quadrupolar termg&ank-4 tensorswhich have not been con- tibilities; (iv) calculate the radiated second harmonic electric
sidered previously. field and redistribute the different mechanisms inftteg and

The tensor x**" has already been introduced by h parameters. We will now apply this procedure to the Kuhn
Persoon$and utilized to interpret experimental resuifsin- and Kauzmann models in the next sections.
troduction of the tensox®® has also been proposed from a
fqrmal point of view! but never distinguished from th_e pre- “g_ COUPLED OSCILLATOR (KUHN) MODEL
vious one as far as experiments are concerned. It is one 0
the purpose of this paper to elucidate this point. To do so, we We consider two coupled oscillators as depicted in Fig.
must not consider only the susceptibility tensors, convenien2. The two oscillators have the same frequenay
to gather the different terms contributing to the nonlinearand the same friction coefficient and are coupled through
response, but not directly accessible to a surface SHG expeidipole—dipole interaction with a coupling parameter
ment. Instead, we calculate the second harmonic electric fieltsupposedly small The microscopic frame isx(y,z). The
which is the quantity measured in the experimémdhis  oscillator A is in the xz plane and makes an anglewith
field originates from the far-field radiation of the light- thex-direction, its rest position is (0,8,d/2). The oscillator
induced electri¢P) and magneti¢M) polarization and from B is in the yz plane and makes an angle with the

the quadrupolarizationQ) and read¥ y-direction, its rest position is (0/2). The introduction of
) the anglea is important to get a chiral response, as it will
E(2w)x| (NXP)Xn— l nxXM — ﬁ(nx Q(n))xn|, becpme clear lat?r on. This system is expiteq by a monochro-
c 2 matic waveEe'“' which induces the oscillation of the elec-

(2.7 trons. Let us calhe™ ! (resp.be™'“!) the elongation of the
wheren is a unit vector in the direction of observation and ©scillator A (resp. B). The coordinates of the electroh
Q(n) is the tensor contraction & andn. From the above
discussion, we know that we must consider three ternt3 in
(x%¢, x®™M, and x®9), one inM (x™*®) and one inQ

(x9%®). With obvious notation, we therefore decompose the
second harmonic electric field in

E(2w) =E®*+ E®M4 E®9+ EMee4- EU°C, (2.8

. I . d2

These various contributions are readily calculated from the
nonlinear susceptibilities. In order to stick to the experimen-
tal situations, we also write y

Eps(20) = Ep(0) +9p E5() +hp Ep(@)Eq(w), 42

(2.9 X

where s, p refer to the beam polarization. Indeed, surface /Osc A
SHG experiments utilizing quarter- and half-waveplates al- " / .

low to measure thesk g, h parameters independently.*®

By analyzing the different terms of E.8) in terms of Eq.  Fig. 2. coupled oscillators used for the Kuhn model. Oscill&tdresp.B)
(2.9, we will be able in the following to assess more pre-is in thexz (resp.yz) plane.
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(resp. B) are (ae '“'cose,0,—d/i2—ae '“'sina) [resp. o iwde o iwde
(0,be 't cosa,d/i2+ be~'“' sina)]. Let us first consider the m,”'=— Tb( 'cosa, m=— 5 a'? cosa,
linear response of the system. The equations of motion of the 3.5
electrons along their respective oscillators can be written, m(22)=0; '
—e d
0. = | £ Gy eosa §=—eal?cod a, Q= —ebcod

QY= —¢[dsina(a?+b?)+sir? a(a2+bV?)],

d ,
- EZ—EEZZ Sina

Q5 =Q)X=0, (3.6
(3.1
xkaV+D bV=—2|E +9E cosa d
@ m[|7Y 27¥ Q2=QW=-e Eb(z) cosa+bM?sina cosa|,
+| E +dE ) i d
—E|sinal|, .
ziprz Q2=Q@=-e _Ea(Z) cosa—a'V2sina cosa|.

where we have introduced the following notatidh;ﬁw(z)

—w?—2iwy, E;;=ViE;, and where the superscrit) In this last expression, we have chosen the defini@on
means first-order solution. Solving this set of equations al= —err for which the trace is nonzero in accordance with
lows us to recover well-known results of this modéDue  EQ.(2.7). Utilizing the traceless form o would change the
to the coupling, the degeneracy of the two oscillators is splitvalue of x4, but would not change the radiated harmonic
ted and two new optical transitions appear with frequencie§€ld, which is the relevant quantity. .
wo(1+ (k/202)) and opposite rotational strengths. These  Plugging the expressions af*), a!, b™), andb® in
new states can be viewed as resulting from the in-phase arfefis- (3.4—(3.6) and utilizing Eqgs.(2.3—(2.5) allows us to
out-of-phase excitations of the two oscillators, the opticaicalculate all the hyperpolarizabilities. General expressions
activity coming from the geometric arrangement. The intro-are quite heavy and do not allow to extract interesting physi-
duction of the parametek allows us to take empirically cal information. We therefore begin with some approxima-
these effects into account. One passes from one enantiom@n and discussions. First of all, we suppose that the funda-
to the other by changing the sign efand reversing one of Mmental frequencyo is far from the oscillator frequency,.
the anglesx. This assumption corresponds to most of the experimental
To introduce a second-order nonlinear response, we sugases where the SHG experiment is performed far from the
pose that the restoring force is not harmonic and reads fa¢lectronic resonances. Note however that it does not preclude

oscillator A, a resonance effect between an electronic transition and the
) ) harmonic frequency. This hypothesis allows us to negkect
—Mwpa—mpBas, (3.2 compared td ,~ w} in our expressions. Second, examining

the same being true for oscillat@®: Looking for the solu- Eq.'(3.3)2in deta;l, we see that there exists a nonlinear elon-
tions oscillating at @ and including the contributions com- gationa® [orb®)] even if =0, i.e., even if the oscillator is
ing from the deve'opment of the electric f|d|ﬂq (21)]' we perfeCﬂy harmonic. This is due to the intrinsic nonlinearity

get the following set of equations: of the electric quadrupole momdfisiee also Eq.3.6)]. Look-
ing at the general formula®ot displayed hepe we observe
D,,a?+ kb®=—ga®M2— —aV[(cosaE,, that comparing th|§ contrlbutlé)n to the anharmomc one
m amounts to comparin®,, (or wg) to fd. Considering the

nature of electronic binding and callingthe equilibrium

—sinaE,,)cosa—(cosaE . ; .
@Ey)cosa—(cosaky, elongation of the oscillator, one estimates tjght~ w3l.*®

—sinaE,,)sina], We must therefore compare the elongatiarf the oscillators
(3.3y  and the separatiod of the two oscillators. In order to be
(2) 2 n2_ & a consistent with the hypothesis of a weak coupling and the
xa'?+Dy,b? = — gbM?— —bM[(cosaE,, yp piing

use of dipole—dipole interaction, we suppose tiat . This
assumption is corroborated by a numerical estimatioh of
which is in the angstrom range for electronic transitions.
+sinak,,)sina]. Making this hypothesis allows us to keep only the termgin

Plugging the solutions of Eq3.1) in Eq. (3.3, we ob- in our expressions and to neglect the other ones. This as-

tain the general expressions of the second-order solutio sumption is very reasonable for the usual experimental con-
g P .nf?gurations where the chiral molecules under study have al-

a® andb(®. These solutions are used to derive the electric ; : :
Wways been chosen so as to give a high nonlinear response.

and magnetic dipole moments as well as the electric quadru- Under these two assumptiof,> « andds1), we get
. w ’
pale one which read very tractable expressions for the hyperpolarizabilities. Let
p?=—ea? cosa, p{?’=—eb? cosa, us now examine in detail th@®® tensor. Out of the 27

_ 3.4 components, there are only 6 independent ones and 3 null
p(ZZ): _e(b(z)_a(z))s|n a, ( ) ones,

+sinaE,)cosa+(cosaEy,
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Be®cos a volving the three space directions are nonzero. These com-
eee__ peee__ (3.7 AL
o= Byyy m2D2D. . ponents are null fow=0; in that case, there cannot be any
0 w20 coupling between the three space directions at the molecular
gece_ geee _ peee _ gece Be3k cos a 38 level and everything cancels out in the spatial averaging pro-

cedure. According to Table I, we see that the only non-

vanishing electric dipolar component is chiral. This chiral

eee__ peee__ eee__ eee . . . .

xxz— Bxax= ~ Byyz= ~ Byzy component is directly proportional teand vanishes for un-
coupled system, as expected. Furthermore, it is proportional

(3.9 toD,,—D,. This dependence comes from tB&? terms,

XXy XyX yxy yyx 60m2D 3 D 2e '

3 .
e eco. Be’cosasirta
_Bzxx_ _ﬂzyy_ -

€Mm’DyDa, the only ones contributing tg}55 when¢ and ¢ are random.
eee_ peee_ peee It means that if both the fundamental and the harmonic pho-
e o ton energies are far from the electronic transition, this term
 eee. neee eee_ﬁe3 cog a sina cancels out. Such a cancellation is expected from a general
= Byzz= Bayz= 2~ e m?D2D,, (310 point of view: From Table I, we havei5s= — X513, on the
. B other rlgend, der from resonances, Kleinmann symmetry im-
o= geee— B€ Kk COS’ , (3.10) plies x753= X513, resulting in a null coefficient. It is there-
vy Py e omPD2D2 fore necessary to be not too far from a resonatioe ex-
cce ece. eee  ece ample at 2) to observe a SHG signal originating from chiral
xyz— Pxzy™ = Pyxz™ = Pyzx electric components. Let us come now to the magnetic con-
Be3k cof a sina tributions: they are achiral and in_dependent of the coupling
= 53> D,,—D,), (3.12 parameter. Note that the nonvanishing componentg®gf
€om°D,,D3, and of Y€ are equal. This is not surprising as they corre-
B = Be= peee=0. (3.13  spond to closely connected phenomena. All the above results

o o ] ] are consistent with the linear response. Indeed, chirality in
Examination of these coefficients is already very instructne kKuhn model derives not from a real magnetic moment

tive, as one can see that some components are independenif rather from qux u term and is therefore a pure electric

the coupling parametek whereas others are not. In fact eftect This is recovered in the surface SHG where the chiral
those which depend o are those for which the two space esponse is also a pure electric effect. Let us stress that the

directionsx andy come into play. This is understandable as quadrupolar terms are not vanishing and are achiral and in-
only those components probing these two space direCtior‘&ependent ofc.

will be sensitive to the coupling, and thus to the chirality of
the molecules. Note that theyz components, which will
prove to be relevant in the forthcoming discussion, is non
zero only under the condition that*0 andD ,#D,,, . Simi-
lar expressions are obtained 6™ and 8™M¢. The number
of nonzero components is higher f6f° (41) and for 89¢¢
(45), but the conclusions still hold; they depend eif they
involve x andy.

Let us proceed now to the calculation of the nonlinear
susceptibilities. Due to the high degree of symmetry of th

To calculate the second harmonic electric field radiated
by the molecules on the surface, we use E47) together
‘with the above calculations. In order to get readable results,
we perform the derivation in a simplified case. First of all,
we neglect the Fresnel coefficients in the following expres-
sions. They are only multiplicative factors that do not change
the discussion. Proper introduction of these coefficients can
be found in Refs. 5 and 16. Second, we assume that the
incidence and reflection angles are equal to 45° and that the
L 8ndex of refraction of the layer is equal to 1. The geometry of
surface C.,) and also of the individual mole.cule.s, many ihe experiment is shown in Fig. 1. With these assumptions,
terms go to zero and the final results are quite simple. W‘?he relevant vectors for the calculation are=1A/2(1,0,1)
give below the nonvanishing independent components fo(direction of observation k= w/c\2(1,0— 1) (wave v;ac'tor

eee eem mee
X X andy of the fundamental beamE= (E, /2, Es.E,/2) (fun-
cee Ne3B . k(Ds,—Dy,) damental electric field The second harmonic electric field is
X123~ 7 m? cos a sina(1+3 cos ) D3pZ. expressed on the polarization bagss-(0,—1,0) and p

(3.14 =1//2(-1,0,1). Using these definitions, we calculate the
expressions of the various fields adding up to give the total
second harmonic fieldE(2w)=E®*¢+ E®M+ E®®94- EMe®
+EY°€ [Eqg. (2.8)]. The expressions of these fields, together
with their contributions to thd, g, h parametergsee Eq.

. , (3.15 (2.9]are given in Table II. These results are consistent with

DuD2, the conclusions drawn about the nonlinear susceptibilities.

i wNe3sd We recover that only the purely dipolar terms contribute to

————cogasina(l+3cosX¥) — ) the chiral signal. All the magnetic dipolar or electric quadru-

D.D2, polar ones only give achiral signals. Furthermore, it is clear

(318 from Table Il that the second harmonic fiel@se™, E™Me*,
Several points are worth commenting. Due to the highE®®d, and E9®¢ have the same order of magnitude and that
degree of symmetry of the system, only the components inthey contribute to the santachira) coefficientsf,, g,, and

ioNe®sd
Xﬁ§?=X§§?=W£co§ a sina(1+ 3 cos 2)

1

X

mee__ _
X123 =

8€0m
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TABLE II. Second harmonic electric field radiated by an isotropic layer of z
molecules described by the Kuhn model. T are involved functions that A
are not given here for the sake of readability.

Contribution

Electric field tof, g, h
Ne*8 k(D,,—D,,)
ece w . . 2 A
ES®oc = —DiDgw cog asina(1+3 cos P)E, fs (chiral) >y

e NP 02 D) g o cina1+3 cos D h, (chiral
P OCW—DMCO asina( cos 3) pEs p (chiral

iwNe’gd 1 ) )
Eseemocmﬁcosz asin a(1+3 cos D)EE; h, (achira)
0e3 vT2e FIG. 3. Representation of the Kauzmann model. The first electron is on the
ioNe’gd 1 id heli i
Egenx ‘;e /i o co2 arsina(1+3 cos B)E2 g, (achira) solid helix and the second one on the dotted helix.
0i 02w
ioNe’gd 1
T — ]_Ze—rrlgc Wcos2 asine(1+3 cos DEE;  hs (achira)
_ 630 J T may seem artificial but it has the advantage of illustrating in
Egﬁu%a%coéasin a(1+3 cos D)E; f, (achira) a simple manner the essential feature of one-electron optical
-0 w20 activity. By selecting the motion of the electrons along the
Eoc— lwhe'd 21 £,(6,0)E,E, h, (achira) helix axis, it raises the fundamental paradox that such helices
! P . . . .o .
em’c D?D,, with only one electron do not display optical activity in an
ioNe’gd 1 . isotropic arrangemehtand it makes the calculations easier
ESoc — ——[f,(6,0)E2+f4(6,0)E2 f,,0, (achira) " . ] -
P en’e Dtzw[ Ab0E (b pOp and more informative. Note that a complete calculation with
o 1oNE*sd - he (achira) a more physical systerta unique electron on a hejixhas
* T enfc DD, AOVEES s achira been developed in Ref. 17. As discussed below, the two ap-
o 1oNEBd 1 , , _ proaches agree on the main points. _ o
B~ —nfc D7D, s B e b)E] fp.0p (achira) Let us calla the radius of the helix and b its pitch.

We defineL=(a%+b?2 The handedness of the enanti-
omer is determined by the parameterThe coordinates of
the two electrons can be described with the help of a unique
hs. Whereas it is not correct formally to introdug€®™,  parameter ¢ by (acose, asingbe) and (—acose,
XM and to neglectyy®®9, ¢, it is fully justified from a  —asine,bg). We suppose that these two electrons are bound
practical point of view as all these terms are undistinguishthrough an oscillator at frequeney, with a friction constant
able in an experiment and can be cast under generic coeffi, Exciting the first electron with a monochromatic wave
cients as it is currently dorte’ Ee '“!, we get the following first-order equation of
In this section, we have applied the general frameworkmotion’

outlined in Sec. Il to the Kuhn model of coupled oscillators.
The chosen geometriFig. 1) is however not quite general __¢€

) o ; D,o=—FE;, 4.9
as, for example, the two oscillators lie in perpendicular mL
andyz) planes. Generalization to more complex case is pos- 2 o . , .
sible. It is expected in such cases that the separation betweéWereDw— Wy~ 0= 2i wv(cf)oj wob/L). E, is the tangen-
chiral and achiral terms would be less strict with for examplet'al component of the electric field acting on the first elec-
achiral contributions originating from the electric dipolar fON- It can be expressed as a function of the coordinates of
susceptibilities. The main conclusions are however not difthe field as
ferent; chiral terms from electric dipolar terms exist and

magnetic dipolar and electric quadrupolar contributions are E;=— %sin oE, + %cos<pEy+ EEZ' 4.2

not separable from an experimental point of view. In the next

section, we examine the case of an helical oscillét@uz- Nonlocal response is considered by expanding the elec-

mann modglwhich gives strikingly different results. tric field around the center of the frame according to Eq.
(2.1). When taking into account the equation of the second

IV. ONE-ELECTRON (KAUZMANN) MODEL electron, several terms cancel out and Eqgl) reduces to

To study classically molecules in which the optical ac- —e/b a?
tivity comes from a single electronic transition with electric wa(l):K(EEz_l_ EZExy)v (4.3
and magnetic character, we use the model developed by
Kauzmanr? In this model, it is assumed that each moleculewhere here again, the superscript means first-order solu-
contains two electrons which oscillate along two identicaltion. To access the second-order nonlinear response, we sup-
helices having a common axis, the motion of each electropose that the oscillators are anharmoftg. (3.2)] and we
being such that they are always diametrically opposite tdook for the solution oscillating ata The corresponding
each other across the common afgee Fig. 3. This model equation is
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TABLE lll. Second harmonic electric field radiated by an isotropic layer of
molecules described by the Kauzmann model.

Contribution

Electric field tof, g, h
T mL2 ‘P(l)Ezz- (4.4
e, V2NE*BD? 2 . (achiral
From these equations, it is straightforward to obtain thé™ ~~ ~em?L* bZp,, 0SS 5 s (achira
second-order induced electric and magnetic dipole moments J2Negb 1
Il as the electric quadrupole one which read here, E™= —w—z—cosﬁ[(lﬁ cos D)E;
as we ) P 8em’L® DZD, fy,0p (achira)
p®=—2ebe® (4.9 +4 sir? 6E7]
(2) = 9j 2 ,(2)5 Ne®Ba’b? _
2imea“p'“'z, (4.6) cam \/—Iw jL/za DiDzwcosasinza[ngEg] fs,0s (chiral)
2 (1)2 2 _(2)
2a%¢p 2a%¢ 0 \/—Ia)Ne3ﬁa2b2 1 .
Q(Z): —e 2a2<p(2) 2a2(P(1)2 0 , (47) Ep BegmiLic DiDzw (3 cos#+5 cos 30)ELE, h, (chiral)
2 (1)2 N 3 2b2 1
0 0 2b% A J—IS‘: nfff 57p_ cosd(1+3 cos D)ES _
and from which we deduce the expressions of the hyperpo- o vrze fs.9s (chira
larizabilities. The number of nonzero elements is reduced in +4sirt 0E;]
this model thanks to Kauzmann's simplifying assumptions___  \2ieNe*ga?? 1 _ .
and we get Epeeec— L% DD, cos o sir? 0E,E; h, (chiral)
3K3
. L @9
€0m L DwDZw
21w Be%a2b? is clearly due to the magnetic moment induced by the helical
eem— — ‘;'84—2, (4.9 ~ motion of the electrons. An interesting point is that the qua-
€om°L"D, Dy, drupolar termsy®@ and y9¢ are identically null. Reducing
2iw,8e3a2b2 the nonlocal effects to the magnetic ones is therefore fully
Mee= — ——— (4.10 correct for this model. Considering now the radiated second
€om°L"D,, D2, harmonic electric field, we recover the expressions previ-
and Bl = —ged Bl — gt | B as nonvanishing ously obtained for magnetic termsThey are given in Table

components, all thgg®® being null. As for Kuhn's model,

Il for the same geometry as Fig. E* contribute only to

some of the quadrupole components do not depend on tHe: 9p. andhs (achira), whereas=®*" and E™* contribute
nonlinear parametgs but we do not need to neglect them at ©nly to fs, gs, andh,, (chiral). Note that the exact cancella-
this point as they will prove not to contribute in the follow- tion of the chiral electrlc contribution is a consequence of the

ing.
Expressions of the nonlinear susceptibilities obtained

ter averaging over &, distribution are readily obtained.

Here are the nonzero independent components,

313 .
Xeee Xeee: NBe°b* coso Sir? 6
us= X~ 21 3p7p,
e 2NBe®b3cos’ 6 (4.11)
X333~ 60m2L4DiD2w’
i 3,212 .
(SN g i wNBe*a?b? cosé sir? 6
113 = X311 omL?D2D,, ,
cem_ — 2ioNpe’a®b?cos 6 (4.12
X333~ €om2L4DiD2w :
; 3212 -
e mes_ —ioNBeda?b? cosdsir? 6
e eoM’L*DED,,, ’
mee 2 wNpe®a?b? cos ¢ (4.13
X333~

eom’L*D2D,,

Examination of Table | shows that*®® has only achiral
components, wheregg®™™ and x™¢ has only chiral ones.

Kauzmann model which removes the contributions of the
afelectric dipole in the surface plane. However, considering the
calculation in Ref. 17 with a unique electron on a helix, one
can show that the chiral electric susceptibility components
give a negligible effect as soon as the optical nonlinear re-

sponse is strong enough. Working in the same framework as
for the Kuhn model, we therefore obtain a quite good agree-
ment with Ref. 17.

Kauzmann model allows to obtain simple results and to
show that the chiral signal in surface SHG originates in the
magnetic terms and that electric quadrupolar susceptibilities
vanish. This in in complete contrast with the Kuhn model
introduced in the previous section. These two models are
therefore very complementary. We will now examine previ-
ously obtained experimental results in the light of these two
models.

V. DISCUSSION

Before discussing the experimental results, we would
like to stress again the difference between the two models. In
the Kuhn model, optical activity occurs because the two
electric dipole moments are arranged in a nonmirror-
symmetrical configuration. This is known to be the main

This is in good agreement with the linear response; chiralitymechanism in molecules constituted of tyay more mono-
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mers in interactio®°As a consequence, we find that opti- zero only if at least one of the frequencies is close to a
cal activity in surface SHG is also due to purely electricmolecular resonance. The ratio between chiral and achiral
terms. On the other hand, optical activity in the Kauzmanrparts will therefore not depend only on geometrical factors of
model is due to the helical path imposed to the electrons bthe molecule, as for the Kauzmann model, but will also be
the molecular backbone. It is clear here that excitation of arvery sensitive to the excitation photon energies compared to
electric dipole moment will induce a magnetic moment andthe electronic or vibrational transitions of the molecule. In

vice versd and that optical activity is mainly a magnetic particular, if the second harmonic frequency is close to a
effect. This is true also for second-order nonlinear opticsresonance, the ratio chiral/achiral scales as/D(,,,)

The two models depicted above, although simple, give a veryk (A/d) and can become quite large. As discussed below,
physical approach of the microscopic origins of optical ac-this has been experimentally demonstrated in helicenebis-
tivity and of their consequences for surface SHG. quinone where the chiral electric contributions domirfate.

Let us consider now the interchange of the handedness We can now proceed to an examination of previously
of the enantiomers. Interchanging the two enantiomers byublished experimental results in view of our calculations.
mirror imaging of the system leads to changing the sign ofConsidering the very simple models we have introduced, it is
the chiral parameter and of the nonlinear coupling term tonhot possible to look for more than a qualitative agreement.
gether. This last feature can be understood as follows: lookHowever, we will see that our calculations allow to reconcile
ing at Fig. 3, one sees that a positiganeans that the oscil- controversial interpretations that were given in the past about
lator is stiffer in they>0 direction compared to thg<O  the origin of the chiral response in surface SHG experiments.
one, i.e., when the electrons go upward. Taking the mirroin a pionneering work, Byeret al.> demonstrated SHG from
image of the helix, the oscillator must still be stiffer for a surface of chiral 2,2dihydroxy-1,1binaphtyl. They
electrons going upward, i.e., fgr<0. This is possible only if  clearly evidenced chiral effects in the harmonic signal
B changes sign when going from an enantiomer to the othenamely, a rotation of the polarization of the harmonic beam
one. Applying these changes shows that ¥f€ tensor does compared to the fundamental onehich they explain by
not change sign wherea$®™ and y™*€ do for the Kauzmann considering only the electric dipolar nonlinear susceptibility.
model. Applying similar rules to the Kuhn modethich is  More recently, Van Elshoclet al.?® confirmed this result in a
somewhat more involved as one must change concommhelical polymer based on binaphtyl monomers where no in-
tantly the sign of the angle and of the nonlinear parameter dication of magnetic contributions were observed. Similar
B for one of the two oscillatods one gets the opposite result. results were obtained in Langmuir—Blodgett films of a chiral
However, the only nonvanishing components ¢f™ and  helicenebisquinone derivative which give very strong SHG
x™€ (resp. x®%°) are chiral(resp. achiralin the Kauzmann signal®? Here again, no evidence of magnetic contributions
model while they are achirdtesp. chiral in the Kuhn one was found and the dominant contribution wg§3. This
(cf. Tables Il and Il). Finally, both models are consistent chiral contribution was measured to be at least 6 times larger
with the very general symmetry rules of chirality in two than the achiral ones. These three experiments rely on similar
dimensions® chiral components change sign, whereasmolecules. In every case, the molecules under consideration
achiral ones do not when interchanging enantiomers. As thare composed of two identical monomers spatially arranged
components which change sign with the enantiomers are the a nonmirror symmetric configuration. Optical activity in
electric ones in the Kuhn model and the magnetic ones in theuch molecules clearly originates from excitonic couplfing
Kauzmann model, this should be observed in an experimerand therefore should be correctly described by coupled os-
measuring the absolute phase of the susceptibility tensorsillators. The experimental results are consistent with the
However, experiments have only given relative pha§es above calculation for the Kuhn model in which the electric
any) so far and could not access this information. terms are dominant. In particular, the helicenebisquinone

We can also estimate from our calculations the relativecompounds seem to be very well fitted to this model which
magnitudes of the radiated second harmonic fields so as implies that if the second harmonic frequency is not too far
compare the chiral and achiral contributions. Such a comfrom an electronic resonance, the magnetic terms are negli-
parison is straightforward for the Kauzmann case. Looking agible compared to the electric ones. This looks quite appro-
Table 1ll, one gets that the chiral contributions over thepriate to the helicenebisquinone molecule.
achiral ones scale @/\b. The molecular parameteasetb On the other hand, several experiments have proven that
being in the same range, but in any case, much smaller than some cases, the electric-dipole approximation is not suffi-
the wavelength, this ratio is clearly much smaller than 1. Ascient for explaining SHG on a surface of chiral molectés.
an example, we consider hexahelicene for whaeh2.50 A More strikingly, there exist molecules for which the chiral
andb=0.605A2! and we get a ratio of I for a wave- components are dominated by the magnetic ones. It is the
length of 1um. This is quite consistent with the fact that the case of polythiopherfer of chiral polyisocyanide films for
chiral parts come from magnetic effects whereas the achiralvhich the largest chiral magnetic component, of the order of
ones come from electric effect, and one recovers the usu&l0% of the largest achiral electric one, is three times as big
ratio between both contributions. In the Kuhn model, such as the largest chiral electric oA&In such molecules, the
comparison is not so simple. Indeed, two contradictory feanonlinearity originates in the delocalization af electrons
tures occur. On one hand, the chiral part being of electri@long a linear path which is slightly twisted due to the pres-
origin, it is expected to be larger that the achiral part, ofence of a chiral center. This motion is comparable to the
magnetic origin. On the other hand, the chiral part is nonrmotion of an electron on a helix and can therefore be mod-
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elized by the Kauzmann model. Predominance of the mag- This calculation allows to understand better previously
netic terms in the chiral response is expected from the abovgublished experimental results on SHG on a layer of chiral
calculations. molecules where various interpretations relying either on
In the general case, molecules cannot be modelized by purely electric effects or on magnetic ones were given. In-
unique model. This is the case for example in Ref. 5 whereleed, depending on the molecular structure, one of the two
the molecular backbone is not strictly linear and where manynodels is more appropriate and our calculation predicts that
susceptibility components are expected to play a role. In thahe chiral signatures in the SHG signal are very different. A
case, all the effects are mixed up and chiral components werdose analysis of previous experiments shows that their re-
measured to have similar orders of magnitude for the electrisults are consistent with our modelizations.
or magnetic contributions. However, by choosing the mo-  This calculation, although simple, brings very instructive
lecular structure, one can favor the electric or the magnetilmformation about the link between the molecular structure
origin in the chiral SHG signal. and the surface SHG signd@.contrario, it shows the power
Before concluding, we would like to further comment on of surface SHG to study the origin of chirality in molecules.
the helicenebisquinone ca%eThe experiments were per- By measuring separately the local/nonlocal susceptibility
formed on Langmuir—Blodgett films and it was shown thatcomponents as well as the achiral/chiral ones and by com-
enantiomerically-pure molecules were stacked in helical suparing with the results of the model calculations, it allows us
pramolecular aggregates. There seems to be a competitit@ get a more precise understanding of the microscopic
between the molecular level which pertains to the Kuhnmechanisms of chirality.
model and the supramolecular one which introduces a helical
path. It is experimentally clear that the Kuhn model is well
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