
HAL Id: hal-00837033
https://polytechnique.hal.science/hal-00837033v1

Submitted on 19 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of classical models of chirality to surface
second harmonic generation

François Hache, H. Mesnil, Marie-Claire Schanne-Klein

To cite this version:
François Hache, H. Mesnil, Marie-Claire Schanne-Klein. Application of classical models of chirality
to surface second harmonic generation. The Journal of Chemical Physics, 2001, 115 (14), pp.6707.
�10.1063/1.1404983�. �hal-00837033�

https://polytechnique.hal.science/hal-00837033v1
https://hal.archives-ouvertes.fr


Application of classical models of chirality to surface
second harmonic generation

F. Hache,a) H. Mesnil, and M. C. Schanne-Klein
Laboratoire d’Optique et Biosciences—CNRS/INSERM/Ecole Polytechnique/ENSTA, 91128 Palaiseau Cedex,
France

~Received 12 September 2000; accepted 30 July 2001!

Two classical models~Kuhn and Kauzmann! are extended to calculate the second-order nonlinear
response of an isotropic layer of chiral molecules. Calculation of the various nonlinear
susceptibilities~electric dipolar, magnetic dipolar, and electric quadrupolar! is performed and
applied to the derivation of the second harmonic field radiated by the molecules. It is shown that the
two models give strikingly different results about the origin of the chiral response in such
experiments. Previously published results are analyzed in view of this calculation which allows to
understand the different interpretations proposed. This calculation emphasizes the interest of surface
second harmonic generation to access information about the microscopic origin of optical activity in
chiral molecules. ©2001 American Institute of Physics. @DOI: 10.1063/1.1404983#

I. INTRODUCTION

Chiral molecules which have no plane of symmetry and
occur as right- or left-handed enantiomers are very intriguing
from a physicist’s viewpoint. They display chiroptical prop-
erties such as optical rotatory dispersion or circular dichro-
ism that are currently used to control chirality of molecules.
The microscopic origin of this optical activity lies in the
nonlocality of the light–matter interaction; one must con-
sider the variation of the electric field associated to the light
across the spatial extension of the molecule. By such nonlo-
cal effects, the light is able to probe the spatial organization
of the molecule and is sensitive to the handedness of the
molecular arrangement. As far as linear optics in isotropic
liquids is concerned, nonlocality translates into the influence
of the magnetic dipole on the light–matter interaction and
molecules must possess together an electric and a magnetic
allowed dipolar transition to display optical activity.

Surface second harmonic generation~SHG! has been
used for some times to study thin layers of chiral molecules
and has proved to be very sensitive to the chirality and to
bring new interesting features.1–5 In particular, one can get a
chiral signature with purely electric dipolar response without
considering nonlocal effects. This feature is due to the fact
that second-order optics involves three electromagnetic fields
that can probe the three directions of space. Such phenom-
enon has been utilized to explain experimental results such
as the rotation of the polarization of the second harmonic
beam with respect to the fundamental one on a
enantiomerically-pure dihydroxy-binaphtyl surface.2 This
electric dipolar response has, however, proved not to be suf-
ficient to explain all the results obtained in SHG experiments
on chiral surfaces. In particular, careful analyses of the ex-
perimental results, especially in terms of the phase of the
nonlinear susceptibilities, have shown that pure electric ef-

fects cannot account for all experimental cases.4,5 Indeed,
nonlocal effects exist and one must introduce electric and
magnetic second-order responses which are both comprised
of chiral and achiral components to interpret such
experiments.3,5 Chiral components are those which cancel
out if there exists a plane of symmetry on the surface
whereas achiral ones are those which do not cancel. One of
the striking features of SHG on chiral surfaces is the follow-
ing: Playing around with the polarizations of the fundamen-
tal or the harmonic beams, it is possible to separate the elec-
tric and magnetic contributions on one hand and the achiral
and chiral ones on the other hand. Utilizing this procedure,
Kauranenet al. showed for example that magnetic contribu-
tions were dominant in chiral polymers whereas electric ones
were sufficient for helicenebisquinone.6

The difference between these experimental results is to
be sought in the microscopic origin of the optical activity.
Two main classical approaches have been proposed to model
the mechanisms of optical activity:7 In the coupled-oscillator
model, the optical activity arises from the coupling of two
separate, noncollinear oscillators.8 In the one-electron model,
an electron is bound on a helix giving electric and magnetic
characters to the optical transitions.9 The former model has
been successfully applied to describe excitonic coupling and
the latter helical polymers for example. However, extension
of these models to second-order nonlinear optics has not
been fully undertaken. It is the purpose of the present paper
to introduce nonlinearity in these two models so as to gain
insight in the origin of the nonlinear optical activity and to
understand better the differences observed in the previously
reported experimental results. In the next section, we will
first introduce the general framework; starting from the clas-
sical equations of motion and taking nonlocal effects into
account, we explain how to get the microscopic hyperpolar-
izabilities and the macroscopic nonlinear susceptibilities and
to calculate the second harmonic radiation. This calculation
is then applied to the Kuhn~coupled-oscillators! model~Sec.
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III ! and to the Kauzmann~helix! one ~Sec. IV!. These two
calculations give very different results as for the origin of the
second-order optical activity. Finally, Sec. V provides a dis-
cussion in relation with former experimental results.

II. GENERAL FRAMEWORK

In this section, we want to give a general account of the
calculation of the second harmonic generation by an isotro-
pic layer of chiral molecules, starting from the microscopic
response of individual molecules. SI units are used through-
out this calculation. To begin with, one considers the classi-
cal equations of motion for the electrons in the system under
consideration. The internal forces which constrain this mo-
tion depend on the particular model, as described in the fol-
lowing sections. On the other hand, the driving force always
originates from the Lorentz force acting on the electrons.
Note that only the electric field plays a role as the magnetic
term is perpendicular to the electron motion. The following
treatment is therefore quite general and applicable to many
cases.

First of all, as we are interested in the chiroptical phe-
nomena, we must introduce nonlocal effects in the calcula-
tion. This is readily done by expanding the electric field
along the spatial directions,

E5E~0!1r"“E. ~2.1!

Use of this first-order expansion is justified as the mo-
lecular extension is small compared to the wavelength of the
light. Higher-order terms are therefore negligible.

So as to introduce nonlinear response in the system, we
suppose that the internal forces can be described by anhar-
monic oscillators. In that case, considering a monochromatic
electric field oscillating at fundamental frequencyv, the
electronic response displays terms which oscillate at the sec-
ond harmonic frequency 2v. From this second harmonic mo-
tion, it is possible to calculate the induced electric dipole
and, according to Eq.~2.1!, we write

m i~2v !5e0b i jk
eeeE j~v !Ek~v !12e0b̃ i jkl

eeqE j~v !¹kE l~v !.
~2.2!

Beside the usual electric dipolar hyperpolarizability
beee, we have introduced a nonlocal oneb̃eeq that takes the
electric field gradient contribution into account. We neglect
the terms with two gradients as they correspond to higher-
order contributions. Note that there is no particular symmetry
for the rank-4 tensorb̃eeq and that, for example,b̃ i jkl

eeq

Þb̃ i j lk
eeq in general. However, we can rewrite Eq.~2.2! by

symmetrizing and antisymmetrizing the gradient term,

m i~2v !5e0b i jk
eeeE j~v !Ek~v !12e0b i jk

eemE j~v !Bk~v !

12e0b i jkl
eeqE j~v !¹kE l~v !. ~2.3!

This expression corresponds to the usual multipolar ex-
pansion where beside the electric dipole term, one has the
magnetic dipole and the electric quadrupole ones. The fac-
tors 2 take into account the fact that the magnetic field~or
the gradient term! can originate from one of the two funda-
mental photons. The tensorbeeq is now symmetrical with
respect to the inversion of the last two indices. We choose to

first evaluate the tensorb̃eeq and then deducebeem andbeeq,
as the origin of the nonlocality appears more readily.

Beside this induced electric dipole, we must also calcu-
late the induced magnetic dipole and electric quadrupole,

m i~2v !5e0b i jk
meeE j~v !Ek~v !, ~2.4!

Q i j~2v !5e0b i jkl
qeeEk~v !E l~v !. ~2.5!

The above expressions describe the second-order re-
sponse of an individual molecule. To get the total response of
an assembly of such molecules, we have now to average
these expressions over the distribution of molecules and to
derive the macroscopic electric and magnetic polarizations as
well as the quadrupolarization. Nonlinear susceptibilities are
then defined by connecting these latter to the electric and
magnetic fields.

Let us consider a surface perpendicular to the axis 3 in
the laboratory frame~Fig. 1!. Considering the usual Euler
anglesu ~polar angle!, w ~azimuthal angle!, andc ~rotation
angle! to describe the molecular orientation, we suppose that
the last two angles are uniformly distributed whereasu is
fixed. This corresponds to a simple isotropic surface. If the
molecules in the layer are not chiral, the symmetry isC`v

,
all the planes perpendicular to the surface become symmetry
planes. For chiral molecules, such symmetries are no longer
allowed and the symmetry isC` . Calculation of the macro-
scopic nonlinear susceptibilities follows the general rules of
tensor analysis and one has, for example,

x IJK
eee

5N^~I"i!~J"j!~K"k!&avb i jk
eee , ~2.6!

where i, j ,k(5x,y ,z) refer to the molecular frame and
I,J,K(51,2,3) to the laboratory one,^ &av representing the
averaging operation.N is the number of molecules per unit
surface. Similar relations exist to connect the nonlinear sus-
ceptibilitiesxeem, xmee, xeeq, andxqee ~the latter two being
rank-4 tensors! to their microscopic counterparts. It is pos-
sible to reduce the number of nonvanishing independent
components by taking the symmetry of the surface into
account.10 The results in the case of SHG are given in Table
I. Note that forxeee, xmee, andxqee, the last two indices can
be interchanged without changing the value of the compo-
nent as both indices refer to the same~fundamental! fre-
quency, further reducing the number of nonzero components.
It is not true for the first two indices ofxeem andxeeq which
refer to the harmonic and fundamental frequencies, respec-

FIG. 1. Geometry of surface SHG. The thick bar represents a molecule
referenced by the Euler angles.
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tively. In the first column, the ‘‘achiral’’ components are
given, i.e., the components that do not vanish for aC`v

symmetry. In the second column, we have written the addi-
tional components that do not vanish for theC` symmetry,
which we call the ‘‘chiral’’ components. The first three lines
correspond to electric and magnetic dipolar contributions
~rank-3 tensors! and the last two correspond to the electric
quadrupolar terms~rank-4 tensors! which have not been con-
sidered previously.

The tensor xeem has already been introduced by
Persoons3 and utilized to interpret experimental results.3,5 In-
troduction of the tensorxeeq has also been proposed from a
formal point of view11 but never distinguished from the pre-
vious one as far as experiments are concerned. It is one of
the purpose of this paper to elucidate this point. To do so, we
must not consider only the susceptibility tensors, convenient
to gather the different terms contributing to the nonlinear
response, but not directly accessible to a surface SHG experi-
ment. Instead, we calculate the second harmonic electric field
which is the quantity measured in the experiments.3,5 This
field originates from the far-field radiation of the light-
induced electric~P! and magnetic~M! polarization and from
the quadrupolarization~Q! and reads12

E~2v !}F ~n3P!3n2

1

c
n3M2

ik

2
~n3Q~n!!3nG ,

~2.7!

wheren is a unit vector in the direction of observation and
Q~n! is the tensor contraction ofQ and n. From the above
discussion, we know that we must consider three terms inP
~xeee, xeem, and xeeq!, one in M (xmee) and one inQ
(xqee). With obvious notation, we therefore decompose the
second harmonic electric field in

E~2v !5Eeee
1Eeem

1Eeeq
1Emee

1Eqee. ~2.8!

These various contributions are readily calculated from the
nonlinear susceptibilities. In order to stick to the experimen-
tal situations, we also write

Ep,s~2v !5 f p,sEp
2~v !1gp,sEs

2~v !1hp,sEp~v !Es~v !,
~2.9!

where s, p refer to the beam polarization. Indeed, surface
SHG experiments utilizing quarter- and half-waveplates al-
low to measure thesef, g, h parameters independently.3,5,13

By analyzing the different terms of Eq.~2.8! in terms of Eq.
~2.9!, we will be able in the following to assess more pre-

cisely the signature of chirality in the SHG signal and to
understand better the role of quadrupolarization in it.

From the above discussion, we can define a procedure to
study surface SHG from a microscopic model:~i! derive the
nonlinear motion equation for the model;~ii ! derive the cor-
responding hyperpolarizabilities;~iii ! average over the iso-
tropic layer of molecules to get the nonlinear surface suscep-
tibilities; ~iv! calculate the radiated second harmonic electric
field and redistribute the different mechanisms in thef, g, and
h parameters. We will now apply this procedure to the Kuhn
and Kauzmann models in the next sections.

III. COUPLED OSCILLATOR „KUHN… MODEL

We consider two coupled oscillators as depicted in Fig.
2. The two oscillators have the same frequencyv0

and the same friction coefficientg and are coupled through
dipole–dipole interaction with a coupling parameterk
~supposedly small!. The microscopic frame is (x,y ,z). The
oscillator A is in the xz plane and makes an anglea with
thex-direction, its rest position is (0,0,2d/2). The oscillator
B is in the yz plane and makes an anglea with the
y-direction, its rest position is (0,0,d/2). The introduction of
the anglea is important to get a chiral response, as it will
become clear later on. This system is excited by a monochro-
matic waveEe2ivt which induces the oscillation of the elec-
trons. Let us callae2ivt ~resp.be2ivt! the elongation of the
oscillator A ~resp. B!. The coordinates of the electronA

FIG. 2. Coupled oscillators used for the Kuhn model. OscillatorA ~resp.B!

is in thexz ~resp.yz! plane.

TABLE I. Nonvanishing components of the nonlinear susceptibilities forC`v
andC` symmetries.

Achiral componentsC`v
Chiral componentsC`

xeee 333, 3115322, 113513152235232 12351325221352231
xeem 12352213, 13252231, 31252321 333, 3115322, 1135223, 1315232
xmee 12351325231252231 333, 3115322, 113513152235232
xeeq a 1111,3333, 1122, 121251221, 1133,

131351331, 3311, 313153113
1222, 2122, 221252221, 1233,
132351332, 312353132

xqee a 1111,3333, 1122, 121251221, 1133,
131353113, 133153131, 3311

122252122, 2212, 2221, 132353123,
133253132

aInterchanging 1 and 2 change signs in the chiral components, but not in the achiral ones.
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~resp. B! are (ae2ivt cosa,0,2d/22ae2ivt sina) @resp.
(0,be2ivt cosa,d/21be2ivt sina)#. Let us first consider the
linear response of the system. The equations of motion of the
electrons along their respective oscillators can be written,

Dva ~1!
1kb ~1!

5

2e

m F S Ex2

d

2
EzxD cosa

2S Ez2
d

2
EzzD sinaG ,

~3.1!

ka ~1!
1Dvb ~1!

5

2e

m F S Ey1

d

2
Ezy D cosa

1S Ez1
d

2
EzzD sinaG ,

where we have introduced the following notation:Dv5v0
2

2v2
22ivg, E i j5¹ iE j , and where the superscript~1!

means first-order solution. Solving this set of equations al-
lows us to recover well-known results of this model.14 Due
to the coupling, the degeneracy of the two oscillators is split-
ted and two new optical transitions appear with frequencies
v0(16(k/2v0

2)) and opposite rotational strengths. These
new states can be viewed as resulting from the in-phase and
out-of-phase excitations of the two oscillators, the optical
activity coming from the geometric arrangement. The intro-
duction of the parameterk allows us to take empirically
these effects into account. One passes from one enantiomer
to the other by changing the sign ofk and reversing one of
the anglesa.

To introduce a second-order nonlinear response, we sup-
pose that the restoring force is not harmonic and reads for
oscillatorA,

2mv0
2a2mba2, ~3.2!

the same being true for oscillatorB. Looking for the solu-
tions oscillating at 2v and including the contributions com-
ing from the development of the electric field@Eq. ~2.1!#, we
get the following set of equations:

D2va ~2!
1kb ~2!

52ba ~1!2
2

e

m
a ~1!@~cosaExx

2sinaEzx!cosa2~cosaExz

2sinaEzz!sina#,
~3.3!

ka ~2!
1D2vb ~2!

52bb ~1!2
2

e

m
b ~1!@~cosaEyy

1sinaEzy!cosa1~cosaEyz

1sinaEzz!sina#.

Plugging the solutions of Eq.~3.1! in Eq. ~3.3!, we ob-
tain the general expressions of the second-order solutions
a (2) andb (2). These solutions are used to derive the electric
and magnetic dipole moments as well as the electric quadru-
pole one which read

px
~2!

52ea ~2! cosa, py
~2!

52eb ~2! cosa,
~3.4!

pz
~2!

52e~b ~2!
2a ~2!!sina;

mx
~2!

52

ivde

2
b ~2! cosa, my

~2!
52

ivde

2
a ~2! cosa,

~3.5!
mz

~2!
50;

Qxx
~2!

52ea ~1!2 cos2 a, Qyy
~2!

52eb ~1!2 cos2 a,

Qzz
~2!

52e@d sina~a ~2!
1b ~2!!1sin2 a~a ~1!2

1b ~1!2!#,

Qxy
~2!

5Qyx
~2!

50, ~3.6!

Qyz
~2!

5Qzy
~2!

52eFd

2
b ~2! cosa1b ~1!2 sina cosaG ,

Qzx
~2!

5Qxz
~2!

52eF2

d

2
a ~2! cosa2a ~1!2 sina cosaG .

In this last expression, we have chosen the definitionQ
52err for which the trace is nonzero in accordance with
Eq. ~2.7!. Utilizing the traceless form ofQ would change the
value of xqee, but would not change the radiated harmonic
field, which is the relevant quantity.

Plugging the expressions ofa (1), a (2), b (1), andb (2) in
Eqs. ~3.4!–~3.6! and utilizing Eqs.~2.3!–~2.5! allows us to
calculate all the hyperpolarizabilities. General expressions
are quite heavy and do not allow to extract interesting physi-
cal information. We therefore begin with some approxima-
tion and discussions. First of all, we suppose that the funda-
mental frequencyv is far from the oscillator frequencyv0 .
This assumption corresponds to most of the experimental
cases where the SHG experiment is performed far from the
electronic resonances. Note however that it does not preclude
a resonance effect between an electronic transition and the
harmonic frequency. This hypothesis allows us to neglectk
compared toDv'v0

2 in our expressions. Second, examining
Eq. ~3.3! in detail, we see that there exists a nonlinear elon-
gationa (2) @or b (2)# even ifb50, i.e., even if the oscillator is
perfectly harmonic. This is due to the intrinsic nonlinearity
of the electric quadrupole moment@see also Eq.~3.6!#. Look-
ing at the general formulas~not displayed here!, we observe
that comparing this contribution to the anharmonic one
amounts to comparingDv ~or v0

2! to bd. Considering the
nature of electronic binding and callingl the equilibrium
elongation of the oscillator, one estimates thatbl2'v0

2l.15

We must therefore compare the elongationl of the oscillators
and the separationd of the two oscillators. In order to be
consistent with the hypothesis of a weak coupling and the
use of dipole–dipole interaction, we suppose thatd@l. This
assumption is corroborated by a numerical estimation ofl
which is in the angstrom range for electronic transitions.
Making this hypothesis allows us to keep only the terms inb
in our expressions and to neglect the other ones. This as-
sumption is very reasonable for the usual experimental con-
figurations where the chiral molecules under study have al-
ways been chosen so as to give a high nonlinear response.

Under these two assumptions~Dv@k andd@l!, we get
very tractable expressions for the hyperpolarizabilities. Let
us now examine in detail thebeee tensor. Out of the 27
components, there are only 6 independent ones and 3 null
ones,
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bxxx
eee

5byyy
eee

5

be3 cos3 a

e0m2Dv
2 D2v

, ~3.7!

bxxy
eee

5bxyx
eee

5byxy
eee

5byyx
eee

52

be3k cos3 a

e0m2Dv
3 D2v

, ~3.8!

bxxz
eee

5bxzx
eee

52byyz
eee

52byzy
eee

5bzxx
eee

52bzyy
eee

52

be3 cosa sin2 a

e0m2Dv
2 D2v

, ~3.9!

bxzz
eee

5bzxz
eee

5bzzx
eee

5byzz
eee

5bzyz
eee

5bzzy
eee

5

be3 cos2 a sina

e0m2Dv
2 D2v

, ~3.10!

bxyy
eee

5byxx
eee

52

be3k cos3 a

e0m2Dv
2 D2v

2 , ~3.11!

bxyz
eee

5bxzy
eee

52byxz
eee

52byzx
eee

5

be3k cos2 a sina

e0m2Dv
3 D2v

2 ~D2v2Dv!, ~3.12!

bzxy
eee

5bzyx
eee

5bzzz
eee

50. ~3.13!

Examination of these coefficients is already very instruc-
tive, as one can see that some components are independent of
the coupling parameterk whereas others are not. In fact
those which depend onk are those for which the two space
directionsx andy come into play. This is understandable as
only those components probing these two space directions
will be sensitive to the coupling, and thus to the chirality of
the molecules. Note that thexyz components, which will
prove to be relevant in the forthcoming discussion, is non-
zero only under the condition thataÞ0 andDvÞD2v . Simi-
lar expressions are obtained forbeem andbmee. The number
of nonzero components is higher forbeeq ~41! and forbqee

~45!, but the conclusions still hold; they depend onk if they
involve x andy.

Let us proceed now to the calculation of the nonlinear
susceptibilities. Due to the high degree of symmetry of the
surface (C`) and also of the individual molecules, many
terms go to zero and the final results are quite simple. We
give below the nonvanishing independent components for
xeee, xeem, andxmee,

x123
eee

5

Ne3b

4e0m2 cos2 a sina~113 cos 2u !
k~D2v2Dv!

Dv
3 D2v

2 ,

~3.14!

x132
eem

5x312
eem

5

ivNe3bd

8e0m2 cos2 a sina~113 cos 2u !

3

1

Dv
2 D2v

, ~3.15!

x123
mee

52

ivNe3bd

8e0m2 cos2 a sina~113 cos 2u !
1

Dv
2 D2v

.

~3.16!

Several points are worth commenting. Due to the high
degree of symmetry of the system, only the components in-

volving the three space directions are nonzero. These com-
ponents are null fora50; in that case, there cannot be any
coupling between the three space directions at the molecular
level and everything cancels out in the spatial averaging pro-
cedure. According to Table I, we see that the only non-
vanishing electric dipolar component is chiral. This chiral
component is directly proportional tok and vanishes for un-
coupled system, as expected. Furthermore, it is proportional
to D2v2Dv . This dependence comes from thebxyz

eee terms,
the only ones contributing tox123

eee whenw andc are random.
It means that if both the fundamental and the harmonic pho-
ton energies are far from the electronic transition, this term
cancels out. Such a cancellation is expected from a general
point of view: From Table I, we havex123

eee
52x213

eee ; on the
other hand, far from resonances, Kleinmann symmetry im-
plies x123

eee
5x213

eee , resulting in a null coefficient. It is there-
fore necessary to be not too far from a resonance~for ex-
ample at 2v! to observe a SHG signal originating from chiral
electric components. Let us come now to the magnetic con-
tributions: they are achiral and independent of the coupling
parameter. Note that the nonvanishing components ofxeem

and of xmee are equal. This is not surprising as they corre-
spond to closely connected phenomena. All the above results
are consistent with the linear response. Indeed, chirality in
the Kuhn model derives not from a real magnetic moment,
but rather from am3m term14 and is therefore a pure electric
effect. This is recovered in the surface SHG where the chiral
response is also a pure electric effect. Let us stress that the
quadrupolar terms are not vanishing and are achiral and in-
dependent ofk.

To calculate the second harmonic electric field radiated
by the molecules on the surface, we use Eq.~2.7! together
with the above calculations. In order to get readable results,
we perform the derivation in a simplified case. First of all,
we neglect the Fresnel coefficients in the following expres-
sions. They are only multiplicative factors that do not change
the discussion. Proper introduction of these coefficients can
be found in Refs. 5 and 16. Second, we assume that the
incidence and reflection angles are equal to 45° and that the
index of refraction of the layer is equal to 1. The geometry of
the experiment is shown in Fig. 1. With these assumptions,
the relevant vectors for the calculation are:n51/&~1,0,1!
~direction of observation!, k5v/cA2(1,0,21) ~wave vector
of the fundamental beam!, E5(Ep /A2,2Es ,Ep /A2) ~fun-
damental electric field!. The second harmonic electric field is
expressed on the polarization basisŝ5(0,21,0) and p̂
51/A2(21,0,1). Using these definitions, we calculate the
expressions of the various fields adding up to give the total
second harmonic field:E(2v)5Eeee

1Eeem
1Eeeq

1Emee

1Eqee @Eq. ~2.8!#. The expressions of these fields, together
with their contributions to thef, g, h parameters@see Eq.
~2.9!# are given in Table II. These results are consistent with
the conclusions drawn about the nonlinear susceptibilities.
We recover that only the purely dipolar terms contribute to
the chiral signal. All the magnetic dipolar or electric quadru-
polar ones only give achiral signals. Furthermore, it is clear
from Table II that the second harmonic fieldsEeem, Emee,
Eeeq, and Eqee have the same order of magnitude and that
they contribute to the same~achiral! coefficientsf p , gp , and
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hs . Whereas it is not correct formally to introducexeem,
xmee and to neglectxeeq, xqee, it is fully justified from a
practical point of view as all these terms are undistinguish-
able in an experiment and can be cast under generic coeffi-
cients as it is currently done.3,5

In this section, we have applied the general framework
outlined in Sec. II to the Kuhn model of coupled oscillators.
The chosen geometry~Fig. 1! is however not quite general
as, for example, the two oscillators lie in perpendicular~xz
andyz! planes. Generalization to more complex case is pos-
sible. It is expected in such cases that the separation between
chiral and achiral terms would be less strict with for example
achiral contributions originating from the electric dipolar
susceptibilities. The main conclusions are however not dif-
ferent; chiral terms from electric dipolar terms exist and
magnetic dipolar and electric quadrupolar contributions are
not separable from an experimental point of view. In the next
section, we examine the case of an helical oscillator~Kauz-
mann model! which gives strikingly different results.

IV. ONE-ELECTRON „KAUZMANN… MODEL

To study classically molecules in which the optical ac-
tivity comes from a single electronic transition with electric
and magnetic character, we use the model developed by
Kauzmann.9 In this model, it is assumed that each molecule
contains two electrons which oscillate along two identical
helices having a common axis, the motion of each electron
being such that they are always diametrically opposite to
each other across the common axis~see Fig. 3!. This model

may seem artificial but it has the advantage of illustrating in
a simple manner the essential feature of one-electron optical
activity. By selecting the motion of the electrons along the
helix axis, it raises the fundamental paradox that such helices
with only one electron do not display optical activity in an
isotropic arrangement7 and it makes the calculations easier
and more informative. Note that a complete calculation with
a more physical system~a unique electron on a helix! has
been developed in Ref. 17. As discussed below, the two ap-
proaches agree on the main points.

Let us calla the radius of the helix and 2pb its pitch.
We defineL5(a2

1b2)1/2. The handedness of the enanti-
omer is determined by the parameterb. The coordinates of
the two electrons can be described with the help of a unique
parameter w by (a cosw, a sinw,bw) and (2a cosw,
2a sinw,bw). We suppose that these two electrons are bound
through an oscillator at frequencyv0 with a friction constant
g. Exciting the first electron with a monochromatic wave
Ee2ivt, we get the following first-order equation of
motion:17

Dvw5

2e

mL
E t , ~4.1!

whereDv5v08
2
2v2

22ivg(v085v0b/L). E t is the tangen-
tial component of the electric field acting on the first elec-
tron. It can be expressed as a function of the coordinates of
the field as

E t52

a

L
sinwEx1

a

L
coswEy1

b

L
Ez . ~4.2!

Nonlocal response is considered by expanding the elec-
tric field around the center of the frame according to Eq.
~2.1!. When taking into account the equation of the second
electron, several terms cancel out and Eq.~4.1! reduces to

Dvw ~1!
5

2e

mL S b

L
Ez1

a2

L2 Exy D , ~4.3!

where here again, the superscript~1! means first-order solu-
tion. To access the second-order nonlinear response, we sup-
pose that the oscillators are anharmonic@Eq. ~3.2!# and we
look for the solution oscillating at 2v. The corresponding
equation is

FIG. 3. Representation of the Kauzmann model. The first electron is on the
solid helix and the second one on the dotted helix.

TABLE II. Second harmonic electric field radiated by an isotropic layer of
molecules described by the Kuhn model. Thef i’s are involved functions that
are not given here for the sake of readability.

Electric field
Contribution

to f, g, h

Es
eee}

Ne3b

4e0m
2

k~D2v2Dv!

Dv
3D2v

2 cos2 a sina~113 cos 2u!Ep
2 f s ~chiral!

Ep
eee}

Ne3b

4e0m
2

k~D2v2Dv!

Dv
3D2v

2 cos2 a sina~113 cos 2u!EpEs hp ~chiral!

Es
eem}

ivNe3bd

8e0m
2c

1

Dv
2D2v

cos2 a sina~113 cos 2u!EpEs hs ~achiral!

Ep
eem}

ivNe3bd

8e0m
2c

1

Dv
2D2v

cos2 a sina~113 cos 2u!Es
2 gp ~achiral!

Es
mee}2

ivNe3bd

16e0m2c

1

Dv
2 D2v

cos2 a sina~113 cos 2u!EpEs hs ~achiral!

Ep
mee}

ivNe3bd

16e0m2c

1

Dv
2 D2v

cos2 a sina~113 cos 2u!Ep
2 f p ~achiral!

Es
eeq}2

ivNe3bd

e0m
2c

1

Dv
2D2v

f1~u,a!EpEs hs ~achiral!

Ep
eeq}2

ivNe3bd

e0m
2c

1

Dv
2D2v

@f2~u,a!Ep
2
1f3~u,a!Es

2# f p ,gp ~achiral!

Es
qee}2

ivNe3bd

e0m
2c

1

Dv
2D2v

f4~u,a!EpEs hs ~achiral!

Ep
qee}2

ivNe3bd

e0m
2c

1

Dv
2D2v

@f5~u,a!Ep
2
1f6~u,a!Es

2# f p ,gp ~achiral!
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D2vw ~2!
52bw ~1!2

2

ea2

mL2 w ~1!~2Exx1Eyy!

2

eb2

mL2 w ~1!Ezz . ~4.4!

From these equations, it is straightforward to obtain the
second-order induced electric and magnetic dipole moments
as well as the electric quadrupole one which read here,

p~2!
522ebw ~2!ẑ, ~4.5!

m~2!
52ivea2w ~2!ẑ, ~4.6!

Q~2!
52eS

2a2w ~1!2 2a2w ~2! 0

2a2w ~2! 2a2w ~1!2 0

0 0 2b2w ~1!2
D , ~4.7!

and from which we deduce the expressions of the hyperpo-
larizabilities. The number of nonzero elements is reduced in
this model thanks to Kauzmann’s simplifying assumptions
and we get

bzzz
eee

5

2be3b3

e0m2L4Dv
2 D2v

, ~4.8!

bzzz
eem

52

2ivbe3a2b2

e0m2L4Dv
2 D2v

, ~4.9!

bzzz
mee

52

2ivbe3a2b2

e0m2L4Dv
2 D2v

, ~4.10!

and bzzxx
eeq

52bzzyy
eeq , bzzxy

eeq
5bzzyx

eeq , bzzzz
eeq as nonvanishing

components, all thebqee being null. As for Kuhn’s model,
some of the quadrupole components do not depend on the
nonlinear parameterb but we do not need to neglect them at
this point as they will prove not to contribute in the follow-
ing.

Expressions of the nonlinear susceptibilities obtained af-
ter averaging over aC` distribution are readily obtained.
Here are the nonzero independent components,

x113
eee

5x311
eee

5

Nbe3b3 cosu sin2 u

e0m2L4Dv
2 D2v

,

~4.11!

x333
eee

5

2Nbe3b3 cos3 u

e0m2L4Dv
2 D2v

;

x113
eem

5x311
eem

5

2ivNbe3a2b2 cosu sin2 u

e0m2L4Dv
2 D2v

,

~4.12!

x333
eem

5

22ivNbe3a2b2 cos3 u

e0m2L4Dv
2 D2v

;

x113
mee

5x311
mee

5

2ivNbe3a2b2 cosu sin2 u

e0m2L4Dv
2 D2v

,

~4.13!

x333
mee

5

22ivNbe3a2b2 cos3 u

e0m2L4Dv
2 D2v

.

Examination of Table I shows thatxeee has only achiral
components, whereasxeem and xmee has only chiral ones.
This is in good agreement with the linear response; chirality

is clearly due to the magnetic moment induced by the helical
motion of the electrons. An interesting point is that the qua-
drupolar termsxeeq and xqee are identically null. Reducing
the nonlocal effects to the magnetic ones is therefore fully
correct for this model. Considering now the radiated second
harmonic electric field, we recover the expressions previ-
ously obtained for magnetic terms.3,5 They are given in Table
III for the same geometry as Fig. 1.Eeee contribute only to
f p , gp , andhs ~achiral!, whereasEeem andEmee contribute
only to f s , gs , andhp ~chiral!. Note that the exact cancella-
tion of the chiral electric contribution is a consequence of the
Kauzmann model which removes the contributions of the
electric dipole in the surface plane. However, considering the
calculation in Ref. 17 with a unique electron on a helix, one
can show that the chiral electric susceptibility components
give a negligible effect as soon as the optical nonlinear re-
sponse is strong enough. Working in the same framework as
for the Kuhn model, we therefore obtain a quite good agree-
ment with Ref. 17.

Kauzmann model allows to obtain simple results and to
show that the chiral signal in surface SHG originates in the
magnetic terms and that electric quadrupolar susceptibilities
vanish. This in in complete contrast with the Kuhn model
introduced in the previous section. These two models are
therefore very complementary. We will now examine previ-
ously obtained experimental results in the light of these two
models.

V. DISCUSSION

Before discussing the experimental results, we would
like to stress again the difference between the two models. In
the Kuhn model, optical activity occurs because the two
electric dipole moments are arranged in a nonmirror-
symmetrical configuration. This is known to be the main
mechanism in molecules constituted of two~or more! mono-

TABLE III. Second harmonic electric field radiated by an isotropic layer of
molecules described by the Kauzmann model.

Electric field
Contribution

to f, g, h

Es
eee}2

A2Ne3bb3

e0m2L4

1

Dv
2 D2v

cosu sin2 uEpEs hs ~achiral!

Ep
eee}

A2Ne3bb3

8e0m2L4

1

Dv
2 D2v

cosu@~113 cos 2u!Ep
2

14 sin2 uEs
2#

f p ,gp ~achiral!

Es
eem}

A2ivNe3ba2b2

e0m2L4c

1

Dv
2 D2v

cosu sin2 u@Ep
2
2Es

2# f s ,gs ~chiral!

Ep
eem}

A2ivNe3ba2b2

8e0m2L4c

1

Dv
2 D2v

~3 cosu15 cos 3u!EpEs hp ~chiral!

Es
mee}

A2ivNe3ba2b2

8e0m2L4c

1

Dv
2 D2v

cosu@~113 cos 2u!Ep
2

14 sin2 uEs
2#

f s ,gs ~chiral!

Ep
mee}2

A2ivNe3ba2b2

e0m2L4c

1

Dv
2 D2v

cosu sin2 uEpEs hp ~chiral!
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mers in interaction.18,19As a consequence, we find that opti-
cal activity in surface SHG is also due to purely electric
terms. On the other hand, optical activity in the Kauzmann
model is due to the helical path imposed to the electrons by
the molecular backbone. It is clear here that excitation of an
electric dipole moment will induce a magnetic moment and
vice versa9 and that optical activity is mainly a magnetic
effect. This is true also for second-order nonlinear optics.
The two models depicted above, although simple, give a very
physical approach of the microscopic origins of optical ac-
tivity and of their consequences for surface SHG.

Let us consider now the interchange of the handedness
of the enantiomers. Interchanging the two enantiomers by
mirror imaging of the system leads to changing the sign of
the chiral parameter and of the nonlinear coupling term to-
gether. This last feature can be understood as follows: look-
ing at Fig. 3, one sees that a positiveb means that the oscil-
lator is stiffer in they.0 direction compared to they,0
one, i.e., when the electrons go upward. Taking the mirror
image of the helix, the oscillator must still be stiffer for
electrons going upward, i.e., fory,0. This is possible only if
b changes sign when going from an enantiomer to the other
one. Applying these changes shows that thexeee tensor does
not change sign whereasxeem andxmee do for the Kauzmann
model. Applying similar rules to the Kuhn model~which is
somewhat more involved as one must change concommi-
tantly the sign of the anglea and of the nonlinear parameter
b for one of the two oscillators!, one gets the opposite result.
However, the only nonvanishing components ofxeem and
xmee ~resp.xeee! are chiral~resp. achiral! in the Kauzmann
model while they are achiral~resp. chiral! in the Kuhn one
~cf. Tables II and III!. Finally, both models are consistent
with the very general symmetry rules of chirality in two
dimensions;20 chiral components change sign, whereas
achiral ones do not when interchanging enantiomers. As the
components which change sign with the enantiomers are the
electric ones in the Kuhn model and the magnetic ones in the
Kauzmann model, this should be observed in an experiment
measuring the absolute phase of the susceptibility tensors.
However, experiments have only given relative phases~if
any! so far and could not access this information.

We can also estimate from our calculations the relative
magnitudes of the radiated second harmonic fields so as to
compare the chiral and achiral contributions. Such a com-
parison is straightforward for the Kauzmann case. Looking at
Table III, one gets that the chiral contributions over the
achiral ones scale asa2/lb. The molecular parametersa et b
being in the same range, but in any case, much smaller than
the wavelength, this ratio is clearly much smaller than 1. As
an example, we consider hexahelicene for whicha52.50 Å
and b50.605 Å,21 and we get a ratio of 1023 for a wave-
length of 1mm. This is quite consistent with the fact that the
chiral parts come from magnetic effects whereas the achiral
ones come from electric effect, and one recovers the usual
ratio between both contributions. In the Kuhn model, such a
comparison is not so simple. Indeed, two contradictory fea-
tures occur. On one hand, the chiral part being of electric
origin, it is expected to be larger that the achiral part, of
magnetic origin. On the other hand, the chiral part is non

zero only if at least one of the frequencies is close to a
molecular resonance. The ratio between chiral and achiral
parts will therefore not depend only on geometrical factors of
the molecule, as for the Kauzmann model, but will also be
very sensitive to the excitation photon energies compared to
the electronic or vibrational transitions of the molecule. In
particular, if the second harmonic frequency is close to a
resonance, the ratio chiral/achiral scales as (k/D2v)
3(l/d) and can become quite large. As discussed below,
this has been experimentally demonstrated in helicenebis-
quinone where the chiral electric contributions dominate.22

We can now proceed to an examination of previously
published experimental results in view of our calculations.
Considering the very simple models we have introduced, it is
not possible to look for more than a qualitative agreement.
However, we will see that our calculations allow to reconcile
controversial interpretations that were given in the past about
the origin of the chiral response in surface SHG experiments.
In a pionneering work, Byerset al.2 demonstrated SHG from
a surface of chiral 2,28-dihydroxy-1,18binaphtyl. They
clearly evidenced chiral effects in the harmonic signal
~namely, a rotation of the polarization of the harmonic beam
compared to the fundamental one! which they explain by
considering only the electric dipolar nonlinear susceptibility.
More recently, Van Elshochtet al.23 confirmed this result in a
helical polymer based on binaphtyl monomers where no in-
dication of magnetic contributions were observed. Similar
results were obtained in Langmuir–Blodgett films of a chiral
helicenebisquinone derivative which give very strong SHG
signal.22 Here again, no evidence of magnetic contributions
was found and the dominant contribution wasx123

eee . This
chiral contribution was measured to be at least 6 times larger
than the achiral ones. These three experiments rely on similar
molecules. In every case, the molecules under consideration
are composed of two identical monomers spatially arranged
in a nonmirror symmetric configuration. Optical activity in
such molecules clearly originates from excitonic coupling18

and therefore should be correctly described by coupled os-
cillators. The experimental results are consistent with the
above calculation for the Kuhn model in which the electric
terms are dominant. In particular, the helicenebisquinone
compounds seem to be very well fitted to this model which
implies that if the second harmonic frequency is not too far
from an electronic resonance, the magnetic terms are negli-
gible compared to the electric ones. This looks quite appro-
priate to the helicenebisquinone molecule.

On the other hand, several experiments have proven that
in some cases, the electric-dipole approximation is not suffi-
cient for explaining SHG on a surface of chiral molecules.4,5

More strikingly, there exist molecules for which the chiral
components are dominated by the magnetic ones. It is the
case of polythiophene4 or of chiral poly~isocyanide! films for
which the largest chiral magnetic component, of the order of
20% of the largest achiral electric one, is three times as big
as the largest chiral electric one.24 In such molecules, the
nonlinearity originates in the delocalization ofp electrons
along a linear path which is slightly twisted due to the pres-
ence of a chiral center. This motion is comparable to the
motion of an electron on a helix and can therefore be mod-
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elized by the Kauzmann model. Predominance of the mag-
netic terms in the chiral response is expected from the above
calculations.

In the general case, molecules cannot be modelized by a
unique model. This is the case for example in Ref. 5 where
the molecular backbone is not strictly linear and where many
susceptibility components are expected to play a role. In that
case, all the effects are mixed up and chiral components were
measured to have similar orders of magnitude for the electric
or magnetic contributions. However, by choosing the mo-
lecular structure, one can favor the electric or the magnetic
origin in the chiral SHG signal.

Before concluding, we would like to further comment on
the helicenebisquinone case.22 The experiments were per-
formed on Langmuir–Blodgett films and it was shown that
enantiomerically-pure molecules were stacked in helical su-
pramolecular aggregates. There seems to be a competition
between the molecular level which pertains to the Kuhn
model and the supramolecular one which introduces a helical
path. It is experimentally clear that the Kuhn model is well
fitted, which means that the chiral nonlinear response is
dominated by the molecular level. The supramolecular orga-
nization, although not prevalent as far as chirality is con-
cerned, is nevertheless important as it allows the various mo-
lecular entities to radiate in a coherent way and to interfere
constructively.

VI. CONCLUSION

In this paper, we have made use of two classical models
of the origin of the optical activity in chiral molecules and
extended them to the second-order nonlinear response in or-
der to understand better surface SHG experiments. The first
model is the Kuhn one in which the optical activity comes
from the coupling of two oscillators. The second one, intro-
duced by Kauzmann, describes an electron harmonically
bound on a helix. By allowing the oscillators to be anhar-
monic, we are able to calculate the second-order hyperpolar-
izabilities of the molecules, including the nonlocal~magnetic
dipolar and electric quadrupolar! response. From these coef-
ficients, we get the nonlinear susceptibilities of an assembly
of molecules deposited on a surface and derive the radiated
second harmonic field, as measured in the experiments. The
two models give strikingly different results. In the Kuhn
model, the chiral response comes from the electronic suscep-
tibility, whereas in the Kauzmann case, it comes from the
magnetic ones. Furthermore, we show that the electric qua-
drupolar contributions are not negligible in the Kuhn model,
but that they are indiscernible from the magnetic dipolar
ones and that it is therefore legitimate to cast both effects
under a generalized magnetic term.

This calculation allows to understand better previously
published experimental results on SHG on a layer of chiral
molecules where various interpretations relying either on
purely electric effects or on magnetic ones were given. In-
deed, depending on the molecular structure, one of the two
models is more appropriate and our calculation predicts that
the chiral signatures in the SHG signal are very different. A
close analysis of previous experiments shows that their re-
sults are consistent with our modelizations.

This calculation, although simple, brings very instructive
information about the link between the molecular structure
and the surface SHG signal.A contrario, it shows the power
of surface SHG to study the origin of chirality in molecules.
By measuring separately the local/nonlocal susceptibility
components as well as the achiral/chiral ones and by com-
paring with the results of the model calculations, it allows us
to get a more precise understanding of the microscopic
mechanisms of chirality.
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