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Active magnetic bearing: A new step for model-free control

Jérôme De Mirasa, Cédric Joinb,d,f , Michel Fliessc,d, Samer Riachye,f and Stéphane Bonneta

Abstract— The newly introduced model-free control is applied
to the stabilization of an active magnetic bearing, which is
a most important industrial device. Experimental results are
compared to those obtained via other control techniques, show-
ing at least on-par performance with this very straightforward
approach, which is moreover quite easy to implement.

I. INTRODUCTION

Most uses of active magnetic bearings (AMB) are found
in industrial applications. In particular, they find their way
into high-speed rotating equipment such as turbines, machine
tools, vacuum pumps or compressors. Another significant
use is flywheel-based energy-storage devices, in applications
ranging from satellites to biomedical equipment [6]. Indeed,
magnetic bearings have many advantages over their conven-
tional counterparts:

• Thanks to contactless, mostly frictionless operation,
they can support loads with very high rotational speeds.

• Since they do not require lubrication, they are suitable
for environments where excluding contamination is key,
such as clean rooms, or where efficient lubrication is a
problem, such as deep vacuums.

The extension of EARNSHAW’s theorem to magnetic
forces shows it is impossible to design stable positioning
systems by the mere use of permanent ferromagnetic mag-
nets. While passive solutions based on diamanetic materials
exist [23], they are uncommon in practice. This is why most
applications implement active magnetic bearings (AMBs).

Active magnetic bearings are electromagnet-based and
require an active control system to operate correctly [26].
They operate as follows. Each control axis (see Figure 1)
features two electromagnets and a position sensor measuring
rotor displacement. Each electromagnet generates a force
which is proportional to the square of its coil current, and
inversely proportional to the square of the air gap between
its stator and the supported shaft. Through modulation of
these forces, it is possible precisely position the shaft along
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Fig. 1. An active magnetic bearing axis

Fig. 2. Control plane with two perpendicular axis

the control axis. A centering device able to position a shaft
along two degrees of freedom is obtained by combining two
control axes. to completly maintain a shaft in levitation, two
centering devices and a longitudinal AMB are necessary.
Obviously, the nature of the forces involved introduces
important nonlinearities in the physics of an axis. In addition,
AMBs being very fast electromagnetic devices, major real-
time constraints have to be considered when designing an
appropriate control system.

Control of magnetic levitation systems, are the subject of
numerous publications owing to their industrial importance
(see e.g. [1]–[5], [10], [16], [20]–[22], [25], [28], [30]),
which rely on a wide array of modern control techniques.
What makes this control problem hard stems mainly from
its complex model.

The purpose of this paper is thus to apply the new “model-
free control” approach (see [11]) to that problem.1This con-
trol synthesis, where a “good” mathematical model becomes
pointless, has already been used successfully to solve nu-
merous control problems spanning diverse application areas
(see the references in [11]). Moreover, for each real studied
cases, the ultra-local model was of first order. Specificities
of magnetic bearings – most importantly negligible friction –
necessitates a second order ultra-local model. This is a major
novelty.

1See [9] for a first draft in French.



This paper is organized as follows. Section II sketches
some basics on model-free control. Then, its application to
magnetic bearings, including lab experiments and a perfor-
mance comparison with two different control techniques are
discussed in Section III. Finally, some insight into future
developments is sketched in Section IV.

II. A SHORT SUMMARY OF MODEL-FREE CONTROL2

A. The ultra-local model

The unknown global description of the plant is replaced
by the ultra-local model

y(ν) = F + αu (1)

where
• the derivation order ν ≥ 1 is selected by the practi-

tioner;
• α ∈ R is chosen by the practitioner such that αu and
y(ν) are of the same magnitude.

Remark 1: Note that ν has no connection with the order
of the unknown system, which may be described with
distributed parameters like partial differential equations (see,
for instance, [19] for hydroelectric power plants).

Remark 2: The existing examples show that ν may always
be chosen quite low. In all existing concrete case-studies
ν = 1, with the single exception of the magnetic bearings
where ν = 2 since frictions are almost negligible.3

Some comments on F are in order:
• F is estimated via the measure of u and y;
• F subsumes not only the unknown structure of the

system but also any perturbation.

B. Intelligent PIDs

Set ν = 2 in Equation (1):

ÿ = F + αu (2)

Close the loop via the intelligent proportional-integral-
derivative controller, or iPID,

u = −
F − ÿ∗ +KP e+KI

∫
e+KD ė

α
(3)

where
• e = y − y? is the tracking error,
• KP , KI , KD are the usual tuning gains.

Combining Equations (2) and (3) yields

ë+KD ė+KP e+KI

∫
e = 0

where F does not appear anymore. The tuning of KP , KI ,
KD is therefore quite straightforward. This is a major benefit
when compared to the tuning of “classic” PIDs.

2See [11] for more details. See [18] for the implementation on cheap and
small programmable devices.

3See the explanation in [11].

If KI = 0 we obtain the intelligent proportional-derivative
controller, or iPD,

u = −F − ÿ
∗ +KP e+KD ė

α
(4)

Set now ν = 1 in Equation (1):

ẏ = F + αu (5)

The loop is closed by the intelligent proportional-integral
controller, or iPI,

u = −
F − ẏ∗ +KP e+KI

∫
e

α
(6)

If KI = 0, it yields an intelligent proportional controller, or
iP,

u = −F − ẏ
∗ +KP e

α
(7)

C. Estimation of F

F in Equation (1) is assumed to be “well” approximated
by a piecewise constant function Fest. According to the
algebraic parameter identification developed in [12], [13],
rewrite, if ν = 1 for simplicity’s sake, Equation (5) in the
operational domain (see [31] for instance)

sY =
Φ

s
+ αU + y(0)

where Φ is a constant. We get rid of the initial condition
y(0) by multiplying both sides on the left by d

ds :

Y + s
dY

ds
= − Φ

s2
+ α

dU

ds

Noise attenuation is achieved by multiplying both sides on
the left by s−2. It yields in the time domain the realtime
estimate

Fest(t) = − 6

τ3

∫ t

t−τ
[(τ − 2σ)y(σ) + ασ(τ − σ)u(σ)] dσ

where τ > 0 might be quite small. This integral may of
course be replaced in practice by a classic digital filter.

III. MAGNETIC BEARINGS

A. A simplified model

The model used for simulations considers a single axis
and is thus monovariable. Focusing on axis y (Fig. 2), the
radial acceleration of the rotor can be written as

mÿ = Fyp + Fym + Fp, (8)

where Fyp and Fym are the coil-generated magnetic forces
and Fp an additive, constant disturbance such as gravity.
Neglecting the effects of magnetic saturation and hysteresis,
it follows

Fyp =
λ1ixp

2

2(e0 − y)2
and Fym = − λ2ixm

2

2(e0 + y)2
(9)

where e0 is the nominal gap between the shaft and the coils
and parameters λ1 and λ2 depend on the electromagnet and
shaft geometries. Since each axis consists of two symmetrical
actuators, the latter are both assumed equal to the single



parameter λy . Combining Equations (8) and (9), yields a
model which is not linearizable at the origin – where the shaft
is centered and currents are zero (see [3]). However, a model
suitable for linear analysis and control design can be obtained
by applying a constant premagnetisation bias current I0 to
both coils. The constant magnetic flux present in the two
actuators eliminates the flux creation time, which leads to
an almost linear response of the shaft for small current
variations around I0. Using a bias current has one major flaw
though. Since the two coils are always active, their energy
consumption is much higher. Nonlinear operation of an AMB
is thus more efficient, as only one of the coils is active at
any time.

In the latter operating mode, currents iyp and iym are
mutually exclusive and can be expressed as a function of
a single virtual current iy:

iym =

{
−iy if iy < 0
0 otherwise & iyp =

{
iy if iy > 0
0 otherwise.

(10)
Equation (10) implies that either Fyp, or Fym is 0 at any

given time. Equation (9) then yields

Fyp + Fym =
λy sign(iy)iy

2

2(e0 − sign(iy)y)2
, (11)

which gives the simulation model through substitution into
Equation (8).

B. Model parameters

Values of the physical parameters m, λy and e0 are given
in the Tableau I. The setpoint follows a low-pass-filtered,
10-Hertz square signal. As magnetic bearings are subject to
minimal damping, the chosen control law is an iPD controller
(4) which is known to match a classical PID controller [11].
Its parameters are KI = 0, α = .9, KP = 14692 and KD =
266. These values are the same as those of the nonlinear
PID use for comparison in real experiment.

In the simulation, the constant disturbance Fp changes sign
at t = .25 s. A low amplitude noise (less than 2 × 10−6)
is added to the output. The simulation results, obtain with
the simplified model and our intelligent controller given on
Figures 3 and 4, show the efficacy of our string without any
further tuning.

C. Experimentation

In contrast to the simulations presented above, the exper-
iment deals with a complete bearing where all degrees of
freedoms are driven simultaneously by model-free control
laws.

The test-bench used for these experiments is a laboratory
AMB supplied by the Swiss company MECOS-TRAXLER
AG, model miniVS (Figure 5). It features a magnetic sus-
pension unit comprising a rotor, two active centering devices
and an active longitudinal bearing, whose parameters are
summarized in the Tableau I.

All five control axes are driven by a single PC running
real-time Simulink code. Inputs are sampled at a frequency
higher than that of the control law to allow for efficient
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filtering. Two series low-pass filters with a time constant to
are used to this end.

In order to assess the performance of the model-free ap-
proach, a total of three control laws have been implemented:

• The model-free control described above. All axes are
assumed to be independent.

• A global, Euler-Lagrange model-based nonlinear con-
trol law [8]. PID controllers are tuned to output desired
values for the second derivatives of the generalized co-
ordinates of the model according to chosen closed-loop
dynamics. The third order of this closed loop is form
as a product of a first order (time constant: 0.0045 s)
and a second order (angular frequency: 180 rd.s−1 and

TABLE I
EXPERIMENTAL AMB PARAMETERS

Parameter Variable Value
Rotor mass m 3, 097 kg

Maximum coil current Imax 6A
Nominal gap e0 0, 5 10−3m

Coil parameter λy,z 2, 51 10−6mH.m
Acquisition period Tm 33 10−6 s

except invMod control 66 10−6 s
ADC resolution 12− bit

ADC measurement range 0, 5 10−3m
Input numeric filter to 1 10−3 s

time constant
Control laws Te 132 10−6 s

period



Fig. 5. The test-bench.
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Fig. 6. Overview of the control system

damping factor: 1.1). Full model equations are then used
to compute the matching currents to apply to the plant.

• A discrete nonlinear controller [2] where desired cur-
rents are obtained through a table-based numerical
inversion of the behavior of an axis as a function of
the desired shaft position at the next time stepp.

Let y1, z1 and y2, z2 be the positions of the shaft ends.
y1, z1 and the x axis are kept at the nominal gap by an iPD
controller. y2 is made to follow a square reference signal
varying from zero to e0/8 at a frequency of 2 Hz. Likewise,
z2 is made to follow a sinusoidal reference signal varying
from −e0/8 to e0/8 at the same frequency. Authors chose
this reference signal as good indicators to to interpret the
performance of control laws. Both y and z axes are subject
to a perturbation due to gravity, while the x axis is to be
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Fig. 7. y2 axis – Response to a square reference signal
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stabilized close to the nonlinearizable origin of the model4.
As shown on Figures 13 and 14, keeping the x-axis at

the origin is hard as it is the point where the coil currents
are zero. The time needed to establish a current in each coil
induces a slight delay that prevents instantaneous reaction
from the controller. In contrast, this phenomenon does not
occur on the y and z axes since a nonzero current is always
flowing through the coils to oppose gravity.

Figure 7 shows the value of the y2-axis position, featuring
both the reference square signal and a desired output signal
obtained through low-pass filtering of the former. The match-
ing control signal is shown on Figure 8. A significant noise
level can be observed as the input filter does not completely
cancel measurement noises and the derivative term D of the
controller is a rough approximation.

The control signal itself is shaped by the combined influ-
ence of three elements:

• Since both y and z axes are directed towards the ground,
negatives currents are needed to compensate for gravity.

• The value of the current necessary to compensate for
gravity is −2.07A for the nominal gapp.

4As the table on which the test-bench resides is not perfectly horizontal,
this axis still experiences some gravity. This explains the non-zero average
of the control signal shown on Figure 14
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Fig. 9. y axis – Step response

• The offset relative to the nominal gapp. In the exper-
iment, the rotors moves away from the electromagnet
which maintains its position. Hence, the current has
to increase with the gap to keep the magnitude of the
force opposing gravity. The model error estimator F̂
perfectly fulfills its function and compensates for this
nonlinearity.

Figure 9 details a single step response of the y2-axis. The
system response is slightly ahead of the reference signal y?2
it should be following. Indeed, F̂ compensates for errors
between the real system and that on which the control law
is based with a slight delay. This phenomenon also depends
on the value of the α parameter, here 2.05 for both the y and
z axes.

Figure 10 details a single step response of the y2-axis of
all three control laws. They all have been tuned to feature
the same response time.

Compared to the nonlinear global PID control, the model-
free controller also eliminates the steady state error due
to gravity but without any overshoot. Its behavior is also
almost indistinguishable from that of the model inversion-
based controller. Moreover, it achieves this result with a
much lighter computing cost, keeping in mind the model
inversion-based controller had been giving the best results
on this test-bench until the present experimentation.

Figures 11 and 12 show the z2 axis response to its
sinusoidal reference and the matching control signal. The
results are again correct as expected.

Finally, Figures 13 and 14 show the stabilization perfor-
mance of the controller for the x axis and the associated
control signal. The high frequency content of the control
signal is the result of the noise generated by the derivative
approximation use in the PI function with a little sampling
period and minimum interval measurement of positions (see
Table I).

Figure 13 also shows the response of the model inversion-
based controller, which yields a tighter stabilization of the
shaft at the origin, which is nonlinearizable in the model
as explained before. Since at this point the impact of the

5The difference with the value used in simulations is due to a heavier
real system
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Fig. 10. Comparison between the three controllers on the y2 axis.
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Fig. 11. z2 axis – Sinusoidal trajectory tracking

nonlinearity on currents is at its highest, it is hard to define an
optimal value for the α coefficient of the emphiPD controller
in this case. Event if the model inversion-based controller
better captures that nonlinearity, stabilization is still achieved
by the model-free controller, albeit a larger noise.

IV. CONCLUSION

The model-free control synthesis
• yields as good results as the nonlinear PID,6

6The difference is that the PID has not filtered reference of the step signal
of the input.
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Fig. 13. x axis – stabilization at zero
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• matches the laboratory benchmark model inversion-
based controller with a much lower computing cost than
the two other control laws.

Still, the level of noise obtained when trying to stabilize the
shaft at a point where the current is 0 and the model is
nonlinearisable shows a tight coupling between the quality
of the results and the numerical value of the parameter α.
It indicates a possible path towards improvements of our
approach. As the proposed control scheme is not directly
connected to the AMB model, it remains valid as well for
this type of devices at different scales contrarily to other
control systems.
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