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Abstract

A combined nonlinear longitudinal and lateral vehicle control is investigated. Flatness-based nonlinear control and new algebraic
estimation techniques for noise removal and numerical differentiation are the main theoretical tools. An accurate automatic path-
tracking via vehicle steering angle and driving/braking wheel torque is thus ensured. It combines the control of the lateral and
longitudinal motions in order to track straight or curved trajectories and to perform a combined lane-keeping and steering control
during critical driving situations such as obstacle avoidance, stop-and-go control, lane-change maneuvers or any other maneuvers.
Promising results have been obtained with noisy experimental data, which were acquired by a laboratory vehicle with high dynamic
loads and high lateral accelerations.

Keywords: Intelligent transportation systems, coupled longitudinal/lateral vehicle control, flatness-based control, estimation,
noise removal, numerical differentiation, algebraic techniques.

1. Introduction

The development and integration of intelligent systems for
autonomous vehicles have received a lot of attention during the
last decades. The aim of such systems is to reduce the driver’s
physical and mental workload (Tanaka et al., 2000). They have
also been introduced to help the driver to cope with critical driv-
ing situations and make the vehicle more stable and steerable.
A considerable effort has been achieved in order to develop sev-
eral active and passive assistance systems, like Anti-Lock Brak-
ing System (ABS), Electronic Stability Program (ESP), Adap-
tive Cruise Control (ACC) and recently four wheel steering sys-
tems.

Vehicle dynamic control (VDC) has been widely discussed in
the literature. Particularly, several studies on longitudinal and
lateral control have been conducted and published. A major part
of them deals with longitudinal or lateral control separately but
rarely with a coupled one. Unfortunately, many critical driv-
ing situations involving the safe handling of vehicles require
coupled control, and, such a strategy is rarely addressed in al-
ready published works. This remark is emphasized in surveys
(Nobe & Wang, 2001; Khodayari et al., 2010), where the au-
thors give two lists of works concerning longitudinal and lateral
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controllers, and point out that the longitudinal and the lateral
controllers are addressed separately in the majority of cases.

Recently, a great many intelligent systems based controllers
have been developed via lateral or longitudinal controllers. For
lane keeping, lane-change maneuvers, pedestrian and obstacle
avoidance, a lateral control is used (see, for example, Ack-
ermann et al. (1995); Guldner et al. (1999); Tomizuka et al.
(1999); Rajamani et al. (2000); Hatipoglu et al. (2003); Zheng
et al. (2006); Plöchl & Edelmann (2007); Cerone et al. (2009);
Marino & Cinili (2009); Menhour et al. (201); Fernandez-
Llorca et al. (2011)). While, for stop-and-go, adaptive cruise
control and platooning tasks, the longitudinal control is de-
veloped (see for example Rajamani et al. (2000); Mammar &
Netto (2004); Martinez & Canudas-de-Wit (2007); Nouvelière
& Mammar (2007); Villagra et al. (2009)). In (d’Andréa-Novel
& Ellouze, 2001; Chou & d’Andréa-Novel, 2005), a nonlin-
ear global chassis controller is proposed which uses braking
torques but without active steering control to follow desired
trajectories in yaw rate and in longitudinal acceleration. In
contrast, some works have dealt with the problem of com-
fort and improvements of ground vehicle handling through the
joint braking and suspension control (see, for example, Poussot-
Vassal et al. (2011)). Another approach that combines braking
and steering control is also proposed in (Poussot-Vassal et al.,
2011), where the longitudinal motion is considered as a vary-
ing parameter, and not as a state variable. See also (Zheng et
al., 2006) for a similar approach.

Our study proposes a combined vehicle control scheme to
cope with driving situations involving high longitudinal speeds
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and coupled longitudinal/lateral maneuvers. In fact, in (Mam-
mar & Netto, 2004; Nouvelière & Mammar, 2007), the authors
consider an integration of longitudinal and lateral controllers
based on second order sliding mode control for vehicle low
speed automation. In (Rajamani et al., 2000), a control law for
the platooning maneuver is developed via an integration of a
longitudinal and a lateral controllers based on H∞ approach and
gain-scheduling scheme respectively. For more details on these
points, we refer the reader to the surveys due to Nobe & Wang
(2001); Plöchl & Edelmann (2007); Khodayari et al. (2010).

Our vehicle control design rests on

1. flatness-based nonlinear control (Fliess et al., 1995, 1999)
(see also Fuchshumer et al. (2005) for a related approach);

2. algebraic estimation and identification techniques (Fliess
et al., 2008).

A 3DoF nonlinear vehicle model is also considered in order to
establish such a controller. The algebraic techniques provide
a good estimation of noisy signals derivatives, and are useful
because sensors used in a real automotive application are gen-
erally low cost and their measurements are very noisy. Hence it
is not easy to use such data in control applications.

The remainder of this paper is organized as follows. In the
next Section, the flatness-based coupled nonlinear vehicle con-
trol problem is addressed. Section 3 presents a 3DoF and a
10DoF nonlinear vehicle model. Both models are respectively
used for control design and performance tests. The vehicle cou-
pling effects are also given in Section 3. Section 4 describes the
control design steps and the proof of flatness. A short sum-
mary of the algebraic techniques and their application for the
implementation of control law are given in Section 5. Section
6 presents simulation results using the noisy data acquired on
actual roads under high longitudinal speeds and lateral acceler-
ations. Conclusions and perspectives are found in Section 7.

See (Menhour et al., 2011, 2012) for a first draft of this paper.

2. Problem statement

The design and implementation of the coupled longitudi-
nal and lateral vehicle control is one of the most challenging
problems in the development of intelligent transportation sys-
tems. Such a controller plays a crucial role to carry out coupled
maneuvers like automatic driving operations, pedestrian or/and
collision avoidance system, lane-change maneuvers, lane keep-
ing. For these reasons, this work deals with the design of a
coupled nonlinear vehicle control in two steps:

• Step 1: derivatives and filtering of flat outputs using alge-
braic estimation;

• Step 2: flatness-based coupled nonlinear longitudinal and
lateral vehicle control;

using the following theoretical tools:

• flatness property of a three degrees-of-freedom two wheels
nonlinear vehicle model: flat outputs and the correspond-
ing proof are detailed in Section 4;

• algebraic estimation techniques for denoising and numer-
ical differentiation and their application for filtering and
derivatives of flat outputs are given in Section 5.
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Figure 2: Reference trajectory of the race track

The main objective is achieved via a good choice of flat
outputs. With such outputs, the flatness property of (1) is es-
tablished, since, the nonlinear flat controller is designed. The
scheme of Figure 1 shows the design steps and the interaction
between them. The first step describes the computing of the ref-
erence flat outputs with real data and their derivatives. The used
data, have been recorded with an instrumented vehicle during
experiments realized on a race track with a professional driver.
Then, the obtained trajectory is shown in Figure 2.

3. Vehicle models and coupled dynamic analysis

Two nonlinear vehicle models are used: the first one is a
3DoF NonLinear Two Wheels Model (3DoF-NLTWVM) which
will be used to design a combined nonlinear control law. The
second one is a 10DoF NonLinear Four Wheels Model (10DoF-
NLFWVM) which will be used in a complete vehicle simulator
to test the proposed control law under various driving condi-
tions. In the sequel, we present these models and the reasons
for which the coupled nonlinear models are considered.

3.1. 10DoF NonLinear Four Wheels Vehicle Simulation Model
To perform some tests and evaluate the performance of com-

bined controllers, a NonLinear Four Wheels Vehicle Model
should be considered. This model is composed from: trans-
lational motions (longitudinal x, lateral y and vertical z), rota-
tional motions (roll φ , pitch θ and yaw φ ) and wheels dynam-
ics rotation motions (see Tables A.1 and A.2 for notations). All
motions of the model are given in Appendix A.

3.2. 3DoF Nonlinear Two Wheels Vehicle Control Model
The 3DoF Nonlinear Two Wheels Vehicle Control Model

(3DoF-NLTWVM) of Figure 3, provides a sufficient approxi-
mation of the longitudinal and lateral dynamics of the vehicle.
It is used to design a combined controller and composed of the
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Step 1: Filtering and derivatives of flat outputs using algebraic nonlinear estimation  
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Figure 1: Interaction between the algebraic estimation and flatness-based coupled nonlinear control

longitudinal Vx, lateral Vy and yaw ψ̇ motions (see tables A.1
and A.2 for notations). Its equations are: max = m(V̇x− ψ̇Vy) = (Fx1 +Fx2)

may = m(V̇y + ψ̇Vx) = (Fy1 +Fy2)
Izψ̈ = Mz1 +Mz2

(1)

The forces and moments of Eq. (1) in the vehicle coordinates
taking into account the kinetics coupling are:

Fx1 = Fx f cos(δ )−Fy f sin(δ )
Fx2 = Fxr
Fy1 = Fx f sin(δ )+Fy f cos(δ )
Fy2 = Fyr
Mz1 = L1(Fy f cos(δ )+Fx f sin(δ ))
Mz2 =−L2Fyr

(2)

Considering small steering angles assumption, the forces and
moments, in Eq. (2) become Fx1 = Fx f −Fy f δ , Fx2 = Fxr

Fy1 = Fx f δ +Fy f , Fy2 = Fyr
Mz1 = L1(Fy f +Fx f δ ), Mz2 =−L2Fyr

(3)

In Eq. (1) the longitudinal forces are calculated using the
dynamical model of the wheels. For the front wheel:
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Figure 3: Nonlinear two wheeled vehicle model

Fx f = (1/R)(−Iω ω̇ f +Tm−Tb f ) (4)

Considering that the vehicle is only propelled by the front
wheel, the dynamical model of the rear wheel is as follows:

Fxr =−(1/R)(Tbr + Iω ω̇r) (5)

The wheels rotations ω f and ωr are assumed to be measured
through odometers. They are introduced as external inputs in
the equations of the 3DoF-NLTWVM. For our simulations, we
assume that the rear braking torque Tbr can be expressed as
proportional to the front braking torque Tb f , then, Tbr = rTb f

3



where 0 ≤ r ≤ 1 is a repartition braking coefficient between
front and rear wheels. The wheels rotation accelerations will be
estimated using the algebraic estimation and the measured rota-
tion speeds which are available on the vehicle’s CAN bus. Note
that we have considered lateral tyre forces to be proportional
to the sideslip angles of each axle. The front and rear forces
(Fy f =C f α f , Fyr =Crαr) are defined as follows: Fy f =C f

(
δ − Vy+ψ̇L1

Vx

)
Fyr =−Cr

(
Vy−ψ̇L2

Vx

) (6)

where C f and Cr are the cornering stiffness cofficients for the
front and rear tyres respectively. The longitudinal speed is con-
sidered different from zero (Vx > ε). Replacing Eqs. (3), (4),
(5) and (6) in Eq. (1) yields:



mV̇x = mψ̇Vy− Iω
R (ω̇r + ω̇ f )+

1
R (Tm−Tb f −Tbr)

+C f

(
Vy+L1ψ̇

Vx

)
δ −C f δ 2

mV̇y = −mψ̇Vx−C f

(
Vy+L1ψ̇

Vx

)
−Cr

(
Vy−ψ̇L2

Vx

)
+(1/R)(Tm−Tb f )δ +

(
C f − Iω

R ω̇ f
)

δ

Izψ̈ = −L1C f

(
Vy+L1ψ̇

Vx

)
+L2Cr

(
Vy−L2ψ̇

Vx

)
+(L1/R)(Tm−Tb f )δ +L1(Tm− Iω

R ω̇ f )δ

(7)

The longitudinal movement is controlled via the driv-
ing/braking wheel torque Tω = Tm−Tb with Tb = Tb f +Tbr, and
the lateral movement via the steering angle δ . Let us denote the
two control variables: {

u1 = Tω

u2 = δ
(8)

The model given by Eq. (7) may now be written as follows:

ẋ = f (x, t)+g(x)u+g1u1u2 +g2u2
2 (9)

where:

f (x, t) =


ψ̇Vy− Iω

mR (ω̇r + ω̇ f )

−ψ̇Vx +
1
m

(
−C f

(
Vy+L1ψ̇

Vx

)
−Cr

(
Vy−L2ψ̇

Vx

))
1
Iz

(
−L1C f

(
Vy+L1ψ̇

Vx

)
+L2Cr

(
Vy−L2ψ̇

Vx

))
 ,

g(x, t) =


1

mR
C f
m

(
Vy+L1ψ̇

Vx

)
0 (C f R− Iω ω̇ f )/mR

0 (L1C f R−L1Iω ω̇ f )/IzR

 ,g1 =

 0
1

mR
L1
IzR

 ,

g2 =

 −C f
m
0
0

T

, x =

 Vx
Vy
ψ̇

T

, u =

[
u1
u2

]

Remark 1. As mentioned previously, to ensure an efficient
control and perform coupled driving maneuvers, a combined
lateral/longitudinal controller is required. The design of such a
controller requires coupled vehicle models. The vehicle mod-
els (A.1) and (1) satisfy these requirements, which include the
following coupling effects:

• Kinematic coupling: We give a brief description of the
kinematic relationship between the vehicle motions like
steering and yaw motions. When the vehicle wheels are
steered, the longitudinal and lateral forces are functions of
the wheel forces and steering angle (see Eqs. (A.4) and
(2)). The same reasoning is done for the lateral and the
longitudinal displacements, which are also functions of the
yaw angle, longitudinal and lateral speeds (see Eq. (A.2)).

• Load transfer coupling: The load transfer plays a crucial
role in the stability analysis of the vehicle dynamics. This
coupling is the consequence of two important points: the
first one is related to the road geometry parameters like
road bank angle, road slope angle and road curvature, the
second one is due mainly to the vehicle dynamics like lon-
gitudinal and lateral accelerations, roll and suspension mo-
tions. These points change the weight distribution between
the front, rear, right and left tyres. Such parameters and
motions act strongly on the weight distribution between
the vehicle’s tyres. All these coupling effects are expressed
through the tyre vertical forces model (A.5).

• Coupling of tyre behavior: The behavior of the vehicle
models strongly depend on tyre-road forces. The coupled
tyre models (A.3) represent only the relationship between
the road and the vehicle and are required to ensure a real-
istic behavior of the vehicle. Such a model considers the
coupling of longitudinal slip ratio, sideslip angle, vertical
forces and camber angle.

4. Flatness-based control

Flatness-based control ((Fliess et al., 1995, 1999) and
(Lévine, 2009; Sira-Ramı́rez & Agrawal, 2004)) has already
found numerous engineering applications. See, e.g., for cou-
pled nonlinear vehicles (Fuchshumer et al., 2005; Menhour et
al., 2011, 2012) and for underwater vehicles (Rathinam & Mur-
ray, 1998). Flatness is demonstrated for a 3DoF nonlinear two
wheels vehicle model of the form depicted in (14).

4.1. Flatness property: A short summary

Consider the system

ẋ = f (x,u) (10)

where x = (x, · · · ,xn) ∈ Rn and u = (u, · · · ,um) ∈ Rm. It is said
to be (differentially) flat (see (Fliess et al., 1995, 1999) and
(Sira-Ramı́rez & Agrawal, 2004; Lévine, 2009)) if, and only
if:

• there exists a vector-valued function h such that

y = h(x,u, u̇, · · · ,u(r)) (11)

where y = (y, · · · ,ym) ∈ Rm, r ∈ N;
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• the components of x = (x, · · · ,xn) and u = (u, · · · ,um) may
be expressed as

x = A(y, ẏ, · · · ,y(rx)), rx ∈ N (12)

u = B(y, ẏ, · · · ,y(ru)), ru ∈ N (13)

Remember that y in Eq. (11) is called a flat output. It is well
known that a flat system is equivalent to a linear one via an
endogenous feedback (Fliess et al., 1995, 1999) and (Lévine,
2009; Sira-Ramı́rez & Agrawal, 2004).1

4.2. Flatness-based longitudinal and lateral control

In order to reduce the complexity of the nonlinear model in
Eq. (9), nonlinear terms such as u1u2 and u2

2 are neglected.2 De-
spite these simplifications, coupled behaviors are kept as shown
by the functions f (x, t) and g(x, t). Eq. (9) becomes:

ẋ = f (x, t)+g(x, t)u (14)

4.2.1. A proof of flatness
PROOF. We want to show that y1 and y2 given by{

y1 =Vx

y2 = L1mVy− Izψ̇
(15)

define flat outputs for system (14). Some algebraic manipula-
tions yield

x = A(y1,y2, ẏ2)

=


y1

y2
L1m −

(
Iz

L1m

)(
L1my1 ẏ2+Cr(L1+L2)y2

Cr(L1+L2)(Iz−L2L1m)+(L1my1)2

)
−
(

L1my1 ẏ2+Cr(L1+L2)y2
Cr(L1+L2)(Iz−L2L1m)+(L1my1)2

)

(16)

and

[
ẏ1
ÿ2

]
= ∆(y1,y2, ẏ2)

(
u1
u2

)
+Φ(y1,y2, ẏ2) (17)

Then

[
u1
u2

]
= ∆−1(y1,y2, ẏ2)

([
ẏ1
ÿ2

]
−Φ(y1,y2, ẏ2)

)
(18)

where

1An endogenous feedback is a peculiar type of dynamic feedback.
2The results of Section 6 fully justify those approximations.



∆11(y1,y2, ẏ2) = 1
mR

∆12(y1,y2, ẏ2) =
C f
m

(
Vy+L1ψ̇

y1

)
∆22(y1,y2, ẏ2) =

(
L2Cr(L1+L2)−L1my2

1
y1

)(
L1C f R−L1Iω ω̇ f

IzR

)
+
(
(Cr(L1+L2)(Vy−L2ψ̇)−L1mψ̇y2

1)

y2
1

)
×(

C f (Vy+L1ψ̇)

my1

)
−
(

Cr(L1+L2)
y1

RC f−Iω ω̇ f
mR

)
∆21(y1,y2, ẏ2) =

(
Cr(L1+L2)(Vy−L2ψ̇)−L1mψ̇y2

1
mRy2

1

)
and



Φ1(y1,y2, ẏ2) = ψ̇Vy− Iω
mR (ω̇r + ω̇ f )

Φ2(y1,y2, ẏ2) = −L1my1 f3(x, t)− Cr(L1+L2)
y1

f2(x, t)

+
Cr(L1+L2)(Vy−L2ψ̇)−L1mψ̇y2

1
y2

1
f1(x, t)

+L2Cr(L1+L2)
y1

f3(x, t)

The flatness property holds therefore if the matrix ∆(y1,y2, ẏ2)
is invertible. It reads

det(∆(y1,y2, ẏ2)) = ∆11∆22−∆21∆12

=
(Iω ω̇ f−C f R)(L2

1y2
1m2−Cr(L1+L2)L2L1m+CrIzL)

IzR2y1m2 , 0
(19)

This determinant, which depends only on the longitudinal speed
y1 =Vx, is indeed nonzero:

• The wheel rotation acceleration is less than RC f /Iω :
RC f /Iω is around 104, then Iω ω̇ f −C f R , 0.

• Notice that Iz > L1m, then: Cr(L2 + L1)(Iz − L1m) +
L2

1m2y2
1 , 0.

Thus


u = B(y1, ẏ1,y2, ẏ2, ÿ2)

= ∆−1(y1,y2, ẏ2)

([
ẏ1
ÿ2

]
−Φ(y1,y2, ẏ2)

) (20)

with rx = 1 and ru = 2 and

[
ẏ1
ÿ2

]
=

[
ẏre f

1 +K1
1 ey1 +K2

1
∫

ey1dt

ÿre f
2 +K1

2 ey2 +K2
2
∫

ey2 dt +K3
2 ėy2

]
(21)

where, ey1 = yre f
1 −y1 =V re f

x −Vx and ey2 = yre f
2 −y2. The gain

tuning K1
1 , K2

1 , K1
2 , K2

2 and K3
2 is then straightforward thanks to

the equivalent with linear systems (see Section 4.1).
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5. Algebraic estimation

Measured variables and their derivatives are needed in the
control law (21) which is constructed via derivatives of refer-
ence outputs. See (Villagra et al., 2009, 2011; Abouaı̈ssa et al.,
2012) for previous successful applications to intelligent trans-
portation systems.

5.1. Denoising and numerical derivation: a short summary

Start, for simplicity’s sake, with a time signal corresponding
to the first degree polynomial time function p1(t) = a0 + a1t,
t ≥ 0, a0,a1 ∈R. Rewrite, thanks to classic operational calculus
(see, e.g., (Yosida, 1984)) p1 as P1 = a0

s + a1
s2 . Multiply both

sides by s2:

s2P1 = a0s+a1 (22)

Take the derivative of both sides with respect to s, which cor-
responds in the time domain to the multiplication by −t:

s2 dP1

ds
+2sP1 = a0 (23)

The coefficients a0,a1 are obtained via the triangular system
of Eqs. (22)-(23). We get rid of the time derivatives, i.e., of sP1,
s2P1, and s2 dP1

ds , by multiplying both sides of Eqs. (22)-(23)
by s−n, n ≥ 2. The corresponding iterated time integrals are
low pass filters which attenuate the corrupting noises, viewed
as highly fluctuating phenomena (see (Fliess, 2006; Fliess et al.,
2008)). A quite short time window is sufficient for obtaining ac-
curate values of a0, a1. The extension to polynomial functions
of higher degree is straightforward. For derivatives estimates up
to some finite order of a given smooth function f : [0,+∞)→R,
take a suitable truncated Taylor expansion around a given time
instant t0, and apply the previous computations. Resetting and
using sliding time windows allow to estimate derivatives of var-
ious orders at any sampled time instant.3 The following formu-
lae may be used in practice and yield straightforward discrete
linear filters:

• Denoising:

ŷ(t) =
2!
T 2

∫ t

t−T
(2T −3τ)y(τ)dτ (24)

• Numerical differentiation of a noisy signal:

ˆ̇y(t) =− 3!
T 3

∫ t

t−T
(T −2τ)y(τ)dτ (25)

Note that the sliding time window [t−T, t] may be quite short.

3See (Fliess et al., 2008; Mboup et al., 2009) for more details.

5.2. Application

• The estimated derivatives ˆ̇V re f
x , ˆ̇V re f

y , ˆ̈ψre f , ˆ̇ω f and ˆ̇ωr are
performed as follows:
ˆ̇V re f
x

ˆ̇V re f
y

ˆ̈ψre f

ˆ̇ω f
ˆ̇ωr

=− 3!
T 3

∫ t

t−T
(2T (t− τ)−T )


V re f

x

V re f
y

ψ̇re f

ω f
ωr

dτ (26)

• The filtering of ˆ̇V re f
x , ˆ̇V re f

y and ˆ̇ψre f is performed as fol-
lows: V̂ re f

x

V̂ re f
y

ˆ̇ψre f

=
2!
T 2

∫ t

t−T
(3(t− τ)−T )y(τ)

 V re f
x

V re f
y

ψ̇re f

dτ (27)

Then, the flat outputs references are computed using Eqs. (26)
and (27) as follows:

ŷre f
1 = V̂ re f

x

ˆ̇yre f
1 = ˆ̇V re f

x

ŷre f
2 = L1mV̂ re f

y − Iz ˆ̇ψre f

ˆ̇yre f
2 = L1m ˆ̇V re f

y − Iz ˆ̈ψre f

ˆ̈yre f
2 = L1m ˆ̈V re f

y − Iz
.̂..
ψ

re f

(28)

The tracking errors are:
êy1 = ŷre f

1 − y1

êy2 = ŷre f
2 − y2

ˆ̇ey2 = ˆ̇yre f
2 − ẏ2

(29)

The equation of the coupled nonlinear control obtained from
Eqs. (20), (21) and (28) reads:

u =

[
Tω

δ

]
=−∆−1(y1,y2, ẏ2)Φ(y1,y2, ẏ2)

+∆−1(y1,y2, ẏ2)×

[
ˆ̇yre f
1 +K1

1 êy1 +K2
1
∫

êy1dt

ˆ̈yre f
2 +K1

2 êy2 +K2
2
∫

êy2dt +K3
2

ˆ̇ey2

]
(30)

6. Simulation tests: comparison with experimental tests

Several experiments in presence of coupled driving/braking
and steering maneuvers have been realized with an instru-
mented car. All trials are used to compute reference flat out-
puts and to deduce the blue curve of the race track depicted in
Figure 11. For each trial, several dynamical parameters have
been recorded at frequency 200 Hz; among them: longitudinal
and lateral speeds, lateral and longitudinal accelerations, yaw
and roll rates, wheel rotation speeds, longitudinal, lateral and
vertical forces on four wheels, moments on four wheels, steer-
ing angle, etc. For simulations tests, two vehicle models are
used: the first one is a NonLinear Two Wheels Vehicle Model
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Figure 4: Validation diagram bloc: interaction between the algebraic estimation, vehicle models and flat nonlinear control

(1) (3DoF-NLTWVM), while the second is a full NonLinear
Four Wheels Vehicle Model (A.1) (10DoF-NLFWVM).

Real data have been used firstly to generate the reference flat
outputs, and secondly to compare them with the obtained results
in closed-loop as shown in the validation scheme of Figure 4.
More precisely, the blue curves of Figures 5-11 summarize the
main measurements used for our validation. All measurements
are recorded previously during a test conducted on a race track
and employed for our simulations as reference signals. For all
experiments, the professional driver has performed coupled ma-
neuvers under high dynamical loads as highlighted by the blue
curves of Figures 5-7. Moreover, we can observe that the cou-
pled maneuvers like the steering control maneuver combined
with accelerating action, and steering control maneuver com-
bined with sudden and sharp braking action are performed.

Figures 5, 6 and 7 show that the obtained simulation results
are close to the measurements such as yaw rate, longitudinal
speed, longitudinal and lateral accelerations. Note also that
the steering angle and braking/traction wheel torque provided
by the combined control law are similar to the measured ones.
These observations are valid for two vehicle models (3DoF or
10DoF) and for the coupled maneuvers as illustrated in Figure
5 between the positions from 600m to 750m and from 1000m
to 1080m.

As mentioned previously, combined steering and braking
maneuvers are simultaneously performed in the most danger-
ous curves of race track as depicted in Figures 8 and 11. The
controller effectiveness in terms of tracking flat outputs errors
are also depicted in Figures 9 and 10. Let us emphasize that the
tracking errors are small and therefore the closed-loop behavior
is quite satisfactory. Moreover, the tracking trajectory perfor-
mance even under high dynamical loads with dangerous curves
(lateral acceleration −5 m/s2 ≤ ay ≤ 5 m/s2).

Through the simulation results, we can observe the ability
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Wheel Torque: longitudinal control input
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Distance [m]
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Flat Control + 3DoF−NLTWVM
Flat Control + 10DoF−NLFWVM

Braking/accelerating 
and steering actions

Figure 5: Control inputs: driving/braking torque control and steering angle

and the efficiency of the control law to produce an adequate
behavior. Moreover, it is obvious that the behaviors of the con-
trolled models are close to the real vehicle behavior. This ob-
servation is verified especially when the 10DoF vehicle model
is coupled with the nonlinear flat controller. Indeed, as shown
in Figure 8, the curvature of the controlled two wheels model
is slightly different from the reference road curvature. In con-
trast, the performance in terms of the tracking trajectory is still
satisfactory as shown in Figure 11 and for any given model.

The performance of the proposed controller for operating un-
der extreme and coupled behaviors is also highlighted through

7



0 200 400 600 800 1000 1200 1400 1600
−5

0

5
Longitudinal acceleration

[m
/s

2 ]

0 200 400 600 800 1000 1200 1400 1600
40

60

80

100

120

Distance [m]

[k
m

/h
]

Longitudinal speed

Measured
3DoF−NLTWVM + Flat Control
10DoF−NLFWVM + Flat Control

Braking and
accelerating actions
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the obtained results. On the other hand, the controller is able to
operate with high values of lateral acceleration (−5m/s2≤ ay≤
5m/s2) and longitudinal acceleration (−5m/s2 ≤ ax ≤ 2m/s2),
even in the presence of curved trajectories with a small radius
of curvature (20 m < R < 35 m). It should be pointed out that
the emergency situations, such as collisions and obstacle avoid-
ance, lane-change maneuvers, can easily cause critical driving
situations. For this reason, the performance of the control law
are tested under high dynamics loads and coupled maneuvers.
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Figure 8: Curvatures: reference and controlled vehicle model curvatures
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Figure 9: Tracking errors on the first output

Remark 2. Let us emphasize that our results show that the per-
formance of the control law is not affected by the model sim-
plifications: neglected nonlinear terms u1u2 and u2

2 as shown
by Figures 12, 13 and 14. It can be seen that the magnitude of
these second order terms u1u2 and u2

2 is small: the maximum
value is less than 0.8 for u1u2 (Figure 12) and less than 210−3

for u2
2 (Figure 13).

Moreover, the flatness-based control still works in spite of
parameter uncertainties as shown by Figure 15 where the coef-
ficients C f and Cr are 30% reduced. Similar robustness consid-
erations apply to the time-delay problem. Let us point out that
for these tests, 20 samples delay have been applied.
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7. Conclusions

The proposed controller represents a promising solution for
simultaneous control of longitudinal and lateral vehicle move-
ments. To ensure the obtained results, a knowledge of nomi-
nal vehicle model is required. But, this knowledge is not guar-
anteed in the presence of fast dynamics like those induced by
sudden changes of the road adherence and braking maneuvers
leading to time-varying cornering stiffness coefficients. For
this purpose, the recent work (Menhour et al., 2013) shows
that, thanks to the new model-free control design (Fliess &
Join, 2013),4 some complex parameter identification might be
avoided. It indicates possible simplifications for future works.

4See the references in (Fliess & Join, 2013) for a numerous list of successful
applications in most diverse domains.
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Appendix A. Nonlinear four wheels vehicle model equa-
tions

The motions of the Nonlinear four wheels vehicle model are
governed by the following equations:

Dynamical model:
Longitudinal, lateral and vertical motions:

m(V̇x +Vzθ̇ − ψ̇Vy) = mshψ̇φ +∑
4
i=1 Fxi

−Faerox +mgsin(φr−θr)
m(V̇y + ψ̇Vx−Vzφ̇) =−mshφ̈ +∑

4
i=1 Fyi

−Faeroy −mgsin(θr−φr)cos(φr−θr)

m(V̇z +Vyφ̇ −Vxθ̇) = Fz1 +Fz2 +Fz3 +Fz4−mg
Roll, pitch and yaw motions:

(Ix +mh2)φ̈ =−msh(V̇y +Vxψ̇)+ Ixzψ̈

+[msgh− (Kφ f +Kφr)]φ − (Cφ f +Cφr)φ̇
Iyθ̈ = (Fz1 +Fz2)L1 +(Fz3 +Fz4)L2−∑

4
i=1 hiFxi

+(Iz− Ix)ψ̇φ̇

Izψ̈− Ixzφ̈ = Mz1 +Mz2 +Mz3 +Mz4 +∑
4
i=1 Czi

Wheels rotation motions:
Iω ω̇1 =−RFxω1 +Tω1
Iω ω̇2 =−RFxω2 +Tω2
Iω ω̇3 =−RFxω3 +Tω3
Iω ω̇4 =−RFxω4 +Tω4

(A.1)

kinematics model:{
ẋ =Vx cosψ−Vy sinψ

ẏ =Vx sinψ +Vy cosψ

(A.2)

It should be pointed out that the above nonlinear vehicle
model expresses the coupling of kinematics, dynamics and tyre
which are described in Remark 1.

Appendix A.1. Tyre model
To obtain a realistic representation of the vehicle behavior

and simulate the limit handling situations where the extreme
driving situations are present, the coupled nonlinear tyre model
of Pacejka (Pacejka, 2006) is used. In this model, the coupling
of vertical, longitudinal and lateral motions are taken into ac-
count. The following illustrative equations can be used as gen-
eral expressions for longitudinal and lateral tyre forces:{

Fxωi = fx(ζi,λi,αi,Fzi) for i = 1, · · · ,4
Fyωi = fy(ζi,λi,αi,Fzi) for i = 1, · · · ,4 (A.3)

For different loads, the relationships between lateral tire
force and slip angle are given in Figure A.17. These forces are
linear for small sideslip angles with constant cornering stiff-
ness coefficients (C f and Cr) (see Figure A.17). When the slip
angle increases, the lateral tire force behavior becomes nonlin-
ear. These changes are described by transition and saturation
regions.
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Figure A.16: Nonlinear four wheels vehicle model with roll and pitch motions

In Eq. (A.1), the longitudinal and lateral forces acting on
each wheel in the vehicle coordinate system Fxi and Fyi, are
related to the tyre forces along the wheel axes, Fxωi and Fyωi as
follows:(

Fxi
Fyi

)
=

(
cosδi −sinδi
sinδi cosδi

)(
Fxωi
Fyωi

)
(A.4)

In this model, the coupling of longitudinal slip ratio λi,
sideslip αi, vertical forces Fzi and camber angle ζi are taken
into account.

Appendix A.2. Vertical forces
In static situations, the vertical forces are due to the gravi-

tation. During the driving situations the vehicle is subject to
transfer loads caused by a coupled motion such as longitudinal
acceleration, braking action, cornering situations, roll motion,
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Figure A.17: Pacejka’s Model, lateral force for different load and sideslip angle

lateral acceleration, geometry of the road (slope and road bank
angles), consequently the vertical forces can be expressed as
follows:

Fz1 =
L2mgcosφr cosθr

2(L2+L1)
− hmax

2(L2+L1)
− L2hmay

Sb(L2+L1)

− (Kφ f φ+Cφ f φ̇)
Sb

Fz2 =
L2mgcosφr cosθr

2(L2+L1)
− hmax

2(L2+L1)
+

L2hmay
Sb(L2+L1)

+
(Kφ f φ+Cφ f φ̇)

Sb

Fz3 =
L1mgcosφr cosθr

2(L2+L1)
+ hmax

2(L2+L1)
− L1hmay

Sb(L2+L1)

− (Kφrφ+Cφr φ̇)
Sb

Fz4 =
L1mgcosφr cosθr

2(L2+L1)
+ hmax

2(L2+L1)
+

L1hmay
Sb(L2+L1)

+
(Kφrφ+Cφr φ̇)

Sb

(A.5)

It should be noted that the load transfer due to the pitch and
the suspension motions are not considered. These equations
can be easily obtained using the torque balance construction,
an example of the calculation of the vertical forces based on
this approach is presented in (Kiencke & Nielsen, 2004).

Appendix A.3. Sideslip angles

The nonlinear equations of tire slip angles are:

α1 = δ − arctan
(

Vy+L1ψ̇

Vx−
Sb
2 ψ̇

)
α2 = δ − arctan

(
Vy+L1ψ̇

Vx+
Sb
2 ψ̇

)
α3 =−arctan

(
Vy−L2ψ̇

Vx−
Sb
2 ψ̇

)
α4 =−arctan

(
Vy−L2ψ̇

Vx+
Sb
2 ψ̇

)
(A.6)

Table A.1: Notations (part I)
Symbol Variable name
αi tyre slip angle [rad]
β sideslip angle at CoG [rad]
δ wheel steer angle [rad]
λi longitudinal slip ratio
φ , φ̇ roll angle [rad], roll rate [rad/s]
φr road bank angle [rad]
ψ , ψ̇ yaw angle [rad], yaw rate [rad/s]
θ , θ̇ pitch angle [rad], pitch rate [rad/s]
θr road slope angle [rad]
ωi wheel angular speed of the wheel i [rad/s]
ζi camber angle [rad]
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Table A.2: Notations (part II)
Symbol Variable name
ax longitudinal acceleration [m/s2]
ay lateral acceleration [m/s2]
C f front cornering stiffnesses [N.rad−1]
Cφ f front suspension roll damping [Nm/rads]
Cφr rear suspension roll damping [Nm/rads]
CoG Center of Gravity of vehicle
Cr rear cornering stiffnesses [N.rad−1]
Czi corrective yaw moments [Nm]
Faeroy lateral aerodynamic force [N]
Fx f front longitudinal force in the wheel coordinate [N]
Fxi longitudinal tyre forces of the wheel i

in vehicle coordinate system [N]
Fxωi longitudinal tyre forces of the wheel i

in wheel coordinate system [N]
Fy f front lateral force in the wheel coordinate [N]
Fyi lateral tyre forces of the wheel i

in vehicle coordinate system [N]
Fyωi lateral tyre forces of the wheel i

in wheel coordinate system [N]
Fzi vertical tyre forces of the wheel i [N]
g acceleration due to gravity [m/s2]
h height of the center of gravity [m]
Iω wheel moment of inertia [kgm2]
Iz yaw moment of inertia [kg.m−2]
Kφ f front suspension roll stiffness [Nm/rad1]
Kφr rear suspension roll stiffness [Nm/rad1]
L1 distance from the CoG to the front axle [m]
L2 distance from the CoG to the rear axle [m]
m vehicle mass [kg]
ms sprung mass of vehicle [kg]
Mz yaw moment [Nm]
R tyre radius [m]
Sb wheel track [m]
Tb wheel braking torque [Nm]
Tb f front wheel braking torque [Nm]
Tbr rear wheel braking torques [Nm]
Tm wheel driving torque [Nm]
Tω wheel torque [Nm]
Tωi driving/braking torque of wheel i [Nm]
Vx longitudinal speed [km.h]
Vy lateral speed [km.h]
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