
HAL Id: hal-00870860
https://polytechnique.hal.science/hal-00870860

Submitted on 9 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Surface Instability of an Elastic Half Space with
Material Properties Varying with Depth

Donghee Lee, Nicolas Triantafyllidis, James R Barber, Michael D Thouless

To cite this version:
Donghee Lee, Nicolas Triantafyllidis, James R Barber, Michael D Thouless. Surface Instability of
an Elastic Half Space with Material Properties Varying with Depth. Journal of the Mechanics and
Physics of Solids, 2008, 56 (3), pp.858-868. �10.1016/j.jmps.2007.06.010�. �hal-00870860�

https://polytechnique.hal.science/hal-00870860
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Surface instability of an elastic half space with material properties

varying with depth

Donghee Leea, N Triantafyllidisb,a, J.R. Barbera,c,*, and M.D. Thoulessa,d

aDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, U.S.A.

bDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109-2140, U.S.A.

cDepartment of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109-2125,
U.S.A.

dDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2136,
U.S.A.

Abstract

If a body with a stiffer surface layer is loaded in compression, a surface wrinkling instability may be

developed. A bifurcation analysis is presented for determining the critical load for the onset of

wrinkling and the associated wavelength for materials in which the elastic modulus is an arbitrary

function of depth. The analysis leads to an eigenvalue problem involving a pair of linear ordinary

differential equations with variable coefficients which are discretized and solved using the finite

element method.

The method is validated by comparison with classical results for a uniform layer on a dissimilar

substrate. Results are then given for materials with exponential and error-function gradation of elastic

modulus and for a homogeneous body with thermoelastically-induced compressive stresses.

Keywords

layered materials; stability and bifurcation; inhomogeneous material; buckling; functionally graded

material

1 Introduction

If a structure consisting of a thin stiff layer and a more flexible substrate is subjected to a

sufficiently large compressive load, a buckling or wrinkling surface instability can occur, as

shown in Fig. 1. Generally, surface wrinkling has been considered as an undesirable

phenomenon to be avoided. However, in emerging areas such as micro/nano-fabrication and

bio-engineering, wrinkling can be used to produce controlled nanoscale features (Bowden et
al. (1999),Moon et al. (2007),Efimenko et al. (2005)). It has been proposed that these may be

useful for applications such as diffraction gratings, patterned platforms for cell adhesion or

nano-fluidic channels. Surface wrinking may also provide a way of probing the surface

characteristics of the materials (Stafford et al., 2004).
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Chen and Hutchinson (2004) developed a closed-form solution for the wrinkling of a gold layer

deposited on an elastomer substrate. They modeled the structure as a plate on linear elastic

foundation with infinite thickess. The same methodology was extended to the case of a thin

elastic layer on a substrate of finite thickness by Huang et al. (2005). These solutions most

naturally relate to the situation in which a thin stiff film is deposited on a more flexible substrate,

so that there is a sharp discontinuity in elastic modulus at the interface. However, similar effects

should be anticipated in cases where the elastic modulus of the material is graded continuously

from the surface to a lower substrate value.

The present work was motivated by observations of micron-scale buckling on oxidized poly

(methyldisiloxane)(PDMS) in which a stiff surface-modified layer was formed by exposure to

an oxygen plasma. The surface layer in this material is formed by a diffusive process, so we

anticipate a gradation of mechanical properties from the surface. The absence in the literature

of any discussion of surface wrinkling under these conditions prompted the question of how

the mechanics of wrinkling might be affected by the graded properties. The intent of this paper

is to establish the general mechanics framework for the study of such problems. In particular,

we develop a bifurcation method to analyze the onset of surface wrinkling of an elastic layer

with elastic properties that are arbitrary functions of depth. The analysis is sufficiently general

to allow for an arbitrary distribution of applied compressive strain with depth. In addition to

cases of functionally-graded elastic modulus, it can therefore be applied to situations where a

non-uniform distribution of eigenstrain is generated by thermal expansion or other mechanisms

such as a change in lattice parameters due to variable concentration of a diffusive species

(Larché and Cahn, 1982). The method is validated by comparison with the results of Huang

et al. (2005). It is then used to determine the critical compressive strain at which wrinkling

occurs and the associated wavelength for different distributions of elastic moduli. A subsequent

paper will examine some specific examples of buckling associated with cracking in oxidized

PDMS.

2 General theory of the instability

The study of buckling (i.e. the sudden change of deformation pattern upon increase of the

externally applied load) in elastic structures and solids is a classical problem in solid mechanics,

dating back two and a half centuries to Euler and his celebrated study of the problem of the

elastica. Restricting attention to conservative elastic systems, the key ingredients for the

appearance of buckling are the non-linearity of the system's governing equations and the

symmetries inherent in its fundamental solution (i.e. the solution which exists at small load

levels, prior to the appearance of buckling). These features are present in the problem at hand,

as will be explained below.

For elastic solids, Koiter (1945) was the first in the mechanics community to formulate buckling

as a bifurcation problem associated with the principal solution and provide an asymptotic

technique to follow the post-bifurcation equilibrium paths. With the development of large strain

continuum mechanics in the early 1950's, Koiter's work was subsequently applied to a vast

array of structural buckling problems in mechanics. The interested reader is referred to the

eminently readable review article by Budiansky (1974), who gives the variational formulation

for buckling problems in elastic solids that have a potential energy. The connection between

the loss of stability of the principal solution at the lowest load bifurcation in elastic systems

— the reason for associating the onset of a bifurcation buckling with an instability in these

applications — is also well explained in this article. The most general variational formulation

of the buckling and post-buckling problem of conservative elastic systems can be found in

Triantafyllidis and Peek (1992), whose notation is followed in the present paper.
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We consider the orthotropic elastic layer 0 < x2 < Ht in a state of plane strain and subjected to

a compressive load parallel to the x1 axis, as shown in Fig. 2. The elastic moduli Lijkl(x2) are

assumed to be arbitrary functions of x2 only, satisfying the major and minor symmetry

conditions

The boundary x2 = 0 is assumed traction-free, while x2 = Ht is attached to a rigid plane surface.

In many cases, the wrinkling field will be localized near the free surface and we can then use

the simplifying assumption that the body is a half space (Ht → ∞) with zero displacement at

infinity.

If there is no wrinkling, we expect the stress state to be independent of x1. We shall refer to

this as the ‘fundamental stress state’ and the corresponding solution of the elasticity equations

as the ‘principal solution’ . It must satisfy the equilibrium equations

and the boundary conditions

on the free surface x2 = 0. Here and subsequently, the notation (.),i denotes differentiation with

respect to xi and the Einstein summation convention is implied over repeated indexes. Since

there is no dependence on x1 (i.e ), the only possible non-zero stresses are  which

can be general functions of x2. It is convenient to define a loading parameter Λ such that

 at Λ = 0 and an increase in Λ describes a set of progressively increased applied

loads. We then anticipate that above some critical value of Λ, the principal solution will become

unstable and wrinkling will occur.

2.1 Nature of the loading

The loading  may result from a force applied to the extremities of the body, but in this case,

compatibility considerations demand that the corresponding strain  be independent of

x2, giving

Thus, the fundamental stress state varies with depth in proportion with the elastic modulus.

However, more general variations in loading can be generated by other mechanisms. For

example, if the temperature T(x2) of the body is a function of depth, we will have

(1)

where αkl is the tensor of thermal expansion coefficients. This situation may give rise to

wrinkling even for a homogeneous half space if the surface is suddenly heated, leading to high

compressive stresses in a thin surface layer. Other physical mechanisms leading to

transformation strains could have similar effects.
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2.2 Analysis

Since we assume an elastic material response, the problem is conservative and a potential

energy functional P(ui) exists, defined by

(2)

where ui is the displacement field, Uint is the internal energy, and Wext is the potential of the

external forces. The latter are given by

(3)

where W(εij) is the strain energy density in the body V, bi is the body force and ti is the traction

on the boundary ∂V. In the present problem, there is no body force or boundary traction, so

only the strain energy term appears in the subsequent analysis. The strain energy density W is

(4)

where εij is the strain field. The wrinkling is governed by small strains and moderate rotations,

so the strain can be expressed as

(5)

The equilibrium of this system can be examined by taking the first derivative of the potential

energy,

(6)

The equilibrium equation can be expressed in the weak form by substituting equations (2)–(5)

into (6), giving

(7)

The fundamental stress state  is always a solution of Eq. (7).

We now consider the stability of the principal solution by taking the derivative of the

equilibrium equation. The principal solution is stable in the neighborhood of Λ = 0 since it

minimizes the total potential energy P — i.e , where  is the displacement

field corresponding to the fundamental stress state  and δu is any kinematically admissible

perturbation. As Λ increases, there will be a critical value Λc where stability is lost —

 (Eq. (7)), where Δu is the eigenmode. By substituting the stress field

 into the left hand side of Eq. (7), we can define a stability functional

(8)

where
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where (.)s denotes the symmetric part of the corresponding second order tensor. Since we

assume small strains,  and the strain field perturbation simplifies to

. At the onset of wrinkling, we therefore have

(9)

where  Integrating Eq. (9) by parts and using Gauss' divergence theorem, we obtain

(10)

with boundary conditions

(11)

at the free surface x2 = 0 and

(12)

at x2 = Ht.

Since the fundamental stress state  and the orthotropic elasticity tensor Lijkl are independent

of x1, the equilibrium equation (10) and boundary conditions (11) simplify to

(13)

(14)

respectively. Since the material is orthotropic, equations (13, 12, 14) admit eigenmodes of

sinusoidal form

(15)

For the problem at hand, the eigenmode decomposition in (15) is complete. Substituting these

expressions into (13), we obtain two ordinary differential equations

(16)
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for the functions U1(x2), U2(x2), where the primes denotes derivatives with respect to x2. The

boundary conditions are

(17)

at x2 = 0 and

(18)

at x2 = Ht, from (14, 15, 12). In the special case where the material is isotropic, equations (16,

17) reduce to

(19)

with boundary conditions

(20)

at x2 = 0 and (18) at x2 = Ht, where λ, μ are Lamé's constants.

Equations (16, 17, 18) or (19, 20, 18) define an eigenvalue problem for the critical loading

parameter Λc and the eigenmodes U1(x2), U2(x2) for given wavenumber ω. If the elastic

modulus Lijkl and the fundamental stress state  are piecewise constant functions of x2, the

problem can be solved analytically, but the authors were unable to obtain an analytical solution

for the more general case of a functionally-graded material. In the next section, we therefore

develop a numerical discretization of the problem.

2.3 Numerical Solution

A numerical solution could be obtained by discretizing the differential equations (16), but it is

more convenient to apply the finite element method directly to Eq. (8). Using the same

eigenmodes as given in Eq. (15), the stability functional (8) can be written

(21)

Stability of the structure depends on S(Λ, ω) being positive definite for all ω ∈ R. Since from

symmetry S depends on ω2, only ω > 0 needs to be checked for Λ.

The x2 domain is decomposed in a set of 2-node linear interpolation elements, within each of

which the unknown displacement Ui is represented in the form

(22)

where NI(x2) is the shape function and  is the local degree of freedom for Ui at the two terminal

nodes (I = 1, 2) of the element. For each element there are therefore four degrees of freedom,

which we combine into the vector
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By substituting Eq. (22) into Eq. (21) and integrating over the element in question in x2-space
1, we obtain the element stiffness matrix

where

The global stiffness matrix K can then be constructed by adding the element stiffnesses such

that

where Q is a vector of global degrees of freedom. The eigenvalues of the system can be obtained

by decomposing the global stiffness matrix K using Choleski decomposition, subject to the

essential boundary condition Ui(Ht) = 0. We write

where L is the lower triangular matrix with unit diagonal terms, U = LT is the upper diagonal

matrix and D is the diagonal matrix. By tracking the positive definiteness of the matrix D, the

system stability can be evaluated. If the system is stable, the lowest eigenvalue should be

positive. When the load parameter Λ reaches a critical value Λc at which the lowest element

of D is zero, the system becomes unstable.

3 Results

3.1 Convergence and validation

The method developed in the preceding two sections can be used to evaluate the stability of a

layer or half space with arbitrarily graded properties and applied loading. However, to validate

the method, we first compare its predictions with the results of Huang et al. (2005) for an

isotropic homogeneous layer of thickness Hf on a dissimilar substrate of finite thickness Hs (so

in our notation Ht = Hf + Hs). Notice that these authors made the simplifying assumption that

the shear stress at the film/substrate interface remains zero in the buckled state, whereas our

analysis is exact within the context of the numerical discretization.

1The integral  is taken out of (21) as a common factor.
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Fig. 3 shows the critical strain  and critical dimensionless wavelength 2π/ωcHf as a function

of the thickness ratio Hs/Hf for three values of the modulus ratio , where Ē is the plane

strain modulus defined as

and E, v are Young's modulus and Poisson's ratio respectively. Poisson's ratio for both film

and substrate was taken as v = 0.4. The solid lines are taken from Huang et al. (2005) and

reproduce their Fig. 5, while the points were obtained from the present program. The agreement

is extremely good in all cases.

Tests were also conducted to determine the number of elements required for the numerical

solution to converge. A finer mesh was used in the film and in the upper layers of the substrate

since the perturbation is concentrated in this region. Better than 0.1% accuracy was obtained

using 100 elements in the film and an equal number in a region of the substrate adjacent to the

interface of thickness 3Hf. For the most efficient meshing, the element gradation should follow

the rate of decay of the eigenmode, but this depends on the wavelength which is only known

a posteriori.

It is clear from Fig. 3 and from heuristic considerations that the thickness of the substrate has

little effect on the results if it is large compared with the wavelength of the eigenmode. For the

homogeneous layer, we found that the half space results can be recovered from the necessarily

finite numerical model provided that the substrate thickness Hs is greater than about twice the

wavelength — i.e. Hs > 4π/ωc.

3.2 Graded materials

We next turn our attention to continuously graded materials, for which no previous results are

available. We considered two examples: a half space in which the plane strain modulus is

graded exponentially from a surface value Ē0 to a substrate value Ēs as x2 → ∞ — i.e.

and one in which the grading follows the complementary error function

(23)

In both of these examples, the parameter H serves as a characteristic length for the decay and

can also be used in constructing an expression for the critical dimensionless wavenumber

ωcH. The two expressions are compared in Fig. 4, which shows that the error function decays

to zero more rapidly at large depths.

Fig. 5 shows the critical strain  and the critical dimensionless wavenumber ωcH for the

exponentially graded modulus as a function of the modulus ratio . Poisson's ratio was

taken as a constant v = 0.4 for these calculations. For comparison we also show on these figures

the results for a discrete homogeneous layer (solid line). The parameters for this ‘equivalent

homogeneous layer’ were chosen by matching the area between the modulus curve and the

constant substrate level and the first moment of the same area, giving

Lee et al. Page 8

J Mech Phys Solids. Author manuscript; available in PMC 2009 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(24)

and

(25)

The graded results show a trend similar to the homogeneous layer, but the dependence on

modulus ratio is not now of power law form and both critical strain and wavenumber become

less sensitive to modulus ratio at high ratios. However, the homogeneous approximation (24,

25) underestimates the critical strain by up to a factor of two and generally overestimates the

corrresponding wavenumber.

Corresponding results for error-function gradation are shown in Fig. 6. The results are

qualitatively similar to the exponential case, though the homogeneous approximation to the

critical wavenumber is less good.

3.3 Effect of Poisson's ratio

In the preceding results, Poisson's ratio was assumed to be independent of depth. To examine

the effect of grading in v, we considered the case in which both Ē and v have error function

grading. In other words, Ē is given by (23) and

(26)

The critical strain and wavenumber are shown as functions of  in Fig. 7 for the case where

v0 = 0 and vs = 0.49. For comparison, we also show results for the two cases where the modulus

has the same grading but Poisson's ratio is uniform and given by the extreme values v0 = 0 and

0.49 respectively.

For a homogeneous layer on a homogeneous substrate, the critical strain and wavenumber

depend only on the ratio of the plane strain moduli  and are otherwise unaffected by

Poisson's ratio (Huang et al., 2005). By contrast, if the modulus is graded, we find a significant

effect of v even if it is assumed uniform. These effects are greatest when the modulus ratio is

relatively modest. For example, for , the critical strain for v = 0 exceeds that for v =

0.49 by almost 90%.

The results for graded Poisson's ratio are very close to those obtained using the uniform value

0.49. In other words, a good approximation is obtained if the substrate value of v is used

throughout the body. This conclusion was verified by other numerical experiments.

3.4 Thermoelastic wrinkling

As a final example, we consider the case where the material is isotropic and homogeneous, but

the fundamental stress state  varies with depth because of a non-uniform temperature field

due to surface heating, as in Eq. (1). If the body is initially at zero temperature and the boundary

x2 = 0 is raised to a constant temperature T0 for time t > 0, the subsequent temperature profile

will be given by
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where κ is the thermal diffusivity (Carslaw and Jaeger, 1959, §2.5). The corresponding

fundamental stress state is then

from (1), where α is the coefficient of thermal expansion. Both expressions have the same

functional form at all times, but the characteristic length scale κt (and hence the wavelength

of any wrinkles) increases with time. We can therefore determine a universal dimensionless

critical thermal strain  and critical wavenumber  from a single numerical

calculation. We find

A related problem is one in which the thermal-expansion mismatch is uniform and limited to

a surface layer of thickness Hf in a homogeneous material. The critical strain for this problem

is given by , and the critical wavenumber is ωcHf = 12.2. This thermoelastic

problem also provides a model for other phenomena that involve compressive misfit strains

within a surface layer; for example, a layer with epitaxial strains, a layer with a volume change

due to a phase transition or concentration of a diffusive species (Larché and Cahn, 1982), or a

piezo-electric layer. The critical strains due to pure thermoelastic effects are sufficiently large

that the surface instabilities may not be of practical significance when there is no modulus

mismatch, but in conjunction with a stiff surface layer, phenomena such as thermoelastic

wrinking are likely to occur at practical levels of strain.

4 Conclusions

We have presented a general strategy for determining the critical strain and the corresponding

wavenumber for the wrinkling instability of a half space or thick layer loaded in compression,

when the elastic properties vary with depth. Results exhibit dependence on modulus ratios

similar to those observed when a homogeneous stiff surface layer is bonded to a more flexible

substrate (i.e. where the elastic properties are piecewise constant). We present expressions

permitting analytical results for the latter case to be used in an approximate sense. The method

can also be applied to thermoelastic loading associated with transient surface heating and we

give results for the critical surface temperature at which a homogeneous half space will develop

wrinkling.
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Fig. 1.

Schematic of a half space subjected to a compressive load
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Fig. 2.

The graded layer subjected to a compressive load
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Fig. 3.

Critical strain and wavelength for a homogeneous layer on a dissimilar substrate. The solid

lines are taken from Huang et al. (2005).
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Fig. 4.

Examples of variable modulus: — exponential grading, - - - error function grading
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Fig. 5.

Critical strain and dimensionless wavenumber for exponential grading. The solid line

represents a homogeneous layer approximation using equations (24, 25).
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Fig. 6.

Critical strain and dimensionless wavenumber for error function grading. The solid line

represents a homogeneous layer approximation using equations (24, 25).
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Fig. 7.

Effect of Poisson's ratio: (○) v = 0 and uniform, (□) v = 0.49 and uniform, (◊) Eq. (26) with

v0 = 0, vs = 0.49.
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