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ABSTRACT

Large-scale hydrological models describing the terrestrial water balance at continental and global scales are

increasingly being used in earth system modeling and climate impact assessments. However, because of in-

complete process understanding and limits of the forcing data, model simulations remain uncertain. To

quantify this uncertainty a multimodel ensemble of nine large-scale hydrological models was compared to

observed runoff from 426 small catchments in Europe. The ensemble was built within the framework of the

European Union Water and Global Change (WATCH) project. The models were driven with the same

atmospheric forcing data. Models were evaluated with respect to their ability to capture the interannual

variability of spatially aggregated annual time series of five runoff percentiles—derived from daily time

series—including annual low and high flows. Overall, the models capture the interannual variability of low,

mean, and high flows well. However, errors in the mean and standard deviation, as well as differences in

performance between the models, became increasingly pronounced for low runoff percentiles, reflecting the

uncertainty associated with the representation of hydrological processes, such as the depletion of soil moisture

stores. The large spread in model performance implies that any single model should be applied with caution as

there is a great risk of biased conclusions. However, this large spread is contrasted by the good overall per-

formance of the ensemble mean. It is concluded that the ensemble mean is a pragmatic and reliable estimator

of spatially aggregated time series of annual low, mean, and high flows across Europe.

1. Introduction

Large-scale hydrological models have proved to be

valuable tools for assessing fluctuations in terrestrial

water stores and fluxes on continental and global scales

(e.g., Dirmeyer 2011; Dirmeyer et al. 2006; Milly et al.

2005). To date, models describing the terrestrial water

balance have been developed by different communities

and parallel terminologies, and modeling philosophies

have emerged (Haddeland et al. 2011). Among the most

commonly used terms are global hydrology models

(GHMs), focusing on closing the water balance for the

purpose of water resource assessment, and land surface

models (LSMs) that were historically developed to pro-

vide lower boundary conditions for atmospheric circula-

tion models with a focus on the surface water and energy

balances. However, many models (both GHMs and LSMs)

share essentially the same conceptualization of the wa-

ter fluxes (Haddeland et al. 2011). Thus, all models that
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resolve the terrestrial part of the water cycle at global and

continental scales will in the following be referred to as

large-scale hydrological models.

Various efforts have been made to evaluate large-

scale hydrological models, including macroscale studies

that compare observed and modeled continental river

discharge (e.g., Balsamo et al. 2009; Decharme and

Douville 2007; Gerten et al. 2004; Hagemann et al.

2009), as well as studies with relatively detailed spatial

and temporal resolution on continental and global scales

(e.g., Döll et al. 2003; Hunger and Döll 2008; Troy et al.

2008; Widén-Nilsson et al. 2009; Stahl et al. 2011). Gen-

erally the focus is on evaluating a single model, possibly

with a new representation of certain processes. Another

approach is followed by large model intercomparison

exercises that focus less on model evaluation by com-

parison to observations, and rather more on identifying

differences in model dynamics. Examples are the Project

for Intercomparison of Land Surface Parameterization

Schemes (PILPS) (Henderson-Sellers et al. 1995), the

Global Soil Wetness Project (GSWP) (Oki et al. 1999;

Dirmeyer et al. 2006; Dirmeyer 2011), and the Water

Model Intercomparison Project (WaterMIP) (Haddeland

et al. 2011). In general, these studies conclude that there

are large differences between the models, which may be

caused by incomplete process understanding, different

parameter estimates, and imperfect atmospheric forcing

data.

Several multimodel evaluation studies not only com-

pare individual models to observations, but also inves-

tigate the behavior of the mean of all models, commonly

referred to as the ensemble mean. Being widely applied

in atmospheric science (e.g., Reichler and Kim 2008;

Hagedorn et al. 2005; Palmer et al. 2004), so-called en-

semble techniques are also increasingly used in the eval-

uation of large-scale hydrological models. So far most

studies that employed ensemble techniques in the con-

text of large-scale hydrological modeling have focused

on the mean annual cycle of monthly discharge from

large, continental-scale river basins. Generally these

studies show that the uncertainty in river discharge in-

troduced by the use of different atmospheric forcing

models (Nohara et al. 2006; Hagemann and Jacob 2007)

and different land surface schemes (Materia et al. 2010)

can be reduced by ensemble techniques. Several studies

have compared soil moisture simulations from the GSWP

to monthly observations from a global observation net-

work (e.g., Gao and Dirmeyer 2006; Guo and Dirmeyer

2006; Guo et al. 2007). These studies assessed, amongst

others, the ability of the ensemble members to capture

mean values, the phasing of the annual cycle, and the

interannual variability, showing that the ensemble mean

was closer to the observations than most participating

models (Gao and Dirmeyer 2006; Guo and Dirmeyer

2006; Guo et al. 2007).

Relatively few studies evaluated large-scale hydrologi-

cal models with respect to their ability to capture hydro-

logical extremes, and consequently no standard procedure

has been established. Most available studies have focused

on the analysis of daily river discharge, partly because the

observational time window is longer, and partly because

this increases the number of observations, which renders

model validation more reliable. Lehner et al. (2006),

for example, evaluated the ability of the Water—Global

Analysis and Prognosis (WaterGAP) model to capture

the average magnitude and return periods of annual flood

and drought statistics in Europe based on daily data. They

concluded that the model captured average annual low

and high flows reasonably well, but had a tendency to

overestimate the return periods of extreme events. Sim-

ilarly, Hirabayashi et al. (2008) compared the estimated

return periods of seven disastrous floods around the globe

to the results from a global offline simulation with daily

resolution and concluded that the return period of the

simulated events compared reasonably well to the ob-

served values. However, Hirabayashi et al. (2008) also

pointed out that a statistically reliable evaluation of model

performance with respect to extremes on large (global)

scales is hampered by the scarcity of long-term observa-

tions. Recently, Feyen and Dankers (2009) compared the

return periods of selected low-flow statistics derived from

observed and simulated daily data from rivers across

Europe, highlighting deficiencies of the simulations in the

frost season. In an accompanying study, Dankers and

Feyen (2009) reported that the simulations captured peak

flows from large river basins quite well, whereas the per-

formance was at times poor in small catchments. It shall be

noted that all the above studies are based on data from the

Global Runoff Data Centre (GRDC; http://grdc.bafg.de/),

which provides a collection of observations from rela-

tively large river basins.

The main focus of the studies summarized above was

to investigate the impacts of climate change on hydro-

logical variables. Therefore, in these studies model eval-

uation was only regarded as a prerequisite to further

analysis and thus often received little attention. In con-

trast, Stahl et al. (2011) focused solely on the evaluation

of simulated runoff (7-day running mean) from a regional

climate model in Europe with respect to 19 different

anomaly levels, ranging from low to high flows. Com-

paring event dynamics and interannual variability, the

lowest agreement was found for the dry anomalies and

that model performance was best for moderately wet

anomalies.

Studies evaluating multimodel ensembles have fo-

cused mainly on mean water balance components and
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rarely on hydrological extremes. This is partially due to

limits from the temporal resolution of the commonly

stored summary statistics (e.g., monthly means) and rel-

atively short integrations that preclude a proper analysis

of extremes. To overcome such limitations, a major effort

was made within the European Framework Project Wa-

ter and Global Change (WATCH; www.eu-watch.org) to

create a multimodel ensemble of large-scale hydrological

models with summaries available on a daily resolution.

The main objective of this study is to get first insights into

the ability of the WATCH multimodel ensemble to cap-

ture hydrological extremes, with respect to both their

magnitude and interannual variability on a large, con-

tinental scale.

The observed data used in this model evaluation ex-

ercise comprise time series from a large number of small,

nearly natural catchments in Europe that are not nested

(see section 2b for details). In contrast to discharge from

large river basins, which are often strongly influenced by

human activities (Döll et al. 2009), observations from

small undisturbed catchments are often more likely to

represent the natural system behavior. Further, dis-

charge observations from large rivers are bound to suf-

fer from small sample sizes, as there are a small number

of continental-scale drainage basins. A small sample size

increases the risk that observation errors lead to biased

results in the model evaluation. It is also interesting to

note that the mathematical structure underlying individual

grid cells in large-scale models is often comparable to the

model structure of so-called lumped catchment models,

which are commonly used to model streamflow from small

catchments (see Clark et al. 2008, 2011b for a comprehen-

sive overview). One example from the current ensemble

is the Global Water Availability Assessment (GWAVA)

model (Meigh et al. 1999), which uses the commonly

applied lumped Probability Distributed Model (Moore

2007, 1985) to parameterize gridcell processes.

However, the use of streamflow observations from

small catchments to evaluate large-scale hydrological

models raises several issues. Streamflow observations are

prone to measurement errors (e.g., Di Baldassarre and

Montanari 2009) that are known to affect the calibra-

tion of hydrological models (e.g., Reitan and Petersen-

Øverleir 2009; McMillan et al. 2010) and consequently

also the performance assessments of large-scale hydro-

logical models. Strategies to incorporate these observa-

tional errors into predictive uncertainty, however, are not

well established and are subject to ongoing research (e.g.,

Kavetski et al. 2006; Renard et al. 2010). The model pa-

rameters at each grid cell, derived from large-scale maps,

are unlikely to perfectly characterize the true catchment

properties and this may result in large discrepancies be-

tween observed and simulated runoff at the gridcell scale.

It is important to note that model parameters such as

vegetation and soil properties exhibit high spatial vari-

ability (Duan et al. 2006). Maps used to derive model

parameters are therefore highly uncertain and parameter

estimates based on different map sources may hence re-

sult in significant differences in simulated system behav-

ior (Teuling et al. 2009).

One approach to minimize the effect of the large un-

certainty in model parameters at the gridcell scale is to

focus on spatially aggregated system behavior. For exam-

ple, in atmospheric sciences it is common to investigate

time series of variables that have been averaged over large

spatial areas. One example is the assessment of time series

of mean global temperature (e.g., Hansen et al. 2006;

Macadam et al. 2010). This study adapts this strategy as it

agrees with the main objective, which is to evaluate the

ability of the WATCH multimodel ensemble to capture

key aspects of the interannual variability of runoff in

Europe. Importantly, we use data from the level of the

grid cell and small catchments, and then aggregate to the

larger scale, rather than just using data from continental-

scale catchments, for the reasons outlined above.

The remainder of this article is organized as follows:

first, the multimodel ensemble of nine large-scale hy-

drological models and the observed streamflow data are

introduced. In the methods section, statistical summa-

ries that represent low, mean, and high flows over large

(continental) scales are defined, followed by the intro-

duction of three performance metrics. The results of the

analysis are then presented and discussed. The paper

concludes with comments on the ability of the multimodel

ensemble to simulate European, large-scale hydrology,

with special emphasis on low and high river flows.

2. Models and observations

a. Individual models and ensemble mean

Table 1 lists the nine models that were considered in

this study and summarizes their evapotranspiration,

snow, and runoff schemes. Table 2 briefly summarizes

the principles underlying their subsurface parameteri-

zation and provides key references. Gridcell runoff is

simulated from the water balance

dS

dt
5 P 2 E 2 Qs 2 Qsb, (1)

where P is precipitation, E evaporation, Qs surface

runoff, Qsb subsurface runoff, and dS/dt denotes changes

in storage. Here the total runoff Q 5 Qs 1 Qsb is derived

for each grid cell.

The structure underlying most of the models is illus-

trated in Fig. 1, indicating the different conceptual storages
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and fluxes. Note that not every model considers all ele-

ments of this generalized architecture and the models

differ in their representation of the processes.

Despite large differences in the description of sub-

surface processes, all models simulate Qs (water leaving

the grid cell on the surface) and Qsb (water leaving the

grid cell below the surface). In Fig. 1, Qsb represents the

outflow from groundwater storage (Sgw); however, not

all models simulate Sgw. In such cases, the water draining

from the lowest soil layer (Qd) is used to represent

subsurface runoff (Qsb 5 Qd; Table 1).

The simulation setup is, except for the time window

and the temporal resolution of the stored output, iden-

tical to that described by Haddeland et al. (2011). Model

runs for the time window 1963–2000, with output data

available at daily time steps, were considered. The runs

were preceded by a spinup period of 5 yr. All model

simulations were carried out on the 0.58 grid defined by

the Climate Research Unit (CRU) of the University of

East Anglia global land mask. No effort was made to

harmonize model parameters, but the models were

forced by the same meteorological data—the so-called

WATCH Forcing Data (WFD; Weedon et al. 2010,

2011). The WFD are based on the 40-yr European Centre

for Medium-Range Weather Forecasts (ECMWF) Re-

Analysis (ERA-40; Uppala et al. 2005) interpolated to

the 0.58 grid defined by the CRU land mask and then

adjusted for elevation differences. Air temperature is bias

corrected and shortwave radiation adjusted according to

cloud cover and aerosol loading using the CRU data

(Mitchell and Jones 2005; New et al. 1999, 2000). Pre-

cipitation is bias corrected using the Global Precipitation

Climatology Centre full product (GPCCv4) data (Rudolf

and Schneider 2005; Schneider et al. 2010; Fuchs 2009)

and undercatch corrected (Adam and Lettenmaier 2003).

The simulations assumed ‘‘naturalized’’ conditions, which

means that direct anthropogenic effects such as dams and

water abstraction were not included. This is consistent with

the use of observations from undisturbed catchments.

Besides the runoff simulations of individual models,

this study also analyzes the arithmetic mean of the runoff

simulations of the multimodel ensemble. This mean will

in the following be referred to as the ‘‘ensemble mean’’

(or ENSEMBLE) and is treated as a separate model

throughout the analysis.

b. Observations

Daily streamflow series from 426 near-natural and

spatially independent headwater catchments across

Europe were considered. The records cover the time

period 1963–2000 and originate from the European

Water Archive (EWA)—a database assembled by the

European Flow Regimes from International Experi-

mental and Network Data (Euro-FRIEND; http://

ne-friend.bafg.de/servlet/is/7413/) project. The EWA is

accessible to active members of FRIEND and stored at

the GRDC, which also manages data requests. The

EWA dataset was recently updated (Stahl et al. 2008)

TABLE 1. Overview of the participating models and their main characteristics. Models written in italic are classified as LSMs. Surface

runoff (Qs) is in all instances modeled as saturation or infiltration excess or both; the following abbreviations refer to approaches to

parameterize subgrid variability: ARNO (Todini 1996), improved ARNO (Dümenil and Todini 1992), and Probability Distributed

Model (PDM) (Moore 1985). Subsurface runoff (Qsb) is either modeled as a function of soil moisture Qsb 5 Qd 5 f(Ssoil) or

groundwater Qsb 5 f(Sgw), where f(S) denotes linear or nonlinear model specific functions (‘‘Richards’’: N-layer approximation of

Richards equation). Adapted from Haddeland et al. (2011).

Model name Time step Evapotranspiration Snow Runoff scheme

GWAVA Daily Penman–Monteith Degree day Qs: PDM

Qsb 5 f(Sgw)

H08 6 h Bulk approach Energy balance Qs: Saturation excess

Qsb 5 Qd 5 f(Ssoil)

HTESSEL 1 h Penman–Monteith Energy balance Qs: ARNO

Qsb 5 Qd 5 f(Ssoil), Richards

JULES 1 h Penman–Monteith Energy balance Qs: Infiltration excess

Qsb 5 Qd 5 f(Ssoil), Richards

LPJmL Daily Priestley–Taylor Degree day Qs: Saturation excess

Qsb 5 Qd 5 f(Ssoil)

MATSIRO 1 h Bulk approach Energy balance Qs: Infiltration and saturation excess

Qsb 5 f(Sgw)

MPI-HM Daily Thornthwaite Degree day Qs: Improved ARNO

Qsb 5 Qd 5 f(Ssoil)

ORCHIDEE 15 min Bulk approach Energy balance Qs: Infiltration excess

Qsb 5 Qd 5 f(Ssoil)

WaterGAP Daily Priestley–Taylor Degree day Qs: Saturation excess

Qsb 5 f(Sgw)
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and further complemented by partners from the

WATCH project and is described in detail in Stahl et al.

(2010). Observed streamflow (m3 s21) was converted into

equivalent runoff rates (mm day21), which we will refer

to as observed runoff. Catchment boundaries and mean

catchment elevation, based on a high-resolution digital

elevation model, were derived from the pan-European

river and catchment database Catchment Character-

isation and Modeling 2 (CCM2; Vogt et al. 2007). The

majority of the catchments have an area that is consid-

erably smaller (median catchment size 258 km2) than the

size of the 0.58 model grid cells (Fig. 2). The size of a grid

cell varies, depending on the latitude, between 1065 km2

(at 708N) and 2387 km2 (at 39.58N). To compare obser-

vations and simulations, each gauging station was as-

signed to the corresponding grid cell and, in cases with

more than one station per grid cell, the area-weighted

average of the series was used. This procedure resulted in

298 grid cells with observed runoff series. Figure 3 shows

the spatial distribution of the grid cells as well as the

boundaries of the corresponding catchments. The

spatial density and extent of observed runoff were limited

TABLE 2. Brief descriptions of the nine large-scale hydrological models.

GWAVA

The GWAVA model (Meigh et al. 1999) is based on the PDM rainfall runoff model with an analytic approximation of the subgrid

variability of soil moisture (Moore 2007, 1985). The subsurface features several conceptual storages representing the unsaturated and

the saturated zone. Two additional storages are used for routing of water via fast pathways to the cell outlet.

H08

H08 is based on a simple bucket model (Manabe 1969) that has been updated to include a nonlinear parameterization of subsurface

runoff (Hanasaki et al. 2008).

HTESSEL

The water movement within a grid cell of HTESSEL (Balsamo et al. 2009) is based on the ARNO infiltration excess scheme (Todini 1996),

which parameterizes subgrid variability of soil moisture as a function of the standard deviation of orography. HTESSEL features

a detailed approximation of the unsaturated zone, which is described by several layers and soil moisture is calculated using an

approximation of Richards equation.

JULES

JULES uses four soil layers to calculate subsurface hydrology, with vertical fluxes of water calculated from a solution of Richards

equation including root water uptake (Best et al. 2011; D. B. Clark et al. 2011).

LPJmL

LPJmL was developed to model global vegetation dynamics and their coupling to carbon and water fluxes. It features a five-layer soil

parameterization where each layer is parameterized as a bucket model that produces saturation excess runoff. Soil moisture responds

not only to atmospheric moisture demand, but also to vegetation dynamics (Fader et al. 2010; Bondeau et al. 2007), and new

parameterizations as in S. Schaphoff (2011, personal communication).

MATSIRO

The subsurface hydrology of MATSIRO (Takata et al. 2003) is represented by vertical movement of infiltrated moisture through un-

saturated soil layers underlain by a groundwater reservoir. The saturated and unsaturated soil zones are in dynamic coupling though

an exchange of groundwater recharge, and baseflow is generated from the groundwater reservoir (Koirala et al. 2011a,b, manuscripts

submitted to J. Geophys. Res.).

MPI-HM

MPI-HM (Hagemann and Dümenil 1998; Roeckner et al. 2003) parameterizes subgrid variability using an updated ARNO scheme

(Hagemann and Dümenil Gates 2003) that uses high-resolution soil and orography data to derive the fraction of saturated area of each

grid cell. Subsurface runoff is computed as a simple function of storage.

ORCHIDEE

ORCHIDEE has a complex hydrological infiltration scheme (d’Orgeval et al. 2008) that solves the vertical movement of water in the

soil using the Fokker–Planck equation with Van Genuchten–Mualem parameters. Subsurface runoff considers orography and surface

runoff may reinfiltrate in the same grid cell if the slope is small.

WaterGAP

WaterGAP is based on a series of conceptual storages including surface water bodies, soil moisture, and groundwater (Alcamo et al. 2003).

WaterGAP is the only ensemble member that does not solely rely on input maps for parameter estimation, but also undergoes a very

limited calibration procedure (see Hunger and Döll 2008 for details).
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by data availability, with most stations located in central

Europe. The median elevation of the catchments is 525

MSL and the average elevation of the selected grid cells is

439 MSL. This systematic lower gridcell elevation may be

a result of small headwater catchments being located in

higher altitudes, while the grid cells reflect the average

elevation of larger areas.

3. Methods

Observed and modeled daily runoff series were ag-

gregated into time series of annual runoff percentiles at

five different percentile levels. Low flows are charac-

terized by series of annual 5 percentiles (Q5), mean flows

by series of annual 50 percentiles (Q50; i.e., annual me-

dians), and high flows by series of 95 percentiles (Q95).

The notion of percentiles follows the statistical conven-

tion commonly used in the United States (representing

cumulative or nonexceedance frequencies) and not the

hydrological one commonly used in Europe (represent-

ing exceedance frequencies). Extreme high and low

values are often prone to measurement errors (Laaha and

Blöschl 2007) and, therefore, this study excludes annual

maximum and minimum values. To provide insights into

the entire flow range, two additional percentile series

were introduced to characterize moderately low (Q25)

and high (Q75) values. It can be argued that this set of

five percentile series is sufficient to characterize the over-

all flow range, as previous results have demonstrated that

the information gain by introducing additional per-

centile levels is limited for continental-scale analysis

(Gudmundsson et al. 2011a). This procedure resulted

in a set of five time series of annual runoff percentiles

for both observed and modeled runoff in each grid cell.

The time series from the individual grid cells were then

aggregated using the median to obtain one time series

for each runoff percentile, resulting in a total of five

time series of average percentile values for both sim-

ulated and observed values.

Model performance was assessed with respect to

three criteria. First, the models’ ability to capture the

temporal patterns of the interannual variability of the

runoff percentiles was quantified using R2—the

squared Pearson-correlation coefficient. Second, the

models’ ability to capture the average runoff magnitude

was characterized using the relative difference in the

long-term mean (i.e., the bias)

Dm 5
mmod 2 mobs

mobs

, (2)

where m denotes the arithmetic mean and the subscripts

obs and mod indicate observed and modeled values,

respectively. Third, the models’ ability to capture the

amplitude of the interannual variability was quantified

FIG. 1. Simplified conceptualization of state (storage) and flux variables involved in runoff

generation. Not all variables are considered in each model. See Table 1 for an overview of the

models.
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by the relative difference in standard deviation of the

annual time series

Ds 5
smod 2 sobs

sobs

, (3)

where s denotes standard deviation.

Finally, the relative merits of the individual models

were assessed by ranking their performance (e.g., Gleckler

et al. 2008; Macadam et al. 2010). A ranking procedure

allows for an easy combination of several performance

metrics, even if they have different scales (such as R2, Dm,

and Ds). However, a ranking will not allow insights into

the ‘‘absolute performance’’ of the models; rather it allows

the models to be ordered from the one that is on average

closest to the observations (rank 1) to the most distant one.

To do an overall ranking, the values of the three

performance metrics for each model and runoff per-

centile were summarized in Table 3, where the columns

represent the models and the rows the performance

metrics derived for each runoff percentile. First, the

values of each row were ranked such that the model

being closest to the optimal value (0 for Dm and Ds; 1 for

R2) gets rank 1, the next model rank 2, and so on. This

procedure results in a new matrix of ranks, which is then

summarized to achieve an overall ranking. First, the sum

of ranks for each model (columns) is determined and the

models are then ordered from the best-performing model

(lowest rank sums) to the model with lowest performance

(highest rank sums). Finally, the rank sums are replaced

by the overall ranks.

Similarly, the percentiles can be ranked by reorganizing

the initial matrix in such a way that the columns represent

the runoff percentiles and the rows represent the perfor-

mance of each model. The percentile with the highest rank

will then be the percentile value that is overall best re-

produced by the models. A similar set of performance

metrics was used in a parallel study (Gudmundsson et al.

2011c, manuscript submitted to Water. Resour. Res.) to

quantify the models’ ability to capture the mean annual

cycle of runoff with respect to different hydroclimatic re-

gimes as well as the uncertainty of the associated spatial

patterns.

4. Results

Figure 4 displays the spatially aggregated time series

of observed and modeled runoff percentiles and Fig. 5

shows the mean value of each series. Overall, the models

capture the temporal evolution of the interannual vari-

ability of observed runoff well. However, there are dif-

ferences in the mean value as well as in the amplitude of

FIG. 2. Histogram of catchment areas. The vertical dashed lines

indicate the range of the size of a 0.58 3 0.58 grid cell between the

extremes at the lowest and highest latitudes of the spatial domain.

FIG. 3. Map showing grid cells with observations and associated

catchment boundaries.
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the annual percentile series. For the highest runoff

percentile (Q95), the models scatter evenly around the

observed values. For all other runoff percentiles, most of

the models underestimate the observations and there

are, in some instances, also pronounced differences in

the amplitude of the series. For example, H08 has a

lower amplitude in the Q75 series than any other model,

and some models [the hydrological model of the Max

Planck Institute for Meteorology (MPI-HM) and Lund–

Potsdam–Jena managed Land (LPJmL)] have almost

constant values throughout the years for the two lowest

runoff percentiles (Q5 and Q25). The LSM Minimal

Advanced Treatments of Surface Interaction and Runoff

(MATSIRO) is the only model that consistently over-

estimates the three lowest percentile levels.

Table 3 quantifies the differences between the ob-

served and modeled runoff percentiles based on the

three performance metrics R2, Dm, and Ds, and Fig. 6

summarizes the range of the performance metrics for

each of the five runoff percentiles. The column ‘‘per-

centile median’’ in Table 3 provides the median of each

performance metric for the different runoff percentiles

FIG. 4. Annual time series of observed and modeled runoff percentiles across Europe. Note the different scales of the y axes.
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and corresponds to the horizontal bars in Fig. 6. Nu-

merical values reported in the following paragraph refer

to these values if not specified differently. The correla-

tion coefficients (R2), quantifying the similarity of the

temporal evolution of observed and modeled runoff

percentiles, are on average highest for Q95 (R2
95 5 0:82;

median value—subscripts indicate the runoff percentile)

and lowest for Q5 (R2
5 5 0:73). The differences in cor-

relation between the runoff percentiles are in most cases

small, reflecting that the models capture the interannual

dynamics of all flow levels relatively well. The relative

difference in mean (Dm) is on average negative for

all runoff percentiles, indicating that the models tend

to underestimate runoff. The Dm is smallest for Q95

(Dm95 5 20.05) and largest for Q25 (Dm25 5 20.26).

The spread in Dm is smallest for Q75 and largest for Q5.

In the latter case, differences between observed and

simulated values range from Dm 5 20.97 (LPJmL) to

Dm 5 1.04 (MATSIRO). The relative difference in stan-

dard deviation (Ds) shows a rather complex picture. On

average it is underestimated only for Q75 (Ds75 5 20.13).

It is closest to zero for Q95 (Ds95 5 0.01), which means that

the amplitude of the interannual variability of observed

and simulated high flows are almost equal. On average,

Ds is overestimated for the three lower runoff percen-

tiles (Q50, Q25, and Q5) and has its largest absolute value

for the lowest flows (Ds25 5 Ds5 5 0.16). The relative

difference in standard deviation also exhibits a large

spread that increases toward the lower runoff percen-

tiles. For Q5 the spread is most pronounced and the

relative error in standard deviation ranges from a strong

underestimation Ds 5 20.99 (MPI-HM) to a strong

overestimation Ds 5 1.23 (MATSIRO).

Figure 7 summarizes the performance of the individual

models. The rows ‘‘model median’’ in Table 3 provide the

median performance for each model averaged over all

runoff percentiles and correspond to the bars in Fig. 7.

The numbers reported in this paragraph refer to these

median values if not stated differently. On average the

Joint U.K. Land Environment Simulator (JULES) cap-

tures the interannual variability of the observed Q95 series

best (R2
JULES 5 0:89; median values—subscripts indicate

model name), closely followed by the ENSEMBLE

(R2
ENSEMBLE 5 0:86) and GWAVA (R2

GWAVA 5 0:83).

These models, as well as WaterGAP and Hydrology

Tiled ECMWF Scheme for Surface Exchanges over Land

(HTESSEL), also have a small spread in R2 that is con-

trasted by the larger differences in R2 found for the other

models. On average, HTESSEL has the smallest bias

(DmHTESSEL 5 20.08), closely followed by WaterGAP

(DmWaterGAP 5 20.09), the ENSEMBLE (DmENSEMBLE 5

20.09), and GWAVA (DmGWAVA 5 20.11). These

models have almost equal biases for all runoff percentiles,

which contrasts the large spread in Dm found for LPJmL,

MATSIRO, MPI-HM, and Organizing Carbon and Hy-

drology in Dynamic Ecosystems (ORCHIDEE). For most

of these models, the large spread is associated with a over-

estimation of Q95 followed by pronounced underesti-

mations of the lowest runoff percentiles. MATSIRO, the

only model that consistently overestimates runoff, has an

opposite pattern with underestimated high flows and

overestimated low flows. On average ORCHIDEE cap-

tures the variance of annual runoff percentiles almost

perfectly (DmORCHIDEE 5 20.03), followed by H08 (DmH08

5 20.03) and the ENSEMBLE (DmENSEMBLE 5 0.10).

However, H08 also has the largest spread in Ds, with

a large overestimation of the standard deviation of Q95

followed by a pronounced underestimation of the standard

deviation of Q75. All other models capture the standard

deviation of the high flows reasonably well. However, the

absolute values of Ds tend to increase for the low runoff

percentiles, causing a large spreads in Ds for most models.

The last column in Table 3 ranks the ability of the

models (including the ENSEMBLE) to reproduce the

interannual dynamics of European runoff percentiles.

The overall model performance decreases systematically

from high (Q95; rank 1) to low (Q5; rank 5) percentiles,

implying that the models capture annual high flows better

than annual low flows. Note, however, that this ranking is

not strictly monotonic (anomaly in the ordering of Q50

and Q75). Interestingly, the tendency for poorer model

performance for the low runoff percentiles is not only

manifested in a drop in average model performance, but

also by an increasing spread in Dm and Ds (Fig. 6).

FIG. 5. Mean value of the runoff percentiles series (see Fig. 4).
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Table 3 also shows the ranking of the models them-

selves. The ENSEMBLE ranks number one, followed

by GWAVA, JULES, and HTESSEL. A careful inspec-

tion of Table 3 confirms that the three highest-ranking

models are closest to the observations with respect to the

correlation coefficient (R2) and the relative difference in

mean (Dm). For the relative difference in standard de-

viation (Ds), however, this is not strictly the case, and

more midranking models exhibit a closer similarity to the

observations. In general, no single performance metric

could be identified that clearly explains why some models

perform better than others. There is rather a tendency for

a uniform decrease in all three criteria from the highest-

to the lowest-ranked model.

5. Discussion

The comparison of the five aggregated time series of

observed and simulated annual runoff percentiles not

only provided insights into the ability of individual mod-

els to capture the magnitude and dynamics of annual

runoff percentiles, but also allowed for an assessment of

the overall performance of the multimodel ensemble. A

good model performance with respect to interannual

variability of all runoff percentiles (as reflected by rela-

tively high R2) is most likely related to the fact that the

dynamics of annual runoff closely follow those of the

atmospheric drivers. Shorthouse and Arnell (1997, 1999),

for example, have demonstrated the coupling between

atmospheric oscillation indices and river flow in Europe,

and recently Gudmundsson et al. (2011b) showed that

the dominant space–time patterns of European low-

frequency runoff variability (variability on time scales

longer than 1 yr) were closely related to the correspond-

ing patterns of precipitation and temperature. This de-

pendence of runoff on atmospheric variability suggests

that simulated runoff on interannual time scales may be

more sensitive to the data product used to force the models

FIG. 6. Comparison of model performance for the different runoff percentiles. Performance is measured by (left to right) correlation

(R2), relative bias (Dm), and the relative difference in standard deviation (Ds) for the five runoff percentiles. (Bar: median, box: inter-

quartile range, and whiskers: range).

FIG. 7. As in Fig. 6, but for the participating models.
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than to the parameterization of terrestrial hydrological

processes. In fact, it has been previously demonstrated

that simulated river discharge from continental-scale

basins is highly sensitive to the choice of forcing data

(e.g., Nasonova et al. 2011; Materia et al. 2010; Gerten

et al. 2008; Hagemann and Jacob 2007).

The models’ ability to capture the interannual vari-

ability was contrasted by a systematic underestimation

of observed runoff in Europe. In a global analysis of

discharge from continental-scale river basins (e.g.,

Amazon, Congo, and Lena) using a multimodel en-

semble comparable to the ensemble used in this study,

Haddeland et al. (2011) did not find similar consistent

patterns of underestimation. They rather found large

regional differences, with a tendency to underestimate

observed discharge from river basins at high latitudes. In

principal, a bias in the mean can either be attributed to

biased atmospheric input variables (e.g., Nasonova et al.

2011; Teutschbein and Seibert 2010) or to a too-rapid

depletion of stores through modeled evapotranspiration.

The consistency of the underestimation in the present

study, however, points toward biased forcing data, for

example, because of the fact that local orographic effects

on precipitation cannot be resolved within large grid cells

of atmospheric reanalysis or interpolated data products.

It is, for example, well documented that the ERA-40 data

underlying the WFD underestimate precipitation in re-

gions with complex topography (e.g., Adam et al. 2006;

Barstad et al. 2009) and the bias correction procedure

underlying the WFD does not account for orographic

effects on precipitation (Weedon et al. 2010, 2011). Thus,

this likely explains some of the biases in simulated runoff.

Additional observations would be needed to investigate

this further, which is beyond the scope of this study.

One of the most striking results of the model evalua-

tion is the systematic decrease in model performance

from wet to dry runoff percentiles (Table 3, Fig. 6). Both

Dm and Ds are relative measures and the impact of small

absolute errors is larger for small observed values. There-

fore, both Dm and Ds can increase in magnitude for the

lower runoff percentiles even if the absolute value of the

error is constant. The existence of such effects is to some

extent supported by Fig. 5, where the differences in ob-

served and simulated mean values are almost constant

throughout the runoff percentiles. This shows that there

are only minor differences in the absolute model error

between high and low flows. Despite such artifacts there

are good reasons for normalizing the model error. The

difference between low and high flows is larger than one

order of magnitude. Therefore, model errors that are not

normalized simply would follow this pattern, rendering

interpretations difficult. Further, an error of a particular

magnitude will be less relevant for large than for small

values. This is especially the case if the error has the same

magnitude as the observed quantity itself. In this context,

it shall also be emphasized that the ranking of model

performance has to be interpreted with caution and is

only thought of as guidance for the careful inspection of

the performance metrics themselves. Because of the na-

ture of the procedure, small, possibly insignificant, dif-

ferences may alter the ranking. Therefore, it is likely that

neighboring ranks in fact represent broadly comparable

performances. An alternative approach to make an av-

erage ranking (such as in this study) more reliable is to

introduce weights for the different performance metrics

such that metrics with a larger spread will have a larger

influence on the overall ranking (e.g., Gulden et al. 2008;

Gleckler et al. 2008). However, the choice of weights is

nontrivial and results may depend on the method se-

lected. Therefore, we opted to present only an unweighted

ranking.

The large differences in model performance, espe-

cially for the lowest runoff percentiles, demonstrate the

uncertainty associated with the appropriate mathemat-

ical representation of hydrological systems. Resolving

this structural uncertainty is a subject of ongoing research

(e.g., Gupta et al. 2008; Rosero et al. 2009; Martinez and

Gupta 2010; Clark et al. 2011b,a) and would go beyond of

the scope of the current study. Other sources of uncer-

tainty are related to the estimation of model parameters.

The models use a wide range of data products to de-

termine soil properties and vegetation characteristics and

different models may even have different interpreta-

tions of the same data source. For example, Teuling et al.

(2009) demonstrated that soil properties derived from

three different data products used in the European

Land Data Assimilation System (ELDAS) project led

to significant differences in the system behavior of a

stochastic soil moisture model. The data products used

to retrieve model parameters were not harmonized for

the present ensemble and, even if some of the models

rely on the same input maps, the processing and inter-

pretation of the mapped values to derive the parameters

may differ substantially. For example, H08 assumes a soil

layer with an uniform soil with a depth of 1 m and a field

capacity of 15 cm throughout all grid cells (Hanasaki

et al. 2008), while the soil parameters of HTESSEL are

taken from the Food and Agriculture Organization (FAO)

dataset (FAO 2003), and ORCHIDEE determines the

parameters of the Van Genuchten equations based on

the suggestions of Carsel and Parrish (1988) for U.S.

Department of Agriculture (USDA) soil types. A similar

diversity of data products and approaches is also the case

for other parameters such as vegetation characteristics.

It is regularly observed that hydrological models with

mathematical structures that are comparable to the
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models in the current ensemble often have deficiencies

in simulating the lowest flows correctly (Smakhtin 2001;

Stahl et al. 2011). To date, the reason for high flows

being better (and more consistently) simulated than low

flows is not fully understood. The fact that four of the

five lowest-ranking models overestimate Q95, followed

by an increasingly pronounced underestimation in all

other runoff percentiles (see Fig. 5), suggests that some

models release too much of the incoming precipitation

too quickly. Consequently, too little water is stored in

soils and aquifers, which in turn may lead to pronounced

underestimation of the lowest flows. The only model to

exhibit an opposite behavior is MATSIRO, which reacts

too slowly to precipitation as it underestimates the mag-

nitude of high flows and overestimates the low flows.

Most models capture the standard deviation of Q95

relatively well, but large discrepancies are found in the

standard deviations of the annual low flows. This may be

a result of high flows (and floods) being more directly

coupled to atmospheric variability than low flows. Thus,

the variance of high flows, as well as the temporal evo-

lution, is likely to be directly related to precipitation

variability, whereas low flows are to a much larger extent

influenced by terrestrial hydrological processes. Various

empirical studies support this. For example, Gudmundsson

et al. (2011a) demonstrated, using the same observed da-

taset that is the basis for this study, that annual high flows

have a high degree of synchronization across Europe,

reflecting their link to atmospheric variability. Low flows,

on the other hand, were found to have a more complex

spatial pattern and a lower degree of synchronization,

suggesting an increasing influence of catchment pro-

cesses under dry conditions. Similarly, Bouwer et al.

(2008) found that annual maximum river discharges in

Europe were more sensitive to variations in the atmo-

spheric forcing than annual mean discharges. It is also

noteworthy that statistical moments of mean annual

floods have been reported to be significantly correlated

to the hydroclimatic conditions, but not to static catch-

ment properties such as geology and soil types (Merz and

Blöschl 2009). In summary, these results suggest that

continental-scale patterns of runoff response are closely

linked to the atmospheric forcing under wet conditions,

irrespective of the properties of the catchments. Under

dry conditions on the other hand, runoff depends pri-

marily on depleting storages, the extent and properties of

which vary strongly with topography and hydrogeology

(Smakhtin 2001; Whitehouse et al. 1983) as well as on the

antecedent moisture conditions.

The large differences in performance between models

are contrasted by the good performance of the ensemble

mean (ENSEMBLE). The present study showed that

the ENSEMBLE is actually closer to the observed series

of annual high flows (Q95) and low flows (Q5) than any

other model with respect to R2, and has a performance

comparable to the best models with respect to Dm and

Ds (Table 3). The ENSEMBLE is also superior for the

simulation of low and high flows, which can likely be

related to the fact that the percentile series provide ro-

bust estimates of annual high and low flows, but do not

take the actual timing of flow events into account. Ac-

cordingly, ensemble techniques appear to increase the

reliability of simulations of the terrestrial water cycle

with respect to extremes on large spatial and temporal

scales. The reason for the superiority of the ENSEMBLE

compared to any individual model is not clear, but

a possible explanation is that the model solutions scatter

more or less evenly around the true value (unless the

errors are systematic), and thus, the errors behave like

random noise that can be efficiently removed by aver-

aging. Note, however, that in the present study this is

only the case for the highest flows (Fig. 4). For climate

simulations, such noise arises from the simulated in-

ternal climate variability and from uncertainties in the

model parameterizations (Reichler and Kim 2008).

Similar arguments also hold for hydrological systems

where the uncertainty on the ‘‘true’’ physical represen-

tation may lead to an even scatter of model errors around

the observations, and thus increases the reliability of the

predictions.

6. Summary and conclusions

This study assessed the ability of an ensemble of nine

large-scale, hydrological models to capture the magni-

tude and the interannual variability of runoff percentiles

representing dry, mean, and wet conditions in Europe.

In contrast to other studies that evaluate the perfor-

mance of large-scale hydrological models using only

a few continental-scale river basins, this study uses

observation-based runoff estimates in 298 grid cells.

The gridded runoff was derived from gauged river flow

series from 426 small, near-natural catchments, reducing

the risk of biased conclusions due to observation error.

To minimize the effect of local parameter uncertainty and

to focus on the dominant patterns of interannual vari-

ability, spatially aggregated time series were analyzed.

Overall, the ensemble members were able to capture

the temporal evolution of the interannual variability,

measured by the correlation coefficient R2, reasonably

well. However, an overall tendency toward underesti-

mation of runoff was found, and both structural issues

common to all models and biases in the forcing data are

plausible explanations.

Model performance decreases from wet to dry con-

ditions. This change in average model performance is
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accompanied by an increasing spread in the relative error

in the mean (Dm) as well as in the standard deviation (Ds)

for the low runoff percentiles. One possible explanation is

that hydrological systems are more closely coupled to the

meteorological forcing under wet conditions, whereas

runoff under dry conditions depends more on storage

processes whose parameterization are highly uncertain.

The large differences in performance among the

models are contrasted by the fact that the ENSEMBLE,

the mean over all models, provides the most reliable es-

timation of spatially aggregated time series of all annual

runoff percentiles. The ensemble mean not only provides

a good overall estimator, but is also closer to the series

of annual high flows (Q95) and low flows (Q5) than most

models. This leads us to caution against the use of a

single model in climate impact assessment, which is as-

sociated with a high risk of biased conclusions, and

rather recommend the use of multimodel ensembles.

A principle limitation of this study is the loss of in-

formation due to the spatial aggregation in data pre-

processing. Possible approaches to gain insights to the

spatial patterns of model performance could include the

analysis of smaller regions or more ‘‘intelligent’’ data

preprocessing to define and extract signals (e.g., the mean

annual cycle and leading empirical orthogonal functions)

that are expected to be reproduced by the models. These

issues are subject to ongoing research and addressed in

a parallel study (Gudmundsson et al. 2011c, manuscript

submitted to Water. Resour. Res.).
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