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1 Introduction

Systematic, or market, risk is one of the most studied risk models not only in
financial engineering, but also in actuarial sciences, in business and corporate
management, and in several other domains. It is associated to the beta (β)
coefficient, which is familiar in the investment industry since Sharpe’s capital
asset pricing model (CAPM ) [30]. The pitfalls and shortcomings of β have
been detailed by a number of excellent authors.1 Replacing moreover time-
invariant linear regressions by time-varying and/or nonlinear ones does not
seem to improve this situation.2 The model-free standpoint advocated in [11]
and [14] alleviates several of the known deficiencies but unfortunately cannot
be extended to multifactor risk models which became also popular after Ross’
arbitrage pricing theory (APT ) [29]. In order to encompass the univariate
and multivariate cases, we propose here a unified definition, with the same
advantages, namely a clear-cut mathematical foundation, which

• bypasses clumsy statistical and/or financial assumptions,
• leads to efficient computations.

Our approach is based on the following ingredients:

• As in our previous works [10, 11, 14, 15] we utilize the Cartier-Perrin the-
orem [5]. It shows that under a mild integrability condition any time series
may decomposed as a sum of a mean, or trend, and of quick fluctuations.

• Classic mathematical tools like the Wronski determinants [24].
• We employ recent estimation and identification techniques3 [20, 21], which

are stemming from control theory and signal processing where they have
been utilized quite successfully.4

From a more practical standpoint, our main result is the derivation of two
independent β coefficients, the first one for the comparison between returns
and the second one for the comparison between volatilities. It implies among
other consequences that the importance of the popular α coefficient might
vanish.

Our paper is organized as follows. After a short review of the Cartier-
Perrin theorem, Section 2 details the new mathematical definitions of the
coefficients α and β, and of β alone. Section 3 develops the comparison with
the classical settings. Computer illustrations are provided in Section 4.

Future publications will be exploiting the above advances in at least three
directions:

1 The literature questioning the validity of the beta coefficient is huge and well summarized
in several textbooks (see, e.g., [4]). A recent and remarkable paper by Tofallis [32] has been
most helpful in this study.
2 See, e.g., [1, 31], and the references therein.
3 The use of advanced theory stemming from signal analysis is not new in finance. See,
e.g., [23].
4 See, e.g., [8, 9, 16, 17, 18, 19, 27, 28, 33, 34, 35, 36], and the references therein.
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1. The extension of Section 3.3 to skewness and kurtosis should be straight-
forward. Our understanding, which would not rely exclusively any more on
“Gaussianism”, of the respective behaviors of various assets might there-
fore be quite enhanced.

2. According to the methods sketched in [15] and in [12], dynamic portfolio
management and option pricing may be achieved by tracking quite inde-
pendent performances with respect to returns and volatilities.

3. We will relate some instances of systemic risk to the abrupt changes [16]
of some quantities like our new beta coefficients (see [10, 11, 14] for pre-
liminary results).

2 Theoretical background

2.1 A short review on time series via nonstandard

analysis

Take the time interval [0, 1] ⊂ R and introduce as often in nonstandard

analysis the infinitesimal sampling

T = {0 = t0 < t1 < · · · < tN = 1}

where tι+1 − tι, 0 ≤ ι < N , is infinitesimal, i.e., “very small”.5 A time series

X(t) is a function X : T → R.
The Lebesgue measure on T is the function ℓ defined on T\{1} by ℓ(ti) =

ti+1 − ti. The measure of any interval [c, d] ⊂ I, c ≤ d, is its length d − c.
The integral over [c, d] of the time series X(t) is the sum

∫

[c,d]

Xdτ =
∑

t∈[c,d]

X(t)ℓ(t)

X is said to be S-integrable if, and only if, for any interval [c, d] the integral
∫

[c,d] |X |dτ is limited, i.e. not infinitely large, and, if d − c is infinitesimal,

also infinitesimal.
X is S-continuous at tι ∈ T if, and only if, f(tι) ≃ f(τ) when tι ≃ τ .6 X is

said to be almost continuous if, and only if, it is S-continuous on T\R, where
R is a rare subset.7 X is Lebesgue integrable if, and only if, it is S-integrable
and almost continuous.

5 See, e.g., [6, 7] for basics in nonstandard analysis.
6 a ≃ b means that a − b is infinitesimal.
7 The set R is said to be rare [5] if, for any standard real number α > 0, there exists an
internal set B ⊃ A such that m(B) ≤ α.
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A time series X : T → R is said to be quickly fluctuating, or oscillating, if,
and only if, it is S-integrable and

∫

A
Xdτ is infinitesimal for any quadrable

subset.8

Let X : T → R be a S-integrable time series. Then, according to the
Cartier-Perrin theorem [5],9 the additive decomposition

X(t) = E(X)(t) +Xfluctuat(t) (1)

holds where

• the mean E(X)(t) is Lebesgue integrable,
• Xfluctuat(t) is quickly fluctuating.

The decomposition (1) is unique up to an infinitesimal.

Remark 1. Decomposition (1), where E(X)(t) is “smoother” than X(t), pro-
vides, to the best of our knowledge, the first complete theoretical justification
(see [10]) of the trends in technical analysis (see, e.g., [2, 25]).

2.2 Multivariate factors

2.2.1 Arithmetical average

Assume that X : T → R is S-integrable. Take a quadrable set A ⊆ T such
that

∫

A
dτ is appreciable, i.e., non-infinitesimal. The arithmetical average of

X on A, which is written AVA(X), is defined by

AVA(X) =

∫

A
Xdτ

∫

A
dτ

It follows at once from Equation (1) that the difference between AVA(X) and
AVA(E(X)) is infinitesimal, i.e.,

AVA(X) ≃ AVA(E(X))

In practice, A is a time interval [t− L, t], with an appreciable length L. Set,
if t ≥ L,

X(L, t) = AV[t−L,t](X) =

∫ t

t−L
Xdτ

L
≃

∫ t

t−L
E(X)dτ

L
(2)

Introduce

8 A set is quadrable [5] if its boundary is rare.
9 See [26] for a more down to earth exposition.
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X
[ν]
(L, t) =

1

(ν − 1)!

∫ t

t−L

(t− τ)ν−1Xdτ (3)

It corresponds via the classic Cauchy formula to an iterated integral of order

ν (see, e.g., [22]). Note that X
[1]
(L, t) = X(L, t).

2.3 Alpha and betas

Take n+ 1 S-integrable time series Y,X1, . . . , Xn : T → R. Assume, without
any loss of generality, that their values at any tι ∈ T is bounded by a given
limited number. Set

Y (L, t) = α(L, t) + β1(L, t)X1(L, t) + · · ·+ βn(L, t)Xn(L, t)

α(L, t), βi(L, t) ∈ R, i = 1, . . . , n, are not yet uniquely determined.
Define the time series 1 : T → R, tι 7→ 1. Its arithmetical average is always

1. Equation (3) yields

1
[ν]
(L, t) =

Lν−1

ν!

Introduce the Wronskian-like determinant (see, e.g., [24])

W1,X1,...,Xn
(L, t) =

∣

∣

∣

∣

∣

∣

∣

1 X
[1]
1 (L, t) . . . X

[1]
n (L, t)

. . . . . . . . . . . .
Ln

(n+1)!
X

[n+1]
1 (L, t) . . . X

[n+1]
n (L, t)

∣

∣

∣

∣

∣

∣

∣

(4)

X1, . . . , Xn are said to be α-W-independent on [t − L, t] if, and only if,
W1,X1,...,Xn

(L, t) is appreciable.
Introduce the (n+ 1)× (n+ 2) matrix

MY,1,X1,...,Xn
(L, t) =







Y
[1]

(L, t) 1 X
[1]
1 (L, t) . . . X

[1]
n (L, t)

. . . . . . . . . . . . . . .

Y
[n+1]

(L, t) Ln

(n+1)!
X

[n+1]
1 (L, t) . . . X

[n+1]
n (L, t)






(5)

Assume that X1, . . . , Xn are α-W-independent on [t−L, t]. Then the matrix
(5) is of rank n+1. The Cramer rule yields limited values for α(L, t), β1(L, t),
. . . , βn(L, t) in Equation (2.3):

α(L, t) =

∣

∣

∣

∣

∣

∣

∣

Y
[1]

(L, t) X
[1]
1 (L, t) . . . X

[1]
n (L, t)

. . . . . . . . . . . .

Y
[n+1]

(L, t) X
[n+1]
1 (L, t) . . . X

[n+1]
n (L, t)

∣

∣

∣

∣

∣

∣

∣

W1,X1,...,Xn
(L, t)

β1(L, t) =

∣

∣

∣

∣

∣

∣

∣

1 Y
[1]

(L, t) X
[1]
2 (L, t) . . . X

[1]
n (L, t)

. . . . . . . . . . . .
Ln

(n+1)!
Y

[n+1]
(L, t) X

[n+1]
2 (L, t) . . . X

[n+1]
n (L, t)

∣

∣

∣

∣

∣

∣

∣

W1,X1,...,Xn
(L, t)
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. . .

βn(L, t) =

∣

∣

∣

∣

∣

∣

∣

1 X
[1]
1 (L, t) . . . X

[1]
n−1(L, t) Y

[1]
(L, t)

. . . . . . . . . . . .
Ln

(n+1)!
X

[n+1]
1 (L, t) . . . X

[n+1]
n−1 (L, t) Y

[n+1]
(L, t)

∣

∣

∣

∣

∣

∣

∣

W1,X1,...,Xn
(L, t)

Remark 2. Replacing in Equation (2.3) the arithmetic averages by the original
time series yields

Y = α(L, t) + β1(L, t)X1 + · · ·+ βn(L, t)Xn + e[t−L,t]

where
∫ t

t−L
e[t−L,t]dτ is infinitesimal.

2.4 Betas alone

Let us drop α. Equation (2.3) becomes

Y (L, t) =

n
∑

i=1

βi(L, t)X i(L, t) (6)

Determinant (4) is replaced by

WX1,...,Xn
(L, t) =

∣

∣

∣

∣

∣

∣

∣

X
[1]
1 (L, t) . . . X

[1]
n (L, t)

. . . . . . . . .

X
[n]
1 (L, t) . . . X

[n]
n (L, t)

∣

∣

∣

∣

∣

∣

∣

X1, . . . , Xn are said to be W-independent on [t − L, t] if, and only if,
WX1,...,Xn

(L, t) is appreciable. Matrix (5) is replaced by the n × (n + 1)
matrix

MY,X1,...,Xn
(L, t) =







Y
[1]

(L, t) X
[1]
1 (L, t) . . . X

[1]
n (L, t)

. . . . . . . . . . . .

Y
[n]

(L, t) X
[n]
1 (L, t) . . . X

[n]
n (L, t)







Assume thatX1, . . . , Xn areW-independent on [t−L, t]. ThenMY,X1,...,Xn
(L, t)

is of rank n. Limited values for βi(L, t), i = 1, . . . , n are again given by the
Cramer rule. Although we do not give again the formulae, it goes without
saying that these numerical values are in general different from those derived
in Sect. 2.3. We do not repeat also Remark 2.

Remark 3. If n = 1 and
∫ t

t−L
Y dτ 6= 0,

β1(L, t) =
X1(L, t)

Y (L, t)
=

∫ t

t−L
X1dτ

∫ t

t−L
Y dτ

(7)
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3 Comments

3.1 The model-free standpoint

The length L of the time window [t − L, t] may be chosen quite short, i.e.,
of a size compatible with what is needed for calculating the trends in [10].
Updating the various factors is achieved by letting slide this time window.
Let us emphasize that the linearity of the local models (2.3) and (6), which
are valid only during a short time interval, does not imply therefore a global
time-invariant linearity as assumed in the CAPM and APT settings. This
model-free standpoint has already been proved to be quite efficient in control
theory.10

Remark 4. Equations (2.3) and (6) should not be viewed as time-varying
linear relations, since the values of their coefficients depend nonlinearly on
X1, . . . , Xn.

3.2 Reverse formula

Take for simplicity’s sake n = 1 in Equation (2.3). Then

Y (L, t) = α+ β1(L, t)X1(L, t)

yields, if β1(L, t) 6= 0,

X1(L, t) = −
1

α(L, t)
+

1

β1(L, t)
Y (L, t)

The same reverse formula would have also been derived from the linear alge-
bra of Section 2.4.

Now, we restrict ourselves for simplicity’s sake to a CAPM-like equation

r(t) = α+ βR(t) + ǫ(t) (8)

where

• r(t) and R(t) are the values at time t of some returns,
• ǫ(t) is a zero-mean stochastic processes,
• α and β are constant.

As pointed out in [32], the classic least square techniques utilized with Equa-
tion (8) do not lead to the most natural reverse formula.

10 See [13]. Many successful concrete engineering applications may be found in the refer-
ences.
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3.3 Volatility

3.3.1 Today’s situation

Consider again Equation (8). This global linear time-invariant equation leads
to usual systematic, or market, risk calculation, i.e, to

var(r) = β2var(R) + var(ǫ) (9)

where var(ǫ) should be “small” if there is a “good” diversification. It explains

1. why increasing β also increases the risk,
2. the importance of generating a “good” α in Equation (8).

If, as emphasized in [32], Equation (8) does not hold, i.e., there is no global
linear time-invariant relationship, Equation (9) is then erroneous. The whole
“philosophy” which was built in order to justify the utilization of the CAPM
and of its extensions like the APT (see, e.g., [4]) might therefore break
down.11

Remark 5. Equation (2) shows that the quick fluctuations do not appear in
Equations (2.3) and (6). Those equations are therefore useful for comparing
the time evolution of means, i.e., trends, and certainly not for the comparison
of the corresponding volatilities.

3.3.2 A remedy

We start by reviewing the definitions of (co)variances and volatility given in
[14, 15]. Take two S-integrable time series X , Y such that their squares
and the squares of E(X) and E(Y ) are also S-integrable. Then the fol-
lowing property is obvious: XY , E(X)E(Y ), E(X)Yfluctuat, XfluctuatE(Y ),
XfluctuatYfluctuat are all S-integrable. Assume moreover that E(X) and E(Y )
are differentiable in the following sense: there exist two Lebesgue integrable
time series f, g : T → R, such that, ∀ t ∈ T, with the possible excep-
tion of a limited number of values of t, E(X) = E(X)(0) +

∫ t

0
f(τ)dτ ,

E(Y ) = E(Y )(0) +
∫ t

0
g(τ)dτ . Integrating by parts shows that the products

E(X)Yfluctuat and XfluctuatE(Y ) are quickly fluctuating.

Remark 6. Let us emphasize that the product XfluctuatYfluctuat is not neces-
sarily quickly fluctuating.

The following definitions are natural:

1. The covariance of two time series X and Y is

11 See also the harsh quotations and comments in [3].
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cov(XY ) = E ((X − E(X))(Y − E(Y )))

≃ E(XY )− E(X)(t)× E(Y )

2. The variance of the time series X is

var(X) = E
(

(X − E(X))2
)

≃ E(X2)− (E(X))
2

3. The volatility of X is the corresponding standard deviation

vol(X) =
√

var(X) (10)

The definition of volatility given by Equation (10) associates to a time
series X another time series vol(X), which is called the volatility time series.
Take now n+ 1 time series Y , X1, . . . , Xn, which satisfy the above assump-
tions on integrability and differentiability. We may repeat for the n+ 1 time
series vol(Y ), vol(X1), . . . , vol(Xn) the same calculations as in Sections 2.3
and 2.4. It yields new relations between those volatilities.

Remark 7. Take n = 1 as in the CAPM setting. We now have two time-
varying betas for comparing the two assets:

1. The first one, derived from Sections 2.3 or 2.4, compares an averaged time
evolution of their values or returns.

2. The second one, derived from Section 3.3.2, compares an averaged time
evolution of their corresponding volatilities.12

4 Some computer experiments

4.1 Monovariate β

Figures 1-(a), 1-(b), 1-(c) exhibit the daily time series behaviors of the the
S&P 500 and of the two following assets:

1. IBM from 1962-01-02 until 2009-07-21 (11776 days),
2. JPMORGAN CHASE (JPM) from 1983-12-30 until 2009-07-21 (6267

days).

The corresponding returns are given in Figures 2-(a), 2-(b), 2-(c) and their
volatilities in Figures 3-(a), 3-(b), 3-(c). We took L = 500 for the length L of
the sliding windows.

Compare, as in Section 2.4, i.e., without α, those various assets.

12 Let us stress that the “famous” α coefficient, in Equation (8), of the CAPM might
therefore become quite obsolete.
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The comparison between IBM and S&P 500 utilizes Formula (7). Figures
4-(a), 4-(b) and 4-(c) show three βs corresponding respectively to the values,
the returns and the volatilities.

4.2 Bivariate β

A bivariate extension is provided by a rather academic example where we
want to “explain” the S&P 500 via IBM and JPM. Set therefore

RS&P 500 = β1RIBM + β2RJPM

where RS&P 500 (resp. RIBM, RetJPM) is the return of S&P 500 (resp. IBM,
JPM). According to Section 2.4 we have to invert the determinant of the 2×2
matrix

B =

(

∫ t

t−L
RIBM(τ)dτ

∫ t

t−L
RJPM(τ)dτ

∫ t

t−L
τRIBM(τ)dτ

∫ t

t−L
τRJPM(τ)dτ

)

Several sizes L = 100, 300, 500 for the sliding windows are utilized in parallel
in order, if det(B) ≃ 0, to pick up the size where | det(B)| is the greatest.
Figure 4-(d) exhibits quite convincing results.
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