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Polarization-resolved second-harmonic microscopy has recently emerged as a valuable technique for in situ
imaging of collagen structure in tissues. Nevertheless, collagen-rich tissues such as tendon, ligament, skin
dermis, bone, cornea, or artery exhibit a heterogeneous and anisotropic architecture that results in complex
optical properties. While experimental evidence of polarization distortions has been reported in various tissues,
the physics of second-harmonic imaging within such tissues is not fully understood yet. In this work, we performed
numerical simulations of polarization-resolved second-harmonic generation in a strongly focused regime within
a birefringent tissue. We show that vectorial components due to strong focusing have a rather small effect on the
measurement of the second-harmonic tensorial response, while birefringence and optical dispersion may affect
these measurements dramatically. We show indeed that a difference in the focal field distribution for ordinary and
extraordinary waves results in different phase-matching conditions, which strongly affects the relative efficacy of
second-harmonic generation for different polarizations. These results are of great interest for extracting reliable
quantitative parameters from second-harmonic images.
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I. INTRODUCTION

Polarization-resolved second-harmonic generation (PSHG)
microscopy has recently emerged as a promising modality
in nonlinear microscopy, which can probe three-dimensional
structural features in biological tissues [1–15]. This technique
is of great interest for studying collagen-rich tissues such as
tendons, ligaments, arteries, corneas, skin dermis, and bones
because fibrillar collagens exhibit strong endogenous SHG
signals due to their dense noncentrosymmetrical structure
[16–18]. Conventional SHG imaging relies on excitation
with circularly polarized light to efficiently image collagen
fibrils oriented at any angle, which is particularly relevant for
collagen scoring in the context of pathological tissue remod-
eling [19]. In contrast, PSHG microscopy takes advantage
of excitation with different polarization angles to provide
additional information about the optical anisotropy inherent
to fibrillar collagen in tissue.

The PSHG response from collagen is usually described
by the SHG anisotropy parameter ρ, which reflects the
relative SHG efficiency for laser excitation parallel versus
perpendicular to the main axis of fibril bundles. However,
measurement of this parameter is not a simple task due
to the many processes involved in tissue response, mostly
linear propagation effects, such as birefringence [2,6,10],
diattenuation [6], and polarization scrambling [8]. We have
recently proposed a comprehensive phenomenological model
to account for all these phenomena in thick anisotropic tissues
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such as rat-tail tendon [9]. This model was successfully used
to monitor variations in fibril distribution in tendons upon
mechanical stretching [14], and to quantitatively assess fibril
organization in human and rat corneas [15].

Nevertheless, while this phenomenological approach
proved to be robust and to account for all observed artifactual
processes, it had three main limitations. First, it was deduced
for scalar fields and therefore theoretically applied only to
low-numerical-aperture objectives, whereas SHG microscopy
usually relies on strongly focused beams exhibiting polar-
ization mixing and a Gouy phase shift at focus. Second,
this phenomenological approach considered uniform fields
within the focal volume. In particular, the phase shift between
ordinary and extraordinary waves due to birefringence was
taken as constant all over the focal volume, although it is
expected to continuously vary within its depth. Third, it did
not consider optical dispersion in the tissue, which may affect
the buildup of SHG signals.

In this paper, we describe numerical simulations of PSHG
by a strongly focused beam in anisotropic thick tissues in
order to improve the understanding of PSHG microscopy in
collagen-rich tissues and to develop reliable methods to extract
quantitative parameters from PSHG images. While numerical
studies of multiphoton imaging have been reported in the case
of isotropic tissues [20–25], the case of anisotropic media has
never been addressed so far to the best of our knowledge,
due to the complexity introduced by optical anisotropy. In this
paper, we addressed the case of high numerical aperture (NA)
of 0.95 using a vectorial approach and mapping the variation
of optical parameters within the focal volume. We considered
a birefringent medium with index dispersion, but without any
scattering. Diattenuation and polarization cross-talk, which
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are mainly due to scattering, are therefore not accounted for
in these simulations and should be treated using appropriate
statistical methods [26,27].

The paper is organized as follows. The next section
introduces the theoretical formalism of PSHG and the phe-
nomenological model we developed to account for various
artifacts [9], which context is necessary for the discussion of
the results presented in this paper. It also presents the general
scheme of PSHG calculation in a birefringent tissue with
strong focusing. The third section is devoted to the theoretical
derivation and the numerical simulation of the incident focal
field distribution in the tendon. The same organization is used
in the fourth section for nonlinear radiation in the tendon.
Finally, the phenomenological approach is reconsidered in the
discussion, before we conclude.

II. THEORETICAL BACKGROUND OF PSHG
MICROSCOPY IN COLLAGEN TISSUES

A. Nonlinear-optical tensorial response of collagen

We consider a rat-tail tendon fascicle as a model tissue
to develop our numerical calculations, which could then be
generalized to other collagen-rich tissue. We assume that this
rat-tail fascicle is a homogeneous material with uniform linear
and nonlinear optical responses. This assumption is valid in
this tissue because it is composed of closely packed collagen
fibrils that dominate the optical response of the material. This
approach, however, does not take into account scattering along
the fibrils within the fascicle, which is the main limitation
of this work, as mentioned in the Introduction. The collagen
fibrils are aligned along a main axis x, which therefore acts as
both linear- and nonlinear-optical anisotropy axis. The tissue
lies in the focal plane xy of the multiphoton microscope.
This rat-tail tendon fascicle is just called the tendon in the
following.

The PSHG response is described by its second-order
nonlinear susceptibility tensor χ

(2)
ijk , which links the induced

nonlinear polarization P2ω to the excitation field Eω [28]:

P 2ω
i = χ

(2)
ijkE

ω
j Eω

k . (1)

Considering that collagen unidimensional tissues like tendon
possess cylindrical symmetry [1,2] and assuming Kleinman
symmetry, there are only two independent tensor components:
χ (2)

xxx and χ (2)
xyy = χ (2)

yxy = χ (2)
yyx = χ (2)

xzz = χ (2)
zxz = χ (2)

zzx . The in-
duced nonlinear polarization then reads

P (2ω)
x = χ (2)

xxxE
2
x + χ (2)

xyyE
2
y + χ (2)

xyyE
2
z ,

P (2ω)
y = 2χ (2)

xyyExEy, (2)

P (2ω)
z = 2χ (2)

xyyExEz.

We introduce the ratiometric parameter ρ = χ (2)
xxx/χ

(2)
xyy which

is sufficient to characterize the PSHG response of the tissue
up to a constant intensity factor. For a linearly polarized light
at an angle α to the fascicle axis and neglecting the axial
components Ez of the electric field, one obtain the widely used
equations

P 2ω
x ∝ ρ cos2 α + sin2 α, P 2ω

y ∝ sin 2α. (3)

Note that more advanced PSHG approaches consider the
full χ (2) tensor without any assumption about the material
symmetry [11]. Such an approach has been successfully
applied to thin collagen coatings to get information about
the orientational distribution of collagen molecules [11].
Nevertheless, it does not take into account propagation and
focalization within the material and is therefore not suitable
for thick collagen-rich tissues such as those considered in this
work.

B. Phenomenological model of PSHG in tendon

Tendon PSHG imaging has been shown to exhibit several
artifacts due to linear propagation effects. Laser excitation
is indeed affected by diattenuation and birefringence when
propagating within this thick anisotropic tissue, while SHG
radiation undergoes polarization scrambling. Tendon birefrin-
gence results in a phase shift �φ = 2πz(ne − no)/λ that
accumulates with depth z between the x- and y-polarized
components of the excitation fields [2,9,10]. These fields
indeed propagate with different phase velocities c/ne and
c/no, where ne and no stand for the extraordinary and ordinary
optical indices, respectively. Diattenuation corresponds to the
difference 1/�la = 1/lα=0 − 1/lα=π/2 of inverse attenuation
lengths for the incident polarization components parallel
(α = 0) and perpendicular (α = π/2) to the tendon fascicle
axis [6,9]. It is mostly due to different scattering efficiency
depending on whether the incident electric field is parallel
or perpendicular to the collagen fibrils. Finally, polarization
scrambling corresponds to stochastic polarization rotation due
to scattering on misaligned fibrils. It mainly affects SHG
data in the case of polarization-resolved detection, as the
SH generated with y polarization contributes to the SHG
signal detected on the x-polarized channel with the weight
η. Otherwise, all polarization components contribute equally
to the SHG signal and η = 1.

These effects have been taken into account in a phenomeno-
logical model [9], summarized in the following equation:

I 2ω(α,z)

∝(|ρe−z/�la cos2 α ei�φ+ sin2 α|2 + ηe−z/�la | sin 2α|2).
(4)

This equation can be reduced to A cos 4α + B cos 2α + C to
fit the experimental data and to extract the ρ parameter. We
also introduce a � parameter that is also obtained from the
fitting parameters and that unites the relative contributions of
y polarization (η) and oscillations due to birefringence (see
the detailed derivation in [9]):

� = η − ρ

2
(1 − cos �φ). (5)

It proved robust for extracting reproducible linear [bire-
fringence (ne − no) and diattenuation �la] and nonlinear
(SHG anisotropy ρ) tendon parameters from experimental
images acquired at increasing depth and for various incident
polarization angles α. Most notably, it enabled the observation
of a decrease in ρ due to increasing alignment of fibrils within
the focal volume when stretching the tendon in a physiological
range [14].
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FIG. 1. (Color online) Scheme of PSHG calculation in a tendon.
(a) Plane incident wave is mapped onto a converging spherical wave
by a model objective lens. (b) Field distribution just before the water-
tendon interface is calculated using the angular spectrum method [29].
(c) Field beyond the interface is obtained using appropriate boundary
conditions based on [30]. (d) Focal field in the birefringent medium
(tendon) is calculated using the model described in [30]. (e) Radiation
in the birefringent medium is calculated based on [31,32].

C. Scheme of theoretical approach

In this paper, we develop a theoretical model and per-
form numerical simulations to overcome the limitations of
the previous phenomenological model. We use a vectorial
description of the electric fields to account for polarization
mixing due to strong focusing and we calculate the electric
field distribution all around the focal volume to account for
phase variations within this region. The general scheme of
calculation is displayed in Fig. 1. (a) The starting point of
the calculation is the incident field distribution on the back
pupil of the objective. The objective transforms the incident
plane wave into a converging spherical wave. (b) For a fixed
position of the objective lens zobj, we simulate propagation
from the objective to the interface between water and ten-
don by the angular spectrum representation method [29].
(c) According to [30], boundary conditions are used to obtain
the field in the tendon near the surface. (d) The focal field
distribution is then calculated by a method similar to that
of [29] which uses different field propagators for ordinary and
extraordinary waves [30]. The obtained field distribution near
the focal volume is used to calculate the induced nonlinear
polarization of the medium. (e) Finally, radiation of the SHG
signal in the birefringent medium is calculated using the
Clemmow scaling method [31,32]. This whole procedure is
performed at increasing depth within the sample and for
different polarization angles α of the incident field to the
tendon axis, to obtain Iα,z maps. These maps are then processed
using Eq. (4), that is, in the same way as experimental data, to
discuss the relevance of the phenomenological approach.

All these calculations are performed for different sets of
tendon optical parameters. The first parameter is the tendon
ordinary index. We use n0 = 1.33, which corresponds to
perfect index matching with the immersion medium (water),
and n0 = 1.5, which has been reported for tendons [33].
In the latter case, due to index mismatch at the tendon
surface, the effective focusing depth zsample within the tendon
is different from the coordinate zobj of the objective; zsample =
zobj nsample/nwater in paraxial approximation. For the sake of
simplicity, we will always refer to zobj. zobj = 0 corresponds
to a beam focused at the water-tendon interface. The second

TABLE I. Parameter sets used for simulation of SHG radiation
intensity. The set no. 8 presumably reproduces actual tendon optical
parameters.

Set 1 2 3 4 5 6 7 8

n 1.33 1.33 1.5 1.5 1.33 1.33 1.5 1.5
d (%) 0 5 0 5 0 5 0 5
�n 0 0 0 0 0.007 0.007 0.007 0.007

parameter is the tendon birefringence, for which values �n =
0 and � = 0.007 are used. While �n = 0.007 corresponds to
the values experimentally measured in tendon [9,14,33], the
value �n = 0 was chosen to comparatively assess the effect of
birefringence on the determination of other optical parameters.
The last parameter is the medium dispersion d = n2ω − nω,
which affects the phase matching of waves at ω (incident wave)
and 2ω (SH wave) during SHG radiation. In our simulations
we use d = 0 and d = 0.05no (5% dispersion). The 5% value
corresponds to values reported in the literature [34], while
d = 0 was used as a control. Finally, the SHG anisotropy
parameter ρ was fixed to 1.36, which was obtained from our
experimental data using the phenomenological approach [9].
The simulations were thus performed for a total of eight sets
of parameters, as shown in Table I.

III. FOCAL FIELD CALCULATION
IN BIREFRINGENT MEDIA

A. Field propagation in a uniform medium

The field distribution of the beam focused by an objective
can be obtained using the angular spectrum representation
method (see Chap. 3 of [29]). Briefly, the field E near the
beam focus can be expressed through the far field E∞ at a
reference sphere of radius f (objective focal length) centered
at the focus z = 0:

E(x,y,z)

= ire−ikr

2π

∫∫
(k2

x+k2
y )�k2

E∞(kx,ky)ei[kxx+kyy+kzz] 1

kz

dkx dky.

(6)

Here, kz =
√

k2 − k2
x − k2

y is the longitudinal component of

the wave vector, and r =
√

x2 + y2 + z2. The integral is
calculated over a disk of radius k, since we neglect evanescent
waves with imaginary kz. Moreover, the solid angle of
illumination is limited by the numerical aperture (A) of the
lens, so that we replace k by kmax = kA

n
.

The far field E∞ is obtained from the incident field Einc

using a model lens, which transforms a plane wave into a
spherical wave converging to z = 0, which is the focal point:

E∞ = {t s[Einc · nϕ]nϕ + tp[Einc · nρ]nθ }
√

n1

n2
cos θ. (7)

Here, the nϕ and nρ projections of the incident field in the
cylindrical coordinate system are mapped onto the nϕ and nθ

components in a spherical system for the converging wave.

The factor
√

n1
n2

cos θ ensures energy flux conservation. t s and
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tp are Fresnel coefficients, which are set to 1 for an optically
cleared lens. We suppose that the incident beam is a Gaussian
beam collimated on the back pupil of the objective, and has
a waist of w0 = f (considering a slightly overfilled aperture).
The beam is linearly polarized in the xy plane with angle α

to the x axis. After expressing θ and ϕ via kx and ky , one can
calculate E by introducing Eq. (7) into Eq. (6).

B. Field focusing in a birefringent medium

After propagation from the objective through the immersion
medium, the beam strikes the interface with the tendon and
further propagates through it. We model the tendon as a
birefringent medium, so there will be an ordinary and an
extraordinary wave propagating through the tissue. To model
the light propagation in the birefringent medium we adapt the
formalism proposed by Hacyan and Jáuregui [30].

The Maxwell equations in the absence of free charges and
currents are

∇ · B = 0, ∇ × E + ∂B
∂t

= 0,

∇ · D = 0, ∇ × H − ∂D
∂t

= 0,

(8)

where D = ε̂ · E and B = μH. For a birefringent medium with
the optical axis along Ox, the linear susceptibility is written

ε̂ =
⎛
⎝ εe 0 0

0 εo 0
0 0 εo

⎞
⎠ , (9)

where εe and εo are the permittivities parallel and perpendicular
to the axis, respectively. One can show that solutions for
the Maxwell equations (8) for ordinary and extraordinary
monochromatic waves are

Eo = −iωex × ∇ψo,

Ee = − 1

εo

∇ (
ex · ∇ψe

) − μω2ψeex.
(10)

Here, ex is a unit vector along Ox, and ψo and ψe are Hertz
potentials satisfying the two equations

εoμω2ψo + ∇2ψo = 0,
(11)

εoεeμω2ψe + ∇ · ε̂ · ∇ψe = 0.

The general solutions of Eq. (11) for z > 0 are

ψ (o, e) (x,y,z)

= 1

2π

∫∫
dkxdkye

ikxx+ikyy+ik
(o,e)
z zψ̃ (o,e) (kx,ky ; z

)
,

(12)

where ψ̃ (o,e)
(
kx,ky

)
is the Fourier transform of

ψ (o,e) (x,y,z = 0), and k(o,e)
z in the expression above are

solutions to the following equations:

εoμω2 − ko · ko = 0,
(13)

εoεeμω2 − ke · ε̂ · ke = 0.

One can rewrite Eq. (10) as follows:

Ẽo = ωex × koψ̃o(ko),
(14)

Ẽe =
[

1

εo

(ex · ke)ke − μω2ex

]
ψ̃e(ke).

The focal fields Eo and Ee are obtained from ψ̃ (o,e)(kx,ky ; z)
using Eq. (14) and a subsequent Fourier transform. The total
field E in the medium is

E = Eo + Ee

= (
Ee

x ; Eo
y + Ee

y ; Eo
z + Ee

z

) = (
Ex ; Ey ; Ez

)
. (15)

By definition, there is no ordinary wave component Eo
x

along the optical axis. Equation (15) means that in the case of
tight focusing discussed in this paper, a wave with any polar-
ization incident on a high-NA objective will produce all five
components from Eq. (15), both ordinary and extraordinary
ones, and along the x, y, and z axes.

Due to the linearity of the Maxwell equations, we can
choose a basis of two incident fields Einc,1,2 and calculate
E1,2, which can be used to reproduce the focal field from any
incident polarization. To simplify the calculations, we choose

Einc,1 = Einc,‖ = E0ex, (16)

Einc,2 = Einc,⊥ = E0ey, (17)

and we will use Ei‖,⊥ to denote field components produced by
Einc,‖,⊥. It should be emphasized that all these field compo-
nents, except for Ex‖, have both ordinary and extraordinary
contributions, as seen from the Eq. (15). Notably, for an
incident field polarized at angle α to the x axis, the focal
field is written

Eα = (Ex‖ cos α + Ex⊥ sin α, Ey‖ cos α + Ey⊥ sin α,

Ez‖ cos α + Ez⊥ sin α), (18)

where

Ex‖,⊥ = Ee
x‖,⊥,

Ey‖,⊥ = Eo
y‖,⊥ + Ee

y‖,⊥, (19)

Ez‖,⊥ = Eo
z‖,⊥ + Ee

z‖,⊥.

We must then calculate ten field distributions. However, it
is expected that Eo

y⊥ and Ee
x‖ are much larger than all other

components, so the fields produced by Einc,‖ and Einc,⊥ are
“mostly” ordinary and extraordinary, respectively.

C. Boundary conditions between isotropic
and birefringent media

As shown in Eq. (12), the calculation of ψo,e(x,y,z)
and therefore of Eo,e requires the values of ψo,e(x,y,z = 0)
near the interface between the birefringent medium (tendon)
and the isotropic medium (immersion, water). These values are
obtained from the incident field using appropriate boundary
conditions between the two media. From the work of Hacyan
and Jáuregui [30], we deduce boundary conditions for ordinary
and extraordinary Hertz potentials. For an interface between
a uniform medium (water, permittivity ε1 = n2

water) and a
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birefringent medium (tendon) with permittivity tensor defined
in Eq. (9) one obtains

ψ̃o = 2
[ez × (Q + S)] · Ẽinc

(Q + S) · [(P + R) × ez]
,

ψ̃e = −2
[ez × (P + R)] · Ẽinc

(Q + S) · [(P + R) × ez]
,

(20)

where Ẽinc is the Fourier transform of the incident field near
the tendon surface, and

P = −ωko
z ey, Q = ε−1

o kxk⊥ − μω2ex,

R = ωkx

μkz

[ez × k⊥] − εoω
3

kz

ey + εoky

ε1kz

k⊥, (21)

S = −ω2

kz

ke
zex + kxk

e
z

ε1kz

k⊥.

In the equations above, kz simply denotes the longitudinal
component of the wave vector in the isotropic medium (water);
k⊥ = (kx,ky,0) is the component transverse to the beam
propagation, which does not change on the tendon-water
interface due to the boundary conditions.

The implementation of these numerical calculations, for
both the fields outside and inside the tendon, are performed
in MATLAB using chirp Z transform according to [35]. This
technique provides significant increase in calculation speed
compared to both direct calculation of Eq. (6) and fast Fourier
transform with zero padding [35]. To additionally increase
the speed, the calculations were performed on a graphics
processing unit (GPU) using the Acceleryes Jacket plug-in for
MATLAB. The typical time required for all the field components
for a 64 × 64 × 256 array was on the order of a few seconds.

D. Results and discussion

1. Intensity distribution

The calculated beam intensity distribution for two tendon
indices (no = 1.33 and no = 1.5) and for two incident linear
polarizations (parallel and perpendicular to the tendon axis)
is displayed in Fig. 2. As explained previously, we use the
notations Ei,‖,⊥ for focal field components resulting from
the incident field Einc,‖,⊥. Intensities are calculated for the
objective position zobj = 50 μm. The birefringence is set to
�n = ne − no = 0.007, as reported for tendons in [9,33].
Within each of two sets with different no, the intensities are
normalized to the maximal intensity of the field Ex⊥. The
intensities for no = 1.33 are larger than those for no = 1.5 by
a factor of 1.441. Indeed, the effective focal volume is wider
for no = 1.5 due to spherical aberrations. As in both cases the
total beam energy flux is the same, the wider focal volume for
no = 1.5 leads to a smaller intensity.

The largest components produced by Einc,‖ and Einc,⊥ are
Ex‖ and Ey⊥, as expected [Figs. 2(a), 2(d), and 2(h), 2(k)].
The intensity of z-polarized fields attains up to 9% [Fig. 2(l)]
of that of the main components, while the intensities of Ey‖
and Ex⊥ do not exceed 1% [Fig. 2(e)]. Due to the high
numerical aperture, the wave created by Einc,‖ (Einc,⊥) is not
purely extraordinary (ordinary), but has a small contribution
of its orthogonal counterpart. However, for simplicity, we will
refer to the field produced by Einc,‖ (incident field parallel to

the tendon axis) as the extraordinary component, and to that
produced by Einc,⊥ (incident field perpendicular to the tendon
axis) as the ordinary component.

The shape of the focal field distribution is less regular
for no = 1.5 than for no = 1.33 due to spherical aberrations
originating from the index mismatch on the surface. However,
the extraordinary components for ne = 1.337 are also distorted
due to an index slightly different from 1.33. For the case
of no = 1.5, the secondary (smaller) components are axially
displaced with respect to the main components due to index
mismatch.

2. Phase distribution and birefringence

As can be seen from Fig. 2, the effect of birefringence on
the focal field intensity is limited. In contrast, the birefringence
affects the relative phase of the ordinary and extraordinary
components of the beam, as they propagate with different
indices no and ne. This phase shift due to birefringence is
observed in the x component of the nonlinear polarization
[see Eq. (3)] because it mixes contributions obtained from the
ordinary (proportional to E2

y ) and extraordinary (proportional
to E2

x) incident fields [9]. When the phase difference of these
contributions is π , the two terms interfere destructively.

In this simulation, we take into account only the largest
components Ex‖ and Ey⊥ to calculate the phase shift within
the focal volume. It is then obtained as the complex phase
of the product arg[(E2

x‖)†E2
y⊥]. The average phase across the

focal volume is weighted by the overlap of the two components
which is calculated as |Ex‖|2|Ey⊥|2. The phase is averaged
over a zone S which encompasses 90% of the overlap. More
precisely, the average phase at a certain depth is calculated in
the following way:

�φ =
∫∫∫

S arg
[(

E2
x‖

)†
E2

y⊥
]|Ex‖|2|Ey⊥|2d3r∫∫∫

S |Ex‖|2|Ey⊥|2d3r
. (22)

The phase shift between (Ex‖)2 and (Ey⊥)2 within the focal
volume is shown in Figs. 3(a)–3(d). In each subfigure (a)–(d),
the inner region corresponds to the phase variation within the
zone S with respect to the average phase �φ over this zone,
which is given at the bottom. The phase shift in the head of the
beam is larger than that in its tail. One can see from the scale
bars that the phase dispersion across S is roughly twice larger
at 50 μm than at 25 μm. However, it is approximately of the
same extent for no = 1.33 and for no = 1.5.

The phase difference averaged across the focal volume as
a function of focusing depth is shown in Fig. 3(e). The phase
shift π , which corresponds to destructive interference, occurs
near ∼27–30 μm, in agreement with our previous experimental
measurements [9]. Notably, the phase difference accumulated
with depth between extraordinary and ordinary polarization
depends on the index of the medium. Indeed, in the paraxial
approximation the phase shift between squared fields at a fixed
zsample can be written as

�φ = 2
2π

λ
�n zsample = 4π

λ
�n zobj

nsample

nwater
. (23)

It is proportional to both the medium index and birefringence.
Fitting the data in Fig. 3(e) with this equation, one gets �n ≈
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FIG. 2. (Color online) Intensity distribution of the simulated focal field for an objective with NA of 0.95 in a birefringent medium normalized
to the x component of the x-polarized incident field Ix‖ (a),(d). The objective z coordinate is zobj = 50 μm. (a),(d),(g),(j) x-polarized component;
(b),(e),(h),(k) y-polarized component; (c),(f),(i),(l) z-polarized component. Calculations for (a1)–(l1) no = 1.33; (a2)–(l2) no = 1.5; (a)–(f)
incident beam polarized along the tendon optical axis; (g)–(l) incident beam polarized perpendicularly to the tendon axis. Intensity profile
(a)–(c),(g)–(i) in the xy plane; (d)–(f),(j)–(k) in the xz plane; (l) in the yz plane. White dotted lines on xy slices indicate the xz slice position,
and vice versa. Numbers indicate the intensity factor with respect to the Ix‖ intensity. Intensities for no = 1.33 are larger than those for no = 1.5
by a factor of 1.441. The difference in z position between no = 1.33 and no = 1.5 is due to the different index mismatch.

0.0071 for no = 1.33 and �n ≈ 0.0072 for no = 1.5, which
is very close to the value 0.007 used for the calculation in spite
of the nonparaxial focusing.

The normalized spatial overlap is displayed as a function of
focusing depth in Fig. 3(f). One can see that the ordinary and
extraordinary components do not separate significantly over
the whole simulated range (up to 80 μm depth). Remarkably,

the separation is more pronounced for the case no = 1.33
than for no = 1.5. This can be understood because in the
second case the relative difference in index mismatch between
ordinary and extraordinary waves is marginal (1.507 − 1.33 =
0.177 versus 1.5 − 1.33 = 0.170), while it is substantial in the
first case (0.007 for the extraordinary wave, while the ordinary
wave is index matched).
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FIG. 3. (Color online) (a)–(d) Simulated phase shift between squared x- and y-polarized fields produced by Einc,x and Einc,y , within a
zone encompassing 0.9 of the field overlap, with respect to the average phase �φ over this zone. Calculation (a),(b) for no = 1.33; (c),(d) for
no = 1.5; (a),(c) at 25 μm focusing depth; (b),(d) at zobj = 50 μm focusing depth. (e) Averaged phase shift between (Ex‖)2 and (Ey⊥)2 and (f)
overlap between ordinary and extraordinary components as a function of focusing depth for no = 1.33 (blue) and no = 1.5 (red).

3. Conclusion

In this section, we calculated the focal field distribution
in a birefringent medium for a tightly focused beam and
characterized the phase shift between ordinary and extraor-
dinary waves. The phase shift is not uniform within the
focal volume, and its average is proportional to the depth of
focusing, as expected. The birefringence obtained from the
simulated data is in perfect agreement with the value used for
calculation, which means that the paraxial approximation can
be used for extracting birefringence from the experimental
data. Additionally, a slight separation of focal volumes is
observed at larger depths. The effect of the birefringence on
the focal field intensity distribution is minimal and is due to
the additional spherical aberrations it creates.

IV. SH RADIATION IN TENDON

A. Radiation of a punctual dipole in a birefringent medium

The focal field calculated in the previous section is used
to calculate the induced polarization at double frequency
using Eq. (2). While the induced polarization is easily
calculated, the analytical calculation of radiation produced
by this polarization density in a birefringent medium is not
a trivial task. The mathematical formulation of the radiation
problem consists in the following. In order to find the radiated
intensity one has to derive a particular far-field solution of the

Maxwell equations

∇ × E = −∂B
∂t

, ∇ × H = JS + ∂D
∂t

(24)

in the medium with the following constitutive equations:

D = ε0E + P =

⎛
⎜⎝

εe 0 0

0 εo 0

0 0 εo

⎞
⎟⎠ E, B = μH. (25)

εe = n2
e and εo = n2

o are the dielectric permittivities along
and perpendicular to the axis of symmetry, as introduced in
Sec. III B. In the equations above, JS = ∂P(2ω)

∂t
is the source

current, produced by the induced polarization P(2ω).
The solution of these equations is obtained from the

fundamental solution, that is, the field Ej (r) radiated by a
punctual dipole pj = ej δ(r) along the j axis, as

Ej

i =
∫∫∫

E
j

i (r − r′)P (2ω)
j (r′)dr′. (26)

For an isotropic medium, the fundamental solution is known
to be a spherical wave of the form eikr/kr .

In a uniaxial medium, a radiating dipole can be split into
two components (parallel and perpendicular to the optical
axis) for which the radiation is expected to be different due
to anisotropy. An elegant solution for dipole radiation in a
uniaxial medium was proposed by Clemmow [31,32]. The
method relies on known solutions for the field in vacuum and
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is based on different scaling of these solutions in a birefringent
medium for ordinary and extraordinary waves.

Below, we present the electromagnetic field radiated by x-,
y-, and z-oriented dipoles as given in [31]. Additionally, the
expressions are simplified by applying the far-field approxi-
mation. All fields are written down in the spherical coordinate
system associated with the axis of beam propagation (and
SHG detection) z. For a dipole oriented along the tendon axis
x, its radiation is purely an extraordinary wave. However, the
radiation of a dipole perpendicular to the tendon axis is neither
purely ordinary nor purely extraordinary, but is a mixture of
the two. It was shown by Clemmow [32] that such a punctual
dipole can be split into two components, so that each one
generates exclusively either an ordinary or an extraordinary
wave. In the following, the electric field is given in units
of k2

4πε0c
no, so this factor is omitted in the expressions. We

also introduce the effective radius vectors for ordinary (
√

εor)
and extraordinary (R) waves, and their lengths

√
εor and R,

respectively.

R = (
√

εex,
√

εoy,
√

εoz), R =
√

εex2 + εo(y2 + z2),
(27)√

εor = √
εo(x,y,z),

√
εor = √

εo(x2 + y2 + z2).

The radiated field for an x-oriented dipole reads

Ex
θ = i cos θ cos ϕ

εer
2

R2

eikR

kR
= T

e,x
θ

eikR

kR
,

(28)

Ex
ϕ = −i sin ϕ

εer
2

R2

eikR

kR
= T e,x

ϕ

eikR

kR
,

where θ and ϕ are the polar and azimuthal angles in the
spherical coordinate reference frame associated with the z axis,
with the ray ϕ = 0 along the x axis [see Fig. 4(a)]. k = 2π/λ

is the wave number in vacuum.
The radiated field for a y-oriented dipole reads

E
y

θ = i
sin ϕ cos θ

sin2 θ sin2 ϕ + cos2 θ

(
eik

√
εor

k
√

εor
− sin2 θ cos2 ϕ

εer
2

R2

eikR

kR

)
= T

o,y

θ

eik
√

εor

k
√

εor
+ T

e,y

θ

eikR

kR
,

Ey
ϕ = i

cos ϕ

sin2 θ sin2 ϕ + cos2 θ

(
cos2 θ

eik
√

εor

k
√

εor
+ sin2 θ sin2 ϕ

εer
2

R2

eikR

kR

)
= T o,y

ϕ

eik
√

εor

k
√

εor
+ T e,y

ϕ

eikR

kR
.

(29)

The radiated field for a z-oriented dipole reads

Ez
θ = − i

sin θ

sin2 θ sin2 ϕ + cos2 θ

(
sin2 ϕ

eik
√

εor

k
√

εor
+ cos2 θ cos2 ϕ

εer
2

R2

eikR

kR

)
= T

o,z
θ

eik
√

εor

k
√

εor
+ T

e,z
θ

eikR

kR
,

Ez
ϕ = − i

sin θ cos θ sin ϕ cos ϕ

sin2 θ sin2 ϕ + cos2 θ

(
eik

√
εor

k
√

εor
− εer

2

R2

eikR

kR

)
= T o,z

ϕ

eik
√

εor

k
√

εor
+ T e,z

ϕ

eikR

kR
.

(30)

The expressions on the right sides highlight that Eqs. (28)–
(30) behave in the same way: eik

√
εor

k
√

εor
and eikR

kR
are propagative

terms for ordinary and extraordinary waves, respectively, while
T

e,o; x,y,z

θ,ϕ encompass the angular dependence of the ϕ and θ

components and are specific for extraordinary or ordinary

FIG. 4. (Color online) (a) The field inside the tendon is split into
ordinary and extraordinary components which experience different
refractive indices. (b) In the calculation scheme, the intensity detector
is situated within the tendon. The emission diagrams measured by the
detector are thus not perturbed by the tendon-water interface.

waves generated by x-, y-, and z-oriented dipoles (with
T

o,x
θ,ϕ = 0).

B. Calculation of the radiation integral

In order to calculate the total fields, one has to integrate
these fundamental solutions over the radiating volume as
shown in Eq. (26):

E i
θ, ϕ(r) =

∫∫∫
T

o,i
θ, ϕ(r − r′)P (2ω)

i (r′)
e−ik

√
εo|r−r′|

k
√

εo |r − r′|d
3r′

+
∫∫∫

T
e,i
θ, ϕ(r − r′)P (2ω)

i (r′)
e−ik|R−R′|
k

∣∣R − R′∣∣d3r′.

(31)

We choose the origin r = 0 somewhere in the radiative volume.
The vector r denotes points in the far-field zone, while r′
denotes points in the excitation volume where the nonlinear
polarization is induced, so r � r ′. In this case,

∣∣r − r′∣∣ can
be developed in a Taylor series by the powers of r′/r . In the
dipole approximation we keep only the first term:

|r − r′| =
√

(r − r′)2 =
√

r2 − 2r · r′ + r ′2 ≈ r − n · r′,
(32)
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where n = r/r . We assume that for a chosen r, all functions
of |r − r′| are constant across the radiative volume except
for rapidly varying exponentials. Introducing Eq. (32) in the
integral Eq. (31), we obtain

E i
θ,ϕ(r; θ,ϕ)

= T
o,i
θ,ϕ(θ,ϕ)

eik
√

εor

k
√

εor

∫∫∫
P

(2ω)
i (r′)e−ik

√
εon·r′

d3r′

+ T
e,i
θ,ϕ(θ,ϕ)

eikR

kR

∫∫∫
P

(2ω)
i (r′)e−ikN·R′

d3r′

= Eo,i
θ,ϕ(r; θ,ϕ) + Ee,i

θ,ϕ(r; θ,ϕ), (33)

where N = R/R. The scalar integrals P i
o(θ,ϕ) =∫∫∫

P
(2ω)
i (r′)e−ik

√
εon·r′

d3r′ and P i
e(θ,ϕ) =∫∫∫

P
(2ω)
i (r′)e−ikN·R′

d3r′ reflect the angular efficiency
of SH radiation by a given focal distribution of induced
polarization P

(2ω)
i . Additionally, the angular dependence is

shaped by the T
o,i
θ,ϕ and T

e,i
θ,ϕ terms.

The angular intensity distribution is calculated as the sum
of the squared absolute values for the θ and ϕ projections of
the electric field:

I(r; θ,ϕ) = ∣∣Eo,y

θ + Eo,z
θ + Ee,x

θ + Ee,y

θ + Ee,z
θ

∣∣2

+ ∣∣Eo,y
ϕ + Eo,z

ϕ + Ee,x
ϕ + Ee,y

ϕ + Ee,z
ϕ

∣∣2
. (34)

One can see from Eq. (33) that the cross terms between
ordinary and extraordinary components contain the factor
eik(r√εo−R), which oscillates as a function of r . For propagation
along the z axis, the extraordinary wave has an effective index
close to ne, so the oscillation period is about λ/(ne − no). For
a birefringence of 0.007 it gives about 120 μm, which for
a 500-μm-thick tendon is equivalent to several periods. It is
thus reasonable to consider ordinary and extraordinary waves
as mutually incoherent, which allows these cross terms to be
neglected.

In a real experimental setup, the radiation diagrams
I(r; θ,ϕ) in the tendon are altered on the tendon-water
interface, which precedes the detectors. Calculating angular
diagrams outside the tendon would require the explicit in-
troduction of such an interface between the birefringent and
isotropic media. An alternative way is to assume that the SHG
signal is detected by a virtual detector situated within the
tendon [Fig. 4(b)]. If we neglect the internal reflection, the total
intensity in either configuration is the same, but the original
diagrams I(r; θ,ϕ) are more informative than those changed
by the interface, as they reflect the actual phase-matching
properties. We adopt the latter configuration [Fig. 4(b)], for
which the total radiated intensity for a given angle α of the
incident beam polarization and for a given zobj is calculated as
follows:

I (α,zobj) = r2
∫∫

I(r; θ,ϕ)
∣∣
α,zobj

sin θdθdϕ. (35)

As the angular coordinates further need to be discretized
for numerical implementation, we will use nx,ny instead of
(θ,ϕ) in the following, so that E(r; θ,ϕ) = E(r; nx,ny). nx and
ny are defined as

nx = sin θ cos ϕ, ny = sin θ sin ϕ. (36)

Incident field 

Field in tendon 
(10 components) 

Far field 
(34 radia�on terms  

with individual 
( , ) dependence) 

o o e e 

(17 quadra�c 
terms) 

Radia�on diagrams 
for all 

Intensity diagrams 

(Fig. 7) 

(Fig. 8) 

x

y

z
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z
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FIG. 5. (Color online) Data flow of PSHG numerical calculation.
For two components Einc,‖ and Einc,⊥ of the incident field, ten
components E

o,e
i;‖,⊥ of the focal field are calculated in the tendon.

The induced nonlinear polarization P2ω
i then contains 17 quadratic

terms of different order and symmetry. Each of these terms produces
an ordinary EEo and an extraordinary EEe radiation component (34
total). Radiation diagrams I(θ,ϕ) for any chosen α are then calculated
using these components EE and their respective angular dependences
T

o,e;i
θ,ϕ . Integration of I(θ,ϕ)|α,zobj over the solid angle of radiation

produces intensity diagrams I (α,zobj).

C. Simplification of the calculation using relative order of
magnitude and symmetry of the SH radiation components

In Sec. III it was shown that as many as six components are
required to reproduce the focal field created by an arbitrary
incident polarization: Ex‖, Ey‖, Ez‖, Ex⊥, Ey⊥, and Ez⊥ as
defined in Eq. (19) and summarized in Fig. 5. For the induced
polarization density it implies

P (2ω)
x ∝ ρ(Ex‖ cos α + Ex⊥ sin α)2

+ (Ey‖ cos α + Ey⊥ sin α)2

+ (Ez‖ cos α + Ez⊥ sin α)2, (37)

P (2ω)
y ∝ 2(Ex‖ cos α + Ex⊥ sin α)(Ey‖ cos α + Ey⊥ sin α),

(38)

P (2ω)
z ∝ 2(Ex‖ cos α + Ex⊥ sin α)(Ez‖ cos α + Ez⊥ sin α).

(39)

Instead of numerically calculating P
(2ω)
i and the resulting

radiation for every polarization angle α of the incident field,
one can calculate the radiation for a finite number of quadratic
terms Ei,‖,⊥Ej,‖,⊥ and use it to instantly obtain the radiation
at any given α according to Eqs. (37)–(39). In light of the
previous section, one would need to calculate both ordinary
and extraordinary integrals Po and Pe for as many as 17
quadratic terms such as Ex‖Ex‖, Ex‖Ex⊥, . . . etc. [nine terms
from Eq. (37), four from Eq. (38), and four from Eq. (39);
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see Fig. 5). In the following, we will designate these integrals
EEo,e, such as, for example [see Eq. (33)],

EEo
x‖,x⊥ = ∫∫∫

Ex‖Ex⊥e−ik
√

εon·r′
d3r′, (40)

EEe
y‖,z⊥ = ∫∫∫

Ey‖Ez⊥e−ikN·R′
d3r′. (41)

However, as shown previously (see Fig. 2), the six field
components differ significantly in intensity, which allows
one to separate the field components into three orders of
magnitude:

Ex‖,Ey⊥ : order 0,

Ez‖,Ez⊥ : order 1, (42)

Ey‖,Ex⊥ : order 2,

where order 0 corresponds to the strongest field. When
multiplied by one another, they are arranged in five orders
as follows:

E2
x‖,E

2
y⊥,Ey⊥Ex‖ : order 0,

Ex‖Ez‖,Ex‖Ez⊥ : order 1,

E2
z‖,Ez‖Ez⊥,E2

z⊥,Ex‖Ex⊥,

Ey‖Ey⊥,Ex‖Ey‖,Ex⊥Ey⊥ : order 2, (43)

Ex⊥Ez‖,Ex⊥Ez⊥ : order 3,

E2
y‖,E

2
x⊥,Ex⊥Ey‖ : order 4.

We should note that this separation is not strict, and addition-
ally may depend on the numerical aperture of the objective.
In practice, this approach allows for estimating contributions
from different components. For example, one may compare
the scalar field approximation (only the 0 order enabled) with
vectorial focusing (all five orders enabled). Also, it is possible
to qualitatively assess the contributions of Ez⊥,‖ fields (first
order) and smaller Ex⊥ and Ey‖ fields (second order).

The calculation of the integrals EEo and EEe can also
be simplified by considering the symmetry of the focal
field components. According to our simulations, the focal
field components are either symmetric or antisymmetric with
respect to x- and y-coordinate inversion, as displayed in the
Fig. 6. We denote these symmetry classes with two digits,
one for each mirror plane, 0 standing for symmetric and 1
for antisymmetric behavior with respect to axis inversion.
For example, the class 01 signifies that the function is

EyEx Ez

Ez⊥Ey⊥Ex⊥

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

FIG. 6. (Color online) Symmetry of the focal field with respect to
the inversion of x and y coordinates. The two largest components Ex‖
and Ey⊥ are symmetric with respect to both inversions; the smallest
components Ey‖ and Ex⊥ are fully antisymmetric. The Ez components
are symmetric with respect to one inversion and antisymmetric with
respect to the other.

symmetric with respect to x-coordinate inversion (plane of
mirror symmetry y = 0), and antisymmetric with respect to
y-coordinate inversion (plane of inversion symmetry x = 0).
The symmetries for the terms written in Eq. (43) can be easily
deduced and are shown below:

E2
x‖, E2

x⊥, E2
y‖, E2

y⊥, E2
z‖,

E2
z⊥, Ey⊥Ex‖, Ex⊥Ey‖ : class 00,

Ez‖Ex‖, Ez⊥Ex⊥ : class 01, (44)

Ez‖Ex⊥, Ez⊥Ex‖ : class 10,

Ez⊥Ez‖, Ex‖Ex⊥, Ex‖Ey‖,
Ey⊥Ey‖, Ey⊥Ex⊥ : class 11.

Then it is only necessary to numerically calculate the
radiation terms EEo,e for a single quadrant, for example,
x > 0,y > 0, as the values in the other quadrants can be
deduced according to Eq. (44). A summary of the calculation
data flow is depicted in Fig. 5. In order to obtain all necessary
components for SH radiation produced at a fixed zobj and
at any polarization angle α of the incident field, one must
numerically calculate 34 integrals (17 for both ordinary and
extraordinary components) in a single quadrant (x > 0,y > 0).
Finally, the angular diagrams I(θ,ϕ)|α,z=zobj are obtained using
symmetry [Eq. (44)] and angular dependence [Eqs. (37)–(39)].
A dramatic increase in calculation speed (∼30-fold) was
achieved using GPU calculations with the Accelereyes plug-in
for MATLAB, which resulted in a calculation time of about 3 h
for a given parameter set [34 integrals over 64 × 64 × 256
focal volume arrays for a 64 × 64 (nx,ny) mesh, at 80 depths].

D. Results: Angular radiation diagrams

The results of our numerical calculations of the angular
intensity distribution I(θ,ϕ) of SHG radiation are shown in
Fig. 7 for the different sets of tendon optical parameters. All
the diagrams were calculated within a forward-directed cone
of 81◦ aperture, which is equivalent to A = no sin 81◦ ≈ 1.48.
These SHG radiation diagrams are displayed for three different
polarization angles α = 0 (a),(d), α = π/4 (b),(e), and α =
π/2 (c),(f), and for two different imaging depths zobj,1 = 6μm
and zobj,2 = 30μm or 27 μm. zobj,2 corresponds to the depth
where a π phase shift between (Eω

x )2 and (Eω
x )2 is attained,

which results in extinction of the induced x polarization P (2ω)
x

for a certain α. This depth is 30 μm for no = 1.33 and 27 μm
for no = 1.5, as given by Fig. 3(e) in Sec. III

The diagrams for �n = 0 and for the water-matched index
n = 1.33 (a1)–(f2) have fairly similar forms within a set,
varying only in relative amplitude. This can be understood
as follows: first, the medium is isotropic with respect to prop-
agation, which removes the dependence on the polarization
angle α, and second, the index matching removes possible
dependence on the depth zobj. For the nonbirefringent case of
n = 1.5 the diagrams are slightly different at different depths
[(a3)–(c4) compared to (d3)–(f4)], which is due to spherical
aberrations altering the focal field distribution.

While diagrams for the nondispersive case (a1)–(f1),(a3)–
(f3) present strong forward emission with a maximum along
θ = 0, the diagrams for 5% dispersion have additional annular
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FIG. 7. (Color online) Simulated SHG radiation angular diagrams I(nx,ny) as functions of nx = sin θ cos ϕ and ny = sin θ sin ϕ for the
eight parameter sets listed in Table I and for two different imaging depths zobj,1 and zobj,2. zobj,1 was set to 6 μm and corresponds to the imaging
plane in the proximity of the tendon-water interface. zobj,2 corresponds to the depth where the phase shift between the incident squared fields
(Eω

x )2 and (Eω
y )2 attains π : 30 μm for no = 1.33 and 27 μm for no = 1.5. Intensities within a set (a)–(g) are normalized to the maximal intensity

in (a), and relative intensities are shown in the bottom left corner as a multiplying coefficient (× · · · ). Diagrams (a) are for the incident field
polarized at α = 0 to the tendon axis, at the depth zobj,1, (b) for α = π/4, zobj,1, (c) for α = π/2, zobj,1, (d) for α = 0, zobj,2, (e) for α = π/4,
zobj,2, and (f) for α = π/2, zobj,2. (g) Radiation diagrams created by P 2ω

x at zobj,2 at the angle α for which maximal intensity extinction is
obtained (α shown at the upper right corner). These diagrams (g) are not observed directly.

parts (a2)–(f2) or consist exclusively of a conical lobe (a4)–
(c4) with possibly a central lobe (d4)–(f4). Indeed, for the
nondispersive case, the incident beam and generated SH beam
are phase matched for the forward radiation, while dispersion

changes the phase-matching conditions and hence the polar
angle of the optimal SH radiation.

The angular diagrams for sets with birefringence �n =
0.007 (a5)–(f8) vary considerably within a single set and
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are more complex than those for �n = 0. For a given depth
and index and without dispersion, the diagrams for α = 0
and α = π/2 have slightly different forms [(a5) compared to
(c5), (d5) to (f5), (a7) to (c7), (d7) to (f7)]. While the α = 0
diagrams have a wide central lobe, the α = π/2 diagrams show
additional rings which are particularly neat in (f5). As one can
see from the Eq. (3), the incident field polarized at both α = 0
and α = π/2 induces exclusively the P (2ω)

x term. The wave
it radiates is an extraordinary wave, while the incident waves
for α = 0 and α = π/2 are extraordinary and ordinary waves,
respectively. Thus, a particular phase matching between an
incident ordinary beam and an induced extraordinary SH wave
creates annular modulations of the radiation intensity. This
effect is more pronounced for no = 1.33 and for the larger
depth. The complex structure of diagrams for dispersive sets
makes their interpretation more difficult. Quantitatively, the
effect of birefringence is observed by comparing the maximal
intensity on a diagram (the number in the corner) for α = π/4
between zobj,1 and zobj,2. Indeed, while the pairs (a),(d) and
(c),(f) have approximately the same intensity, (b) and (e) differ
significantly. It is explained by the extinction of the P (2ω)

x term
due to birefringence.

Diagrams (g5)–(g8) in Fig. 7 represent the x-polarized SH
intensity when the P (2ω)

x term is most efficiently extinguished.
It happens for a certain α when the terms ρE0 cos2 α and
E0 sin2 α are perfectly balanced. This angle α is shown in the
upper right corner of diagrams. These angular diagrams are
relatively irregular because they result from the residual dipole
distribution produced by the difference of almost identical
focal fields.

Note that for most of the parameter sets, a collection NA
equal to the excitation NA (A = 0.95) is sufficient to collect all
radiated light. The only exceptions are the dispersive cases for
n0 = 1.33, where the faint outer ring lies beyond this aperture
and requires A ≈ 1.05 to be collected.

E. Results: Total SHG intensity polarization diagrams

In this section, we present z diagrams of total SHG intensity
I (α,zobj) = ∫∫

Id�|α,zobj . These numerical simulations of the
radiated SHG intensity in the tendon were performed to test
the applicability of the phenomenological model of [9] for the
case of tight focusing in a birefringent medium. To that end, we
applied our phenomenological model Eq. (4) to the simulation
results in the same way as it was applied to the experimental
data.

Figure 8 shows the numerical simulation of the total
SHG intensity and parameters extracted from the simulated
data according to the phenomenological model. The results
are provided for the eight parameter sets listed in Table I.
Simulated forward-emitted SHG intensities as functions of
polarization angle α and scanning depth zobj are shown
in subfigures (a1)–[(a8). Subfigures (b1)–(b8) show depth
intensity profiles for incident polarization angles α = 0 (green
dotted line), α = π/4 (blue dashed line), and α = π/2 (red
dash-dotted line). Lines corresponding to these profiles are
shown on the intensity diagram (a1). Subfigures (c1)–(c8)
show the parameters ρ and � as extracted by fitting with
the phenomenological model.

FIG. 8. (Color online) Simulated total SHG intensity in the tendon as a function of incident polarization angle α to the tendon axis and
of imaging depth zobj for the eight parameter sets listed in Table I. (a) SHG intensity I (α,zobj) as a function of incident field polarization
angle α and imaging depth zobj. (b) SHG intensity depth profiles for α = 0 (green dotted line), α = π/4 (blue dashed line), and α = π/2 (red
dash-dotted line). (c) Anisotropic parameter ρ (blue dashed line) and parameter � (green dotted line) as functions of zobj. ρ and � are extracted
from the intensity diagrams as explained in [9]. Contrast is enhanced for images (a2), (a4), (a6), and (a8). Parameters used for the simulations
were ρ = 1.36 and η = 1.
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1. Non-birefringent case: �n = 0, sets no. 1–no. 4.

The diagram for the nondispersive and index-matched case
(d = 0, n = 1.33) (a1) shows constant intensity as a function
of zobj as expected, as the confinement of the focal field is
well preserved at larger depths due to the water-tendon index
matching. For the nondispersive case with index mismatch
(d = 0, n = 1.5) (a3) a slight signal attenuation is observed
with depth, as the focal volume deteriorates due to spherical
aberrations. Diagrams for both dispersive cases (a2),(a4) show
a peak of intensity at the water-tendon interface and a constant
(a2) or slowly varying (a4) intensity as a function of depth
beyond the interface. This steep intensity decrease is due to
the altered phase-matching conditions within the beam, which
results in destructive interference of SHG signals radiated from
the frontal and rear halves of the beam. On the surface, when
the SHG from the frontal half is not compensated, the resulting
efficiency is much higher. The interfacial peak is up to ten
times weaker than the intensities for the nondispersive cases
(a1),(a3). The intensity beyond the surface is up to 100 times
weaker as compared to the diagrams without dispersion.

ρ and � for nonbirefringent sets are shown in (c1)–(c4).
The ρ values are very close to the value 1.36 used for the
simulations. The small difference is probably due to the
contribution of the z field, which is not taken into account
in the phenomenological model. For the four cases (c1)–(c4)
the parameter � is equal to 1 at all zobj, as expected from
Eq. (5) when �n = 0.

2. Birefringent case: �n = 0.007, sets no. 5–no. 8.

The intensity diagrams (nos. 5–8) are different from those
without birefringence, notably because of visible periodic
variations as a function of zobj. The oscillating behavior of
the intensity is evidenced on the depth intensity profiles
(b5)–(b7) for incident angle α = π/4 (blue dashed line)
and are in good agreement with our previous experimental
data [9]. A slight attenuation is observed with depth for
no = 1.5 (a7) due to spherical aberrations which deteriorate
the focusing. Identically to the nonbirefringent sets (nos. 1–4),
the polarization diagrams for the two dispersive cases (a6),(a8)
exhibit an interfacial intensity peak and much weaker SHG
signal beyond the interface. According to [9,33,34], the set
no. 8 is expected to reproduce the tendon optical parameters.
However, our experimental data do not exhibit any intensity
peak on the surface, but a smooth increase of intensity instead.
We suppose this happens due to a less dense surface layer
consisting of loose fibrils. In other words, the collagen density
and χ (2) also vary smoothly near the surface from zero to their
respective values within the tendon.

The ρ and � parameters for birefringent sets are plotted
in (c5)–(c8). Unlike the nonbirefringent cases (nos. 1–4), the
values of ρ vary with depth and differ significantly from the
value 1.36 used for calculations [∼1.7 for (c5) and (c7), ∼1.5
for (c6), ∼1.35–1.5 for (c8)]. Additionally, the high values
of � for (c5),(c6),(c7) cannot be explained by Eq. (5), as
it predicts values less than or equal to unity. However, the
oscillating behavior, which is due to the birefringence, is well
reproduced. The fitting of � as a function of zobj by a cosine
function provides measured values for the birefringence, which
coincide with great precision with the �n = 0.007 used for

calculation: 0.007 for (c5), 0.0071 for (c6), 0.0072 for (c7),
0.0071 for (c8) [for no = 1.5 the (c7),(c8) �n values were
corrected according to Eq. (23)].

V. DISCUSSION

Our results show that we do not retrieve the expected values
for ρ and � when fitting our numerically simulated SHG
data with the phenomenological model. We therefore have to
reconsider this phenomenological model in the light of our
theoretical computations.

According to Eqs. (2), (37), and (38) and using only the
largest terms Ex‖ and Ey⊥ we can write for the induced
polarization:

P (2ω)
x ∝ ρE2

x‖ cos2 α + E2
y⊥ sin2 α,

(45)
P (2ω)

y ∝ Ex‖Ey⊥ sin 2α.

According to Eqs. (35), the total radiated intensity at a given
α is written

I
∣∣
α,zobj

∝
∫∫

|Pe|2d� +
∫∫

|Po|2d�

=
∫∫ ∣∣ρEEe

x‖,x‖ cos2 α + EEe
y⊥,y⊥ sin2 α

∣∣2
d�

+
∫∫ ∣∣EEo

x‖,y⊥ sin 2α
∣∣2

d�. (46)

We recall that EEe
x‖,x‖, for example, is the extraordinary wave

radiation efficiency of the term E2
x‖ [see Eqs. (40) and (41)].

The equation above is an elaborate analog of Eq. (4), with
η = 1 and no diattenuation.

It was shown in the focal field simulations (Sec. III)
that the Ex‖ and Ey⊥ components have almost identical
magnitudes (see Fig. 2), and so do the terms E2

x‖, E2
y⊥,

and Ex‖Ey⊥. However, it is generally not true for EEe
x‖,x‖,

EEe
y⊥,y⊥, and EEo

x‖,y⊥, as they correspond to different types
of phase-matching conditions (see Fig. 9). Indeed, the term
EEe

x‖,x‖ corresponds to an extraordinary SH wave generated
by two extraordinary incident waves and is classified as type 0.
EEe

y⊥,y⊥ corresponds to an extraordinary SH wave generated
by two ordinary incident waves and is called type I. Finally,
EEo

x‖,y⊥ corresponds to an ordinary SH wave generated by one
ordinary wave and one extraordinary wave and is called type II.

When comparing Eqs. (46) and (4), the apparent values ρapp

and ηapp extracted with the phenomenological model are then
written

ρapp = ρ

∫∫ ∣∣EEe
x‖,x‖

∣∣2
d�∫∫ ∣∣EEe

y⊥,y⊥
∣∣2

d�
= ρr0

I , (47)

ηapp =
∫∫ ∣∣EEo

x‖,y⊥
∣∣2

d�∫∫ ∣∣EEe
y⊥,y⊥

∣∣2
d�

= rII
I . (48)

Here we introduced r0
I and rII

I , which are relative SHG
efficiencies for the different phase-matching types.

Measuring the apparent ηapp delivers directly the relative
efficiency rII

I of types II and I. On the contrary, it follows
from Eq. (47) that ρ cannot be measured separately from the
relative efficiency r0

I of types 0 and I. The latter can only be
estimated from simulations based on known optical parameters
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FIG. 9. (Color online) Different SHG types in the tendon by
analogy with the phase-matching types in birefringent crystals.
Type 0 corresponds to generation of an extraordinary wave by two
extraordinary waves (governed by the χ (2ω)

xxx tensorial component).
Type I corresponds to generation of an extraordinary wave by two
ordinary waves (χ (2ω)

xyy ). Type II corresponds to generation of an
ordinary wave by one extraordinary and one ordinary wave (χ (2ω)

yxy

and χ (2ω)
yyx ).

of the tendon, but cannot be measured independently. In this
case the II-to-I efficiency rII

I , which can be both measured and
simulated, indicates whether the optical parameters chosen for
the simulation are close to their real values in tissue. Assuming
that the numerical model reproduces the phase-matching
behavior correctly, it also gives indications on the reliability
of r0

I estimation from numerical simulations.
Both efficiencies r0

I and rII
I reflect the phase matching

within the focal volume, so they depend primarily on the
birefringence �n and the dispersion d, which directly influ-
ence the phase-matching conditions. For zero birefringence,
both r0

I and rII
I are unity as the ordinary and extraordinary

waves experience exactly the same indices. The absolute
respective efficiencies can vary upon dispersion, but this
does not influence ratiometric measurements. Unity relative
efficiencies result in almost exact determination of ρ and �

from the polarization diagrams [see Figs. 8(c1)–8(c4)]. For
birefringence �n = 0.007 and for zero dispersion, for both
indices we observe ρ ∼ 1.7 and � up to 2 (c5),(c7), which
signifies that r0

I is about 1.7/1.36 ≈ 1.25, and rII
I is as high as

∼2. For both dispersive sets (c6),(c8), the measured parameters
are closer to the values used for calculations, which signifies
that r0

I and rII
I are closer to 1. Finally, for the case which is ex-

pected to reproduce tendon optical parameters [see Fig. 8(c8),
�n = 0.007, n = 1.5, d = 5%], the values of ρapp and ηapp

are relatively close to the set values (ρ = 1.36 and η = 1).
The apparent values ρapp and ηapp obtained in the simula-

tions have to be compared to the experimental data reported
in [9,14]. Using these data, the phenomenological model
provided ηapp ∼ 1.2–1.4 (after x and y channel calibration,
not discussed in these papers), which is slightly different from
that of Fig. 8(c8), but close to that of the dispersive case

with no = 1.33 (c6). Even if the relative efficiencies are not
explicitly related to one another, we consider that this data set
no. 6, for which the simulated rII

I is close to that observed in
experiment, can be used to estimate r0

I . Hence, the uncertainty
on the experimentally measured ρ can also be estimated from
this set. The apparent ρapp in this case is 8%–10% larger than
the one introduced in the calculation, and we suppose it is
roughly the same for the measured ρ.

Moreover, the true values of no and d in the tendon may
also slightly differ from those we chose for the simulation.
For example, choosing smaller dispersion may result in a
simulated ηapp closer to that measured in the tendon. Testing
this hypothesis would require extensive simulations to study
the dependence of r0

I and rII
I on tendon parameters, which are

beyond the scope of this paper. Finally, precise independent
measurements of the tendon optical parameters, such as
birefringence, refractive index, and dispersion, along with
simulations, would allow estimation of r0

I and hence the real ρ

in the tendon. Note that diattenuation, while not present in the
simulations, can also be accounted for in a phenomenological
way using ρapp = ρe−z/�la r0

I . The phenomenological model
is therefore a suitable method for processing experimental
data and extracting the apparent parameters (ρapp,ηapp), while
the numerical simulations are devoted to retrieving the real
parameters (ρ,η).

One can conclude that the relative SHG radiation efficiency
is a crucial property for PSHG microscopy of birefringent
media. In contrast, vectorial calculations do not show strong
effects of tight focusing on the PSHG signal. However, in the
case of strong focusing the induced polarization P (2ω)

y may
contribute to the x-polarized radiated field after refocusing on
the detectors, and vice versa. It thus can be a cause of the
polarization scrambling reported earlier [9,14] in tendon. In
order to estimate the contribution of strong focusing to this
effect, we calculated the intensity detected in the x channel
Ix(α,zobj) and used Eq. (4) to obtain the η parameter: η = 0
corresponds to zero scrambling, while η = 1 corresponds to a
detection not resolved in polarization. For these calculations
we considered two sets (nos. 3 and 4) whose effective
radiation apertures are drastically different. We obtained
η ∼ 10−4 for the narrow forward-directed emission of the
set no. 3 [see Figs. 7(a3)–7(f3)] and η ∼ 10−3 for the wider
emission with aperture of about 30◦ in the dispersive set
no. 4 [see Figs. 7(a4)–7(f4)]. While polarization scrambling
is approximately ten times larger for the field radiated in a
wider cone, as expected, it is still two orders of magnitude
smaller than the value η ∼ 0.1 measured in tendon [9,14].
This suggests that the scrambling observed experimentally is
not due to strong focusing.

VI. CONCLUSION

We performed numerical simulations of PSHG microscopy
in a uniform, birefringent medium with optical index disper-
sion, which simulates tendon tissue. The simulation consisted
first in calculating the excitation field in the medium from a
high-NA objective, then calculating the induced second-order
polarization, and finally calculating the SH far-field radiation.
Particular attention was given to measurements of the SHG
anisotropic parameter ρ in tissue.
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We showed that taking into account auxiliary fields, which
are absent in the low-NA limit (Ez and Ey created by
an x-polarized excitation beam), had little effect on the
polarization diagrams I (α,zobj) and on the measured SHG
anisotropy parameter ρ. In contrast, we showed that the
birefringence and the optical index dispersion affect the
SHG and ρ measurements dramatically. The birefringence
was partially taken into account in the previously reported
phenomenological model [9], assuming the phase was constant
within the focal volume. However, this work shows that the
difference in focal field phase distribution between ordinary
and extraordinary waves additionally changes the relative
radiation efficiencies of the SHG signals. When birefringence
is present, the index dispersion also has a crucial role in phase
matching of various SHG contributions. To the best of our
knowledge, this subtle effect of birefringence has never been
observed nor discussed in the context of SHG in tissues up to
now, although, it has a direct analogy with the phase-matching

types for SHG in birefringent nonlinear crystals, which have
been well known for decades.

Further numerical simulations of phase matching within
the focal volume as a function of dispersion and bire-
fringence should be performed to study the influence of
these parameters on SHG efficiency. Additionally, precise
independent measurements of tendon optical parameters such
as index, dispersion, and birefringence should be performed.
Nevertheless, our study already provides a comprehensive
understanding of PSHG images and enables the determination
of SHG anisotropy with reasonable accuracy. Moreover, as
alteration of SHG efficiency due to birefringence is present as
soon as the collagen assembly occupies a significant part of
the focal volume, our approach applies to any collagen-rich
tissues such as tendons, cornea, skin, vessels, fascia, etc. This
work is therefore important for in vivo quantitative structural
characterization of all connective tissues by use of multiphoton
microscopy.
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