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Self-sustained Maser oscillations of a large magnetization driven
by a radiation damping-based electronic feedback

Daniel Abergel,a) Alain Louis-Joseph, and Jean-Yves Lallemand
Laboratoire DCSO-Groupe de RMN Ecole Polytechnique 91128 Palaiseau Cedex, France

~Received 18 December 2001; accepted 30 January 2002!

In this paper, the dynamics of a magnetization undergoing a radiation-damping based feedback
radio-frequency field is investigated both theoretically and experimentally. It is shown that due to
the presence ofT1 relaxation the evolution equations predict the existence of self-sustained maser
pulses. This phenomenon is a consequence of the competition between two different processes,
namely, T1 relaxation and a precession about a magnetization-dependent radio-frequency field.
Experiments show the existence of periodic revivals of the free induction decay over unusually long
periods of time, on the order of tens of seconds. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1462583#

I. INTRODUCTION

The dynamics of an ensemble of spins that do not exhibit
mutual coupling is usually well described by the Bloch equa-
tions. It can be viewed as the combination of a precession
about a~possibly time-dependent! magnetic field and of a
relaxation process, which gives rise to a damping of the
transverse component of the magnetization with the relax-
ation time constantT2 , whereas the longitudinal component
returns to equilibrium with the time constantT1 . In certain
situations, however, this description fails despite the absence
of direct short range spin–spin interactions that would in-
volve a more complex description using the density matrix
formalism. In this respect, the presence of radiation damping
is particularly interesting. In that case, although the spin en-
semble may still be described by a classical magnetization
vector, the Bloch equations need be modified in such a way
that the evolution of the magnetization is governed by a non-
linear set of differential equations. This is related to the fact
that radiation damping results from the interaction of a large
precessing magnetization with the radio-frequency field in-
duced by the latter in the detecting coil1,2 and which depends
explicitly on the magnetization components. Radiation
damping is important for the conditions typically encoun-
tered in high field nuclear magnetic resonance~NMR! ex-
periments and can seriously perturb experiments so that vari-
ous approaches have been used to eliminate it.3–6 It is
noteworthy that the dynamics of the magnetization induced
by radiation damping is usually quite simple. Indeed, for
practical purposes it may be simply considered as a preces-
sion about a magnetization-dependent radio-frequency field
which is perpendicular to the transverse component of the
magnetization and forces the magnetization vector back to its
equilibrium direction. Recently, the possibility of generating
radiation-damping-based radio-frequency feedback fields,

the intensity and phase of which are controlled with respect
to the solvent magnetization, was demonstrated5 in a suc-
cessful attempt to completely manipulate the solvent magne-
tization in high-resolution NMR experiments. This approach
lead to the concept of ‘‘slaved pulses,’’ which are self-
calibrated pulses allowing selective rotation of a large mag-
netization towards the6z-axis7 or the xy-plane,8 regardless
of its initial direction in space. The ideas underlying such an
approach are based on the intuitive model of a feedback field
acting on a magnetization in the absence of relaxation. These
studies and basically the very possibility of generating a ra-
diation damping based radio-frequency field with arbitrary
gain and phase have motivated a detailed study of the result-
ing dynamics. When transverseT2 relaxation only is consid-
ered, as in Ref. 9, the magnetization dynamics is only
slightly affected and the main qualitative features remain un-
changed. However, whenT1 relaxation is taken into account,
the dynamics may be fairly more complicated and somewhat
less intuitive. A closer look at these nonlinear Bloch equa-
tions ~NLBE! may reveal unexpected features in this case.

In this article we investigate both theoretically and ex-
perimentally the dynamics of a magnetization driven by a
feedback field with arbitrary values of gain and phase. It will
be shown that the latter field may induce unconventional
long-time behavior, in the form of repeated bursts of in-plane
magnetization, which we call self-sustained maser pulses by
analogy with the so called maser pulse caused by radiation
damping. In Sec. II the relevant dynamical equations are re-
viewed and exact solution is given for the caseT15`. In
Sec. III a qualitative analysis of the complete differential
system (T1,`) is given and asymptotic evolution is studied
in this case. In Sec. IV the transient behavior is investigated
by numerical simulations. Theoretical predictions will be
tested experimentally and the results discussed in Sec. V.

II. THE DYNAMICAL EQUATIONS

Introduction of an externally generated feedback field
was first proposed by Kayser some decades ago10 in the con-
text of CW NMR spectroscopy, where the effect on the line
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shape was emphasized. In the present work, we adopt a dy-
namical system viewpoint and focus on the time evolution of
the magnetization undergoing such a feedback field. Con-
sider a magnetization acted upon by the combined action of
a magnetic fieldB0 and of an applied radiofrequency field
B1 . Its dynamics consists in a precession about the resultant
of both fields and a damping of the magnetization compo-
nents, as described by the Bloch equations. In addition, the
intensity of a back action field resulting from magnetization–
coil interaction is proportional to the magnitude of the trans-
verse magnetization and its direction in thexy-plane is deter-
mined by a constant dephasingc with respect to the former.
It can be expressed as

BFB5gGMte
2ic, ~1!

where

Mt5M x1iM y , ~2!

G is the enhancement factor~gain! with respect to the mag-
nitude of the transverse magnetization, andc is the phase of
the feedback field. With these notations, the radiation damp-
ing case corresponds to

c52p/2

and

G5

m0

2
hQ

in SI units.
The dynamical equations governing the evolution of the

magnetization in the rotating frame are

5
Ṁ x5dM y1gGM z~M x sinc2M y cosc !2M x /T2 ,

Ṁ y52dM x2v1M z1gGM z~M x cosc1M y sinc !

2M y /T2 ,

Ṁ z5v1M y2gG sinc~M x
2
1M y

2!2~Mz2M 0!/T1 ,
~3!

where T1,2 are the longitudinal and transverse relaxation
times, respectively.d is the frequency shift offset. The con-
stant radio-frequency field with intensityB15v1 /g was as-
sumed to be aligned along thex-axis in the rotating frame
without loss of generality. It is convenient to recast Eqs.~3!
by introducing the reduced dimensionless variables,t
→v1t, gG→gGM 0 /v15l, d→d/v1 , T1,2→v1T1,2, and
M→M/M 05m. One thus gets

5
ṁx5dmy1lmz~mx sinc2my cosc !2mx /t2 ,

ṁy52dmx2mz1lmz~my sinc1mx cosc !

2my /t2 ,

ṁz5my2l sinc~mx
2
1my

2!2~mz21!/t1 .
~4!

When relaxation is neglected, the magnetization vector lies
on a sphere and the motion is therefore two dimensional. In
the case of radiation damping, Eqs.~4! have explicit solu-
tions whent1,25`.11 However, as will be seen shortly, when

relaxation is included in the treatment of a back action field,
the magnetization dynamics exhibits unusual features and
may be more difficult to grasp.

In the remainder of this paper, we will limit the study to
the case where no appliedB1 radiofrequency field is present,
so that Eqs.~4! write

H ṁx5dmy1lmz~mx sinc2my cosc !2mx /t2 ,

ṁy52dmx1lmz~my sinc1mx cosc !2my /t2 ,

ṁz52l sinc~mx
2
1my

2!2~mz21!/t1 .
~5!

At this point, it is convenient to introduce a new set of vari-
ables (u,mz ,f), so that the equations of motion take the
following form:

H u̇~ t !52~lmz sinc2g2!u,

ṁz~ t !52l sincu2g1~mz21!,

ḟ~ t !52d1l coscmz ,

~6!

where

u5mx
2
1my

2, ~7!

m t5mx1imy5Aue if~ t !, ~8!

and

g1,251/t1,2. ~9!

In this set of equations, the first two are coupled whilst the
third one relates the phase of the magnetization to its longi-
tudinal component. Interestingly enough, the precession fre-
quency of the magnetization, given by the third equation of
~6!, is modulated by thez component ofm so it turns out that
during a typical trajectory of the magnetization from2z to
1z, the former is in general time-dependent. In this respect,
radiation damping is a remarkable exception, since one has
cosc50 and the precession frequency is therefore constant
with time.

This differential system cannot be solved analytically in
the general case. If, however longitudinalT1 relaxation may
be neglected (g150), then the resulting system

H u̇~ t !52~lmz sinc2g2!u,

ṁz~ t !52l sincu,
~10!

admits the following solution:

H mz~ t !52C0~l sinc !21 tanh~C0t1B0!1

g2

l sinc
,

u52~l sinc !21ṁz~ t !,
~11!

where
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C056A~l sincmz~0!2g2!2
1~l sinc !2u~0! ~12!

and

B05atanhS l sincmz~0!2g2

C0
D . ~13!

Direct observation of Eqs.~12! and~13! shows that the sign
of C0 is irrelevant, so one can choose the positive root. This
equation is the generalization of the solution derived by
Bloom9 for radiation damping to the case of a feedback field
of arbitrary phase and gain. The motion ofm described by
Eq. ~13! is a rotation towards the north~resp. south! hemi-
sphere of the Bloch sphere when the sign of sinc is negative
~resp. positive!. It is noteworthy, as was pointed out in Ref.
9, that the maximum of transverse magnetization does not
occur when the magnetization vector passes through thexy-
plane, but instead when

mz5
g2

l sinc
.

Note also that, sinceg150, this model does not predict a
return of the magnetization tom0 . Nevertheless, the magne-
tization always ends up aligned with thez axis, as is obvious
from Eq.~10!, with a magnitude that depends on the relative
magnitudes ofT2 and the characteristic time defined by anal-
ogy with radiation damping,

TFB
21

5gGusincuM ~0!, ~14!

whereM (0) is the magnitude of the magnetization at time
t50.

III. T1 RELAXATION: ASYMPTOTIC BEHAVIOR

When T1 relaxation is present, the equations of motion
cannot be solved exactly, so that one has to resort to numeri-
cal computation to study the time evolution of the magneti-
zation. However, valuable information on the long term dy-
namics of the magnetization can be obtained by making use
of results from the theory of nonlinear dynamical systems
~see, for instance, Refs. 12 and 13 for a general introduction!.
It is possible to make a qualitative analysis of this differential
system in order to determine the type of motion in the long
time limit by studying the stationary solutions ofu(t) and
mz(t). Using the language of dynamical system theory, one
thus has to first find the fixed points of this set of differential
equations and to analyze their stability, i.e., the behavior of
the equations in their vicinity. In our case, the fixed points
are easily found to be

F15~0,1!

and

F25S ust
52

g1

l sinc
@mz

st
21#, mz

st
5

g2

l sinc D . ~15!

Following standard procedure,13 the stability analysis is per-
formed by linearizing the system in their vicinity. In theF1

fixed point system of coordinates$U, Z% is defined by

H u5U,

mz5Z11,
~16!

one has

d

dt S U
Z D5L1S U

Z D1S 2l sincZU
0 D , ~17!

where

L15S 2~l sinc2g2! 0

2l sinc 2g1
D , ~18!

so that the linearized dynamics is simply given by

d

dt S U
Z D5L1S U

Z D . ~19!

The eigenvalues ofL1 , which determine the local behavior
of the differential system, are given by

H xp52~l sinc2g2!,

xm52g1 .
~20!

Similarly, in a neighborhood ofF2 , with the new set of
coordinates,

H u5U1ust,
mz5Z1mz

st, ~21!

Eq. ~6! write

d

dt S U
Z D5L2S U

Z D1S 2l sincZU
0 D , ~22!

where

L25S 0 2l sincust

2l sinc 2g1
D . ~23!

So that the linearized system in the vicinity ofF2 is

d

dt S U
Z D5L2S U

Z D , ~24!

whereL2 has the following eigenvalues:

x65

2g16AD

2
, ~25!

with

D5g1~g118g228l sinc !. ~26!

A local analysis of the stability of these fixed points will now
be performed. The stability ofF1 ~F2 , resp.! depends on the
sign of the eigenvalues ofL1 ~L2 , resp.!. Briefly stated, the
different possible situations are the following. If at a given
fixed point both eigenvalues are strictly negative~have nega-
tive real parts, resp.!, the fixed point is said to be a stable
node~focus, resp.! and is an attractor. If both eigenvalues are
strictly positive ~have positive real parts, resp.!, the fixed
point is an unstable node~focus, resp.!. Finally, for real ei-
genvalues of opposite signs, the fixed point is a saddle and
should be considered unstable. These various situations are
depicted in Fig. 1.

Now, consider the case where sinc,0. From Eqs.~20!
and ~25!, it is clear thatF1 is always stable and thatF2 is a
saddle. The consequence is that the system relaxes towards
equilibrium. This is in particular the case for radiation damp-
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ing where sinc521. For the case sinc.0 it is seen that for
l sinc,g2, F1 is a stable node and it is easily verified that
D.0 andF2 is a saddle, so that the steady state solution at
long times is thermal equilibrium. Alternatively, when
l sinc.g2, F1 is a saddle andF2 is a stable node (D.0) or
a stable focus (D,0). Stability diagrams corresponding to
the various situations discussed here are shown in Fig. 2.

The interpretation ofF2 being a focus is interesting,
since it predicts a damped oscillatory decay ofu at long
times at the rateg1/2. This means that the magnitude of both
the longitudinal and the in-plane magnetization should decay
at a rate 1/T1 and oscillate at the angular frequencyAD/2.
This is a particularly interesting result, since it actually pre-
dicts periodic revivals of the free induction decay, which can
be interpreted as repeated self-sustained maser oscillations.
Note that the term maser is used here in reference to the fact
that radiation damping is the resulting process of an en-
semble of spins interacting with the radiofrequency field of a
high Q NMR probe and which may radiate spontaneously in
a cooperative way. Further, these repetitive maser pulses can
indeed be termed self-sustained, because they appear without
any radio-frequency excitation other than the feedback field
from the probe. It is interesting to remark that although this
attractor is a fixed point for (u,mz), it is not an equilibrium
state for the magnetization. Indeed, according to Eq.~6!, the
motion of the latter in the rotating frame is a precession in a
cone defined by

atan~u !52

g1

g2
S g2

l sinc
21D ~27!

at the rate

v~ t !5ḟ~ t !52d1g2 cotanc. ~28!

It is also noteworthy that, in contrast with the case where
longitudinal relaxation is absent, the stationary state of the
magnetization is not necessarily parallel to thez axis. This is
a consequence of the presence of two competing processes,
namely, thermal relaxation towards a thermodynamical equi-
librium and a back action of the detecting coil on the mag-
netization which tends to drive the magnetization towards
the south pole.14 Note also that Eqs.~25! and~26! show that
the caseD.0 involves relatively large relaxation rates com-
pared tol sinc, so that the effect of the feedback field upon
magnetization is weak andF2 is located nearF1 , close to the
z axis.

IV. TRANSIENT BEHAVIOR

The main goal of the previous section was to qualita-
tively characterize the way the stationary solution of the
magnetization is approached at long times. It was shown that
the NLBE admits asymptotic solutions with a characteristic
evolution time on the order of 1/T1 for both the longitudinal
and transverse magnetizations, which implies the existence
of long lasting transients. In order to complete the study of
this simple model and to get a deeper understanding of the
spin dynamics described by the NLBE~5!, we investigated
the transient behavior of this simple model of nonlinear
NMR dynamics. Numerical simulations were therefore per-
formed for a feedback field of fixed intensity, while its phase
was varied. The magnetization was initially tilted from equi-
librium by a small angle (1022p) and its evolution numeri-
cally computed from Eq.~5!. The relaxation parameters used
in the simulations wereT153 s andT25140 ms, respec-
tively, and d5230 Hz. For the simulations calculated at
variable feedback field phasec, the gain l is set to l
5100, which would correspond to a radiation damping time
of TRD510 ms~Fig. 3!. Alternatively, simulations were also
performed withc5p/2 and various values ofl ~see Fig. 4!.
The solutions of the three magnetization components are dis-
played on the left-hand side of Figs. 3 and 4. On the other
hand, the trajectory in the (u,mz)-space is represented on the
right-hand side of Figs. 3 and 4, where the (u,mz) point
spirals inwards towards the fixed point. The most striking
feature exhibited by these graphs and which cannot be ac-
counted for by the simpler model whereT1 is absent is the
prediction of multiple maserlike pulses during the course of
evolution. Indeed one observes revivals of the free induction
decay, which occur repeatedly at unusually long time inter-
vals ~several seconds!.

The existence of such maser pulses depends on three
different time constants. The first one is the condition for at
least one inversion pulse to occur, that isTFB,T2 . The sec-
ond important time scale is the longitudinal relaxation time
T1 , which determines, together withT2 , the possibility of
recurrent pulses to take place, as seen from the conditions
under whichD,0 ~26!. It is noteworthy that during these
bursts of in-plane magnetization, the magnetization vector
does not necessarily cross thexy-plane, as seen from thez
component of the magnetization depicted in Figs. 3 and 4.

FIG. 1. Schematic representation of the different types of fixed points. Ar-
rows indicate the direction of the flow.~a! Stable node (l1,2,0); ~b! stable
focus (Re(l1,2),0): the flow spirals inwards towards the fixed point;~c!

saddle (l1,2.0): the flow is attracted towards the fixed point along one
direction and repelled from it along the other.

FIG. 2. Stability diagrams of the NLBE. In~a!, F1 is a saddle andF2 is a
stable node;~b! F1 is a saddle andF2 is a focus;~c! F1 is a stable node and
F2 is a saddle.

7076 J. Chem. Phys., Vol. 116, No. 16, 22 April 2002 Abergel, Louis-Joseph, and Lallemand
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A helpful way to visualize this complicated motion is to
plot the corresponding trajectory of the magnetization~see
Fig. 5!. One observes the repelling effect of the unstable
point F15(0,1) for the chosen set of parameters. Due to the
effect of the feedback field, the magnetization is initially
driven towards the south pole, then driven back towards
equilibrium by relaxation, with growingz component of the
magnetization. WhenM z reaches a value such thatTFB

.T2 , the magnetization is repelled again and rotated back
towards the south pole. The same process continues in such a
way that the magnetization eventually reaches a periodic or-
bit, which is the three-dimensional counterpart ofF2 being
an attractor for (u,mz). Again, an important observation is
that the characteristic time scale of the dynamics is very long
since, according the results of previous sections, a steady
state can be reached in a time which is on the order of 5T1 .

Therefore in actual experiments, one could expect self-
sustained maserlike FIDs to last for several tens of seconds.

V. EXPERIMENTAL RESULTS AND DISCUSSION

On the basis of the predictions given by the simple
NLBE model, we performed experiments on a 600 MHz
BRUKER DRX spectrometer using the dedicated Radiation
Damping Control Unit~RDCU! hardware based on the au-
thors’ prototype5 on a sample of 90%H2O– 10%D2O. The
basic experiment consisted in a simple acquisition following
a hard pulse of a small flip angle to create in-plane magne-
tization. Feedback was then turned on and acquisition
started. Detection of very long transients~32 s! were per-
formed and the phase of the feedback field was varied from
experiment to experiment in a systematic way from 0 to 2p

FIG. 3. ~Left! Time evolution of the
transverse~solid line! and longitudinal
~dotted line! components of the mag-
netization. Note the typical bursts of
longitudinal magnetization and the ap-
proach to steady-state in 1/T1 ; right:
representation in the (u,mz) space,
which illustrates the focal nature of
F2 . During evolution, the point
(u,mz) spirals inwards towards the fo-
cus. Trajectories are calculated for
various values of l. T153 s, T2

5140 ms,d5230 Hz.

FIG. 4. Same as Fig. 3 for different
values ofc.
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rad in order to observe qualitative changes of behavior of the
water magnetization. Examples of induction signal are
shown in Fig. 6. Typical self-sustained maser pulses were
observed for a certain range of~positive! values of the feed-
back phase. The frequency of these bursts augmented as the
feedback phase got closer top/2, and progressively disap-
peared when the feedback phase approached both 0 andp.
These observations thus confirmed the predictions of the
NLBE model that maser pulses could be reactivated, in the
presence ofT1 relaxation. It is also apparent that the time
delay between consecutive maser pulses is on the order of
seconds and diminishes whenc, the phase of the applied
feedback approachesp/2. This observation is consistent with
the interpretation given above that a maser pulse takes place
when the components of the magnetization have reached a
value such thatTFB,T2 and thus provides further experi-
mental evidence for the role played byT1 relaxation in this
process.

However, the characteristicT1 decay of the maser pulses
amplitude could not be observed. Rather, after an initial drop

of signal intensity, the amplitudes of the FID pulses remained
constant, except for small variations of their maxima, but
with no attenuation with time, over a period of 32 s. It thus
turned out that, although the simple model above could pre-
dict the existence of self-sustained maser pulses, it could not
account for all the observed features of the detected signal. It
is clear from these observations that the agreement with the
NLBE based theory developed above is only qualitative.

In order to explain these discrepancies, we theoretically
investigated the influence of inhomogeneous broadening of
the spectral line. The Bloch equations were thus modified to
incorporate the contributions of spins with different reso-
nance frequencies. The magnetization component with fre-

FIG. 5. Plots of the magnetization trajectory as predicted by the NLBE
model. The magnetization is initially rotated from its initial position~tri-
angle! towards the south pole of the Bloch sphere~the position of the mag-
netization at the times indicated in the figure is represented by an open
circle!. T1 relaxation then causes recovery of the longitudinal component,
until the conditionTFB,T2 is fulfilled. At this stage, the rotation is flipped
down again towards2z. This process repeats until the magnetization
reaches a steady state precession. Note that whenc approachesp/2, the
feedback is more efficient and the delay between successive pulses is
shorter.

FIG. 6. Experimental observation of self-sustained maser pulses. The feed-
back gain used was twice the one needed for cancellation of radiation damp-
ing. The phases used in the experiments displayed correspond approximately
to the following values ofc: 50°, 30°, and210° from bottom to top, re-
spectively.
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quencydv, dm(dv), undergoes the action of the sum of the
individual feedback fields generated by the spins from other
isochromats. The frequency spreading due to inhomogeneous
broadening is assumed to be described by the following
Lorentzian shape function:

h~dv !5

T2
†

p

1

11~dvT2
†!2 . ~29!

Assuming that all them(dv) are coupled to the probe with
the samel andc, one may write

dm~dv !

dt
5gm~dv !∧~B01BFB!

2

mx~dv !i1my~dv !j

T2

2

~mz~dv !2m0~dv !!k

T1
, ~30!

where

BFB5lS sinc È`

my~dv !d~dv !1cosc È`

mx~dv !d~dv !

2sincE
2`

`

mx~dv !d~dv !1cosc È`

mx~dv !d~dv !

0

D . ~31!

After discretization, numerical evaluation of Eq.~30! was
performed usingT153.3 s andT252.5 s as relaxation pa-
rameters. In the calculations, the Lorentzian inhomogeneous
shape function was sampled by 200 points and truncated at
62/T2

† with T2
†
5140 ms. The intensity of the feedback field

was equal to twice the radiation damping field corresponding
to a time constant ofTRD510 ms for a magnetization at
equilibrium. The results of these simulations yielded FID
profiles which are in very good qualitative agreement with
experimental observation, as shown in Fig. 7. The particular

feature exhibited by these simulations, in addition to the ex-
istence of in-plane magnetization revivals, is the absence of
damping of the maxima of these maser bursts. This suggests
the existence of a steady state of maser pulses in which the
magnetization generates an rf field leading to its~partial!
own inversion. During the period following a burst,T1 re-
laxation is the predominant dynamical process and allows for
the recovery of the magnetization which in turn leads to the
generation of the next rf~maser! pulse and inversion of the
magnetization. These simulations very closely reproduce ex-

FIG. 7. Evolution of the transverse
~left! and longitudinal~right! compo-
nents of the magnetization in the pres-
ence of inhomogeneous broadening.
The FID is a steady state of self-
sustained maser pulses. Note the ab-
sence of attenuation of the maxima of
the in-plane signals. See text for de-
tails.
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perimental observations~see Fig. 6!. Further numerical com-
putations ~not shown! confirm that when inhomogeneous
broadening is reduced~larger values ofT2

†!, damping of the
magnitude of the maser pulses is observed, and asT2

† is
increased the calculated induction signal tends to one ob-
tained with the simple NLBE model in which no static field
inhomogeneity is assumed.

Confronting these results with the NLBE model, it is
possible to explain the absence of damping of these self-
sustained maser pulses and the onset of what happens to be a
steady state of maser oscillations. Indeed, considering again
the case whereB0 inhomogeneity is not taken into account, it
is seen~see for instance Fig. 4! that successive maser pulses
are triggered for smaller longitudinal magnetization and
larger transverse magnetization. This is associated with a
progressively reduced efficiency of the feedback~longer
TFB! and a shorter time interval between the pulses. Alterna-
tively, a slightly different picture can be given for the situa-
tion where inhomogeneous broadening is present. In that
case, once the magnetization has been inverted and the feed-
back field has become too weak to maintain collective mo-
tion of the spins, the isochromats get dephased, leading to
almost complete loss of net transverse magnetization, and
essentially relax towards equilibrium throughT1 andT2 pro-
cesses. Then after a certain period of time, some of the iso-
chromats have recovered a total magnetization which is high
enough to induce phase coherence again with spins having
different precession frequencies. This causes the reappear-
ance of collective motion of the spins and the next maser
pulse occurs. However, in contrast to the NLBE model, when
sufficiently large frequency dispersion exists,B0 inhomoge-
neities seem to prevent systematic buildup of transverse
magnetization from pulse to pulse, thus allowing for the
setup of a steady state of self-sustained maser pulses without
progressive decay of the in-plane signal which would even-
tually lead to their disappearance. Finally, it should be re-
marked that the phenomenon described in this paper should
be clearly distinguished from multiple spin echoes induced
by radiation damping reported in Ref. 15 and 16. Indeed, in
the experiments presented here, the revivals of the in-plane
magnetization are not caused by refocusing of the magneti-
zation and, as shown above, the basic mechanism involved is
completely different by nature. Indeed, in contrast with the
multiple echo phenomenon, each isochromat generates its
own feedback field and at the same time undergo the action
of the feedback fields generated by all other isochromats in
the sample. When, after a pulse, an isochromat ‘‘feels’’ a
strong enough feedback field, the motion of its magnetization
is dominated by a rotation about this magnetization-
dependent field. A feedback field which grows in intensity is
therefore able to progressively induce collective motion of
the magnetizations originating from other isochromats and
phase coherence between them. Because of the presence of

inhomogeneous broadening, this phase coherence is lost after
each pulse and the sequence of events goes on again. It
should be stressed again that, as discussed above, periodic
revival of collective motion of the spins originates from the
interplay between aT1 relaxation process and a back action
of the probe onto the magnetization. In this respect, inhomo-
geneous broadening has the function of a superimposed phe-
nomenon which alters only qualitatively the predictions of
the simpler NLBE model.

VI. CONCLUSION

In this paper, we have investigated both theoretically and
experimentally the unconventional behavior of a large mag-
netization subject to a feedback field from the detection cir-
cuit of the probe. A simple model~NLBE! allowed us to
predict the occurrence of repeated maser pulses during the
course of evolution. These were explicitly related to the ex-
istence ofT1 relaxation in the evolution equations and to the
combination of both thisT1 process and feedback from the
probe. Moreover, in contrast with the predictions of this
simple model, a characteristic attenuation of the maser am-
plitude could not be observed experimentally. This was in-
terpreted by taking into account line broadening caused by
an inhomogeneous static magnetic field. Further investiga-
tions are underway to better characterize the complexity of
this intriguing phenomenon.

ACKNOWLEDGMENT

The authors wish to thank Professor Jean Jeener for
mentioning Ref. 14 during the course of this work.

1N. Bloembergen and R. V. Pound, Phys. Rev.95, 8 ~1954!.
2A. Abragam,The Principles of Nuclear Magnetism ~Clarendon, Oxford,
1961!.

3V. J. Sklenar, J. Magn. Reson.114, 132 ~1995!.
4P. Broakaert and J. Jeener, J. Magn. Reson.113, 60 ~1995!.
5A. Louis-Joseph, D. Abergel, and J.-Y. Lallemand, J. Biomol. NMR5, 212
~1995!.

6C. Anklin, M. Rindlisbacher, G. Otting, and F. H. Laukien, J. Magn.
Reson.106, 199 ~1995!.

7D. Abergel, A. Louis-Joseph, and J.-Y. Lallemand, Chem. Phys. Lett.262,
465 ~1996!.

8D. Abergel, A. Louis-Joseph, and J.-Y. Lallemand, J. Chem. Phys.112,
6365 ~2000!.

9S. Bloom, J. Appl. Phys.28, 800 ~1957!.
10R. Hobson and R. Kayser, J. Magn. Reson.20, 458 ~1975!.
11T. Barbara, J. Magn. Reson.98, 608 ~1992!.
12J. A. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical

Systems, and Bifurcations of Vector Fields ~Springer, New York, 1983!.
13D. K. Arrowsmith and M. Place,Differential Systems: Differential Equa-

tions, Maps, and Chaotic Behavior ~Chapman and Hall, New York, 1992!.
14This effect was in fact anticipated some time ago; see J. Jeener, P. Broa-

kaert, and A. Vlassenbroek, Collective effects in high resolution liquid
NMR, Lecture Notes for the 14th Waterloo NMR Summer School, June
16–21, 1997.

15J. Jeener, A. Vlassenbroek, and P. Broakaert, J. Chem. Phys.103, 1309
~1995!.

16M. P. Augustine and E. L. Hahn, J. Chem. Phys.107, 3324~1997!.

7080 J. Chem. Phys., Vol. 116, No. 16, 22 April 2002 Abergel, Louis-Joseph, and Lallemand

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.2 On: Fri, 11 Apr 2014 07:47:46


