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Abstract. Causation between time series is a most important topic in econo-
metrics, financial engineering, biological and psychological sciences, and many
other fields. A new setting is introduced for examining this rather abstract
concept. The corresponding calculations, which are much easier than those
required by the celebrated Granger-causality, do not necessitate any deter-
ministic or probabilistic modeling. Some convincing computer simulations are
presented.

En hommage amical au Professeur Abdelhaq EL JAI

1. Introduction.

1.1. Generalities. Causality, or the theory of causation, is since ever a philosoph-
ical mainstay. This is shown by a huge body of writings due to important thinkers
like Aristotle, Hume, Kant, Maine de Biran, Mach, Schlick, Meyerson, Carnap, and
many others. Let us nevertheless illustrate the difficulty of this concept via the
following humorous citation from Bertrand Russell [35]:
The law of causality, I believe, like much that passes muster among philosophers, is

a relic of a bygone age, surviving, like the monarchy, only because it is erroneously

supposed to do no harm.
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1.2. Granger-causality. More recently causality has been investigated via prob-
abilistic tools (see, e.g., Reichenbach [33], Suppes [38], Pearl [32], . . . ). This is also
the case of the Granger-causality [20, 21, 22] on time series, to which the names
of Wiener [39] and Sims [36] are often associated. It has gained a huge popularity
which is largely due to the following facts:

• Granger-causality is easy and pragmatic, i.e., it seems to bypass to a large
extent any philosophical debate.

• Time is naturally incorporated.

Those attractive features lead to the attribution of the Nobel Prize in economic
sciences to Granger in 2003 [23]. A time series Y is said there to be a “cause” of a
time seriesX if, and only if, the forecast ofX benefits from the knowledge of the past
of Y . Granger-causality, which was introduced for answering questions stemming
from econometrics and financial engineering and was further developed in many
other domains, like, for instance, biology and psychology, has unfortunately not
been as successful as many researchers and practitioners hoped. The explanation
lies perhaps in its most severe mathematical assumptions, on the

• linear structure of the time series,
• covariance stationarity of the corresponding signals.

They can be only partly weakened via complex operations like cointegration (see,
e.g., [6, 23, 24]). In spite of several attempts to obtain a nonlinear extension, no
theory has been adopted and applied on a large scale to the best of our knowledge.

Remark 1. See [31] for a well written historical account of the classic approach to
time series in econometrics, where Granger’s works play a key rôle.

1.3. Our approach. This paper suggests a quite different understanding of the
causality between time series.1 A theorem by Cartier and Perrin [3] is fundamental.
It was already presented in [12] where the connection with financial engineering was
developed (see also [13, 15, 16, 17]). Let us summarize some important features of
this new standpoint:

1. The existence of trends.2

2. The existence of quick fluctuations, which yield another setting for classic
quantities like volatility [16].

3. There is no need of a mathematical modeling of the time series. Accord-
ing to our opinion this need might be the key explanation of the difficulties
encountered today by the theory of time series.3

Uncertainty is then taken into account without the need any probabilistic law. We
utilize the definition of beta (β) in [15], where some shortcomings of the classic
market, or systematic, risk were examined. Introduce for two given time series X ,
Y their averaged means AV∆X , AV∆Y during a time interval ∆. The quotient

βX
Y (∆, t) =

AV∆X

AV∆Y

1The connection between time series and control has been investigated a lot in the literature
(see, e.g., [2]).

2This is a key assumption in technical analysis or charting (see, e.g., [1, 28] and the references
therein). The notion of trends in the usual time series literature (see, e.g., [19, 27]) does no coincide
with ours.

3See [14] for a model-free control setting, which is most successful from an applied viewpoint.
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or more precisely, its variation, defines the relation, or influence,4 between X and Y

at time t. In plain words, the series X and Y are said to be related if the variations
of X and Y and may related. It yields the following conclusions:

• If |β| is appreciable,5 i.e., neither too small nor too big, and if β has a constant
sign during a quite long time T , we say that one series is positively (resp.
negatively) related to the other during the time lapse T if β > 0 (resp. β < 0).

• If the sign of β is changing too often, we say that there is no relation between
the series.

It might be interesting to

• introduce a different time intervals on the mean averages in order to take into
account delays,

• give a more canonical value to β by computing it via returns.

The forecast of β along techniques which started in [12] yields moreover a prediction
of the relation between the series.

Remark 2. As already stated in [12, 13, 15, 16, 17], our approach is connected
to recent advances in control engineering and in signal processing. Let us point
out therefore that previous works in control have already been employed to analyze
some aspects of the theory of causation:

1. When the differential equations governing a system are known, the control
variables, i.e., the causes may be deduced [7].

2. Determinism in discrete-time may be confirmed in the same way as for deter-
ministic ordinary differential equations in continuous time [8, 9].

1.4. Organization of the paper. Our paper is organized as follows. Section
2 summarizes our viewpoint on time series, which has already been expounded
elsewhere (see, e.g., [12, 17]). Section 3 extracts from [15] the necessary material
on the new coefficient β. The academic time series for the numerical experiments
displayed in Section 4, which are borrowed from [26], are, as in [25, 26],6 given by
closed-form continuous-time expressions. Some short concluding remarks may be
found in Section 5.

2. Time series.

2.1. Nonstandard analysis and the Cartier-Perrin theorem7. Take the time
interval [0, 1] ⊂ R and introduce as often in nonstandard analysis the infinitesimal
sampling

T = {0 = t0 < t1 < · · · < tN = 1}
where tι+1 − tι, 0 ≤ ι < N , is infinitesimal, i.e., “very small”.8 A time series X(t)
is a function X : T → R.

4We are not employing on purpose the polysemic word cause, which was at the origin of so
many heated controversies!

5This terminology is borrowed from nonstandard analysis (see, e.g., [4, 5]).
6Note that those two references [25, 26] are studying Granger-causality for a better understand-

ing of some questions stemming from neurosciences.
7See [12] for a more thorough introduction on this theorem, and on nonstandard analysis.

Many more citations are also given.
8See, e.g., [4, 5] for basics in nonstandard analysis.
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The Lebesgue measure on T is the function ℓ defined on T\{1} by ℓ(ti) = ti+1−ti.
The measure of any interval [c, d] ⊂ I, c ≤ d, is its length d − c. The integral over
[c, d] of the time series X(t) is the sum

∫

[c,d]

Xdτ =
∑

t∈[c,d]

X(t)ℓ(t)

X is said to be S-integrable if, and only if, for any interval [c, d] the integral
∫

[c,d] |X |dτ is limited, i.e., not infinitely large, and, if d − c is infinitesimal, also

infinitesimal.
X is S-continuous at tι ∈ T if, and only if, f(tι) ≃ f(τ) when tι ≃ τ .9 X is said

to be almost continuous if, and only if, it is S-continuous on T \ R, where R is a
rare subset.10 X is Lebesgue integrable if, and only if, it is S-integrable and almost
continuous.

A time series X : T → R is said to be quickly fluctuating, or oscillating, if, and
only if, it is S-integrable and

∫

A
Xdτ is infinitesimal for any quadrable subset.11

Let X : T → R be a S-integrable time series. Then, according to the Cartier-
Perrin theorem [3],12 the additive decomposition

X(t) = E(X)(t) +Xfluctuat(t) (1)

holds where

• the mean E(X)(t) is Lebesgue integrable,
• Xfluctuat(t) is quickly fluctuating.

The decomposition (1) is unique up to an additive infinitesimal.

Remark 3. The notion of quick fluctuations has been employed since [10] as a new
approach to noise in automatic control and signal processing. Let us emphasize
that this setting has been quite successful for obtaining powerful techniques for
estimation and identification (see, e.g., [18, 37], and the references therein). See
[11] for another advances in signal processing, which are based on nonstandard
analysis.

2.2. Variances and covariances.

2.2.1. Squares and products. Take two S-integrable time series X(t), Y (t), such
that their squares and the squares of E(X)(t) and E(Y )(t) are also S-integrable.
The Cauchy-Schwarz inequality shows that the products

• X(t)Y (t), E(X)(t)E(Y )(t),
• E(X)(t)Yfluctuation(t), Xfluctuation(t)E(Y )(t),
• Xfluctuation(t)Yfluctuation(t)

are all S-integrable.

9a ≃ b means that a− b is infinitesimal.
10The set R is said to be rare [3] if, for any standard real number α > 0, there exists an internal

set B ⊃ A such that m(B) ≤ α.
11A set is quadrable [3] if its boundary is rare.
12The presentation in the article by Lobry and Sari [29] is less demanding. We highly recom-

mend it. Note that it also includes a fruitful discussion on nonstandard analysis.
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2.2.2. Differentiability. Assume moreover that E(X)(t) and E(Y )(t) are differ-

entiable in the following sense: there exist two Lebesgue integrable time series
f, g : T → R, such that, for any t ∈ T, with the possible exception of a limited

number of values of t, E(X)(t) = E(X)(0) +
∫ t

0 f(τ)dτ , E(Y )(t) = E(Y )(0) +
∫ t

0 g(τ)dτ . Integrating by parts shows that the products E(X)(t)Yfluctuation(t) and
Xfluctuation(t)E(Y )(t) are quickly fluctuating [10].

Remark 4. Let us emphasize that the product

Xfluctuation(t)Yfluctuation(t)

is not necessarily quickly fluctuating. This most easily verified by settingXfluctuation(t) =
±1, and Yfluctuation(t) = Xfluctuation(t). Then

Xfluctuation(t)Yfluctuation(t) = (Xfluctuation(t))
2
= 1

2.2.3. Definitions.

1. The covariance of two time series X(t) and Y (t) is

cov(XY )(t) = E ((X − E(X))(Y − E(Y ))) (t)

≃ E(XY )(t) − E(X)(t)× E(Y )(t)

2. The variance of the time series X(t) is

var(X)(t) = E
(

(X − E(X))2
)

(t)

≃ E(X2)(t)− (E(X)(t))
2

3. The volatility of X(t) is the corresponding standard deviation

vol(X)(t) =
√

var(X)(t) (2)

The volatility of a quite arbitrary time series seems to be precisely defined here for
the first time.

2.3. Returns.

2.3.1. Definition. Assume from now on that, for any t ∈ T,

0 < m < X(t) < M

where m, M are appreciable.

Remark 5. This is a realistic assumption if X(t) is the price of some financial
asset. If X(t) is a temperature, express it in Kelvin degrees, for instance.

The logarithmic return, or log-return, of X with respect to some limited time
interval ∆T > 0 is the time series R∆T defined by

R∆T (X)(t) = ln

(

X(t)

X(t−∆T )

)

= lnX(t)− lnX(t−∆T )

From X(t)
X(t−∆T ) = 1 + X(t)−X(t−∆T )

X(t−∆T ) , we know that

R∆T (X)(t) ≃ X(t)−X(t−∆T )

X(t−∆T )
(3)

if X(t) − X(t − ∆T ) is infinitesimal. The right handside of Equation (3) is the
arithmetic return.
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The normalized logarithmic return is

r∆T (X)(t) =
R∆T (t)

∆T
(4)

2.3.2. Mean. Replace X : T → R by

lnX : T → R, t 7→ ln (X(t))

where the logarithms of the prices are taken into account. Apply the Cartier-Perrin
theorem to lnX . The mean, or average, of r∆T (t) given by Equation (4) is

r̄∆T (X)(t) =
E(lnX)(t)− E(lnX)(t−∆T )

∆T
(5)

As a matter of fact r∆T (X) and r̄∆T (X) are related by

r∆T (X)(t) = r̄∆T (X)(t) + quick fluctuations

Assume that E(X) and E(lnX) are differentiable according to Section 2.2.2. Call
the derivative of E(lnX) the normalized mean logarithmic instantaneous return and
write

r̄(X)(t) =
d

dt
E(lnX)(t) (6)

Note that E(lnX)(t) ≃ ln (E(X)(t)) if in Equation (1) Xfluctuation(t) ≃ 0. Then

r̄(X)(t) ≃
d

dt
E(X)(t)

E(X)(t) .

2.3.3. Volatility. Formulae (2), (4), (8), (6) yield the following mathematical defi-
nition of the volatility of the time series X when computed via its retun:

vol∆T (X)(t) =
√

E(r∆T − r̄∆T )2(t) (7)

It yields

vol∆T (X)(t) ≃
√

E(r2∆T )(t)− (r̄∆T (t))2

3. Beta. It is well known that the coefficient β was introduced in financial engi-
neering for studying some types of risks. The presentation below is inspired by
[15].

3.1. Arithmetical average. Assume that X : T → R is S-integrable. Take a
quadrable set A ⊆ T such that

∫

A
dτ is appreciable. The arithmetical average of X

on A, which is written AVA(X), is defined by

AVA(X) =

∫

A
Xdτ

∫

A
dτ

It follows at once from Equation (1) that the difference between AVA(X) and
AVA(E(X)) is infinitesimal, i.e.,

AVA(X) ≃ AVA(E(X))

In practice, A is a time interval [t−L, t], with an appreciable length L. Set, if t ≥ L,

X(L, t) = AV[t−L,t](X) =

∫ t

t−L
Xdτ

L
≃

∫ t

t−L
E(X)dτ

L
(8)
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3.2. A formula for betas. Take two

• S-integrable time series X,Y : T → R,
• quantities LX , LY > 0.

If t > sup(LX , LY ) and if Y (LY , t) is appreciable, set

β
X,LX

Y,LY
(t) =

X(LX , t)

Y (LY , t)

If LX = LY = L, set

βX
Y (L, t) = β

X,L
Y,L (t) =

X(L, t)

Y (L, t)
(9)

The relation, or influence, between X and Y has been already defined in Section
1.3. It depends of course on the numerical values of βX

Y (L, t).

4. Numerical experiments. The academic time series, who are coming from [26],
i.e., a paper on neurosciences, are given by closed form expressions. There is no
room here for studying data from real life.

Remark 6. All the βs in this Section are computed by taking the returns of the
time series.

4.1. Case 1. Figure 1 displays the two time series
{

y1(t) =
t
50

y2(t) = sin( t2

200 ) + 3 sin( t
10 )

As shown by Figure 2 there is no clear-cut relation after some time, i.e., t ≃ 80,
with a short time lapse L = 0.1 in Equation (9). This is explained of course by the

term sin( t2

200 ). If the time lapse L becomes larger, i.e., L = 10s, a relation may be

read on Figure 3, since the influence of sin( t2

200 ) is reduced.

4.2. Case 2. The five time series in Figure 4 are borrowed from [26]:


























































x1(t) = .95
√
2x1(t− 1)− 0.9025x1(t− 2) + ǫ1(t)

+a1ǫ6(t) + b1ǫ7(t) + c1ǫ7(t− 2)

x2(t) = .5x1(t− 2) + ǫ2(t) + a2ǫ6(t) + b2ǫ7(t− 1) + c2ǫ7(t− 2)

x3(t) = −.4x1(t− 3) + ǫ3(t) + a3ǫ6(t) + b3ǫ7(t− 1) + c3ǫ7(t− 2)

x4(t) = −.5x1(t− 2) + .25
√
2x4(t− 1) + .25

√
2x5(t− 1) + ǫ4(t)

+a4ǫ6(t) + b4ǫ7(t− 1) + c4ǫ7(t− 2)

x5(t) = −.25
√
2x4(t− 1) + .25

√
2x5(t− 1) + ǫ5(t)

+a5ǫ6(t) + b5ǫ7(t− 1) + c5ǫ7(t− 2)

(10)

where

• ǫi(t), i = 1, · · · , 7, are zero-mean uncorrelated processes with identical vari-
ances;

• the coefficients ai, which represent exogenous inputs, are randomly chosen
between 0 and 1;

• the terms biǫ7(t− 1)+ ciǫ7(t− 2), bi = 2, ci = 5, i = 1, 2, · · · , 7, represent the
influence of latent variables.
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0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Time in s

(a) y1(t)

e[y2(t)]

0 20 40 60 80 100 120 140 160 180 200
−4

−3

−2

−1

0

1

2

3

4

Time in s

Figure 1. Time evolution of signals

Figure 5 displays the various βi
j , i, j = 1, . . . , 7, i 6= j, with a window length

equal to 200Te, where Te is the sampling time. The trends of those quantities are
shown in Figure 6, which displays also the corresponding 25Te forecasts. Those
numerical results, which are of good quality, gives a clear-cut interpretation of the
relations between the various time series. The trends are also presented in Figure
6. Figures 7 and 8 present respectively the corresponding volatilities of xi’s and the
associated βs. Here again the relations may be clearly deduced.

5. Conclusion. The new setting for causality between time series, which has been
outlined here, does not need any complex deterministic or probabilistic mathemat-
ical modeling.13 It seems moreover to be rather straightforward to implement.

Its interest, which is obviously connected to some questions about big data, will
be hopefully soon confirmed via concrete case-studies.

13See also [17].
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Figure 2. Betas computed on a short time interval L = 0.1s
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offerts à M.-P. Schützenberger, Hermès, 1990, 328–334.
[8] M. Fliess, Reversible linear and nonlinear discrete-time dynamics. IEEE Trans. Automat.

Control, 37, 1992,1144–1153.
[9] M. Fliess, Invertibility of causal discrete time dynamical systems. J. Pure Appl. Algebra, 86,

1993, 173–179
[10] M. Fliess, Analyse non standard du bruit. C.R. Acad. Sci. Paris Ser. I, 342, 2006, 797–802.

Available at http://hal.archives-ouvertes.fr/inria-00001134/en/



10 MICHEL FLIESS, CÉDRIC JOIN
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Figure 7. Time evolution of vol10Te(xi)(t), i = 1, 2, · · · , 7
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Figure 8. βs for all combinations of vol10Te(xi)(t), i = 1, 2, · · · , 7
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