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TOWARDS A NEW VIEWPOINT ON

CAUSALITY FOR TIME SERIES

M. FLIESS1, 2 and C. JOIN32, 4

En hommage amical au Professeur Abdelhaq EL JAI

Abstract. Causation between time series is a most important topic in econometrics, financial engi-
neering, biological and psychological sciences, and many other fields. A new setting is introduced for
examining this rather abstract concept. The corresponding calculations, which are much easier than
those required by the celebrated Granger-causality, do not necessitate any deterministic or probabilistic
modeling. Some convincing computer simulations are presented.

Résumé. La causalité entre chroniques est un sujet capital en économétrie, ingénierie financière,
sciences biologiques et psychologiques, et quantité d’autres domaines. On introduit ici une nouvelle
approche pour traiter ce concept abstrait. Les calculs, qui sont beaucoup plus simples que ceux liés à
la causalité de Granger, bien connue, ne nécessitent aucune modélisation, déterministe ou probabiliste.
On présente plusieurs simulations numériques réussies.

1. Introduction

1.1. Generalities

Causality, or the theory of causation, is since ever a philosophical mainstay. This is shown by a huge body
of writings due to important thinkers like Aristotle, Hume, Kant, Maine de Biran, Mach, Schlick, Meyerson,
Carnap, and many others. Let us nevertheless illustrate the difficulty of this concept via the following humorous
citation from Bertrand Russell [39]:
The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age,
surviving, like the monarchy, only because it is erroneously supposed to do no harm.

1.2. Granger-causality

More recently causality has been investigated via probabilistic tools (see, e.g., Reichenbach [37], Suppes [43],
Pearl [36], . . . ). This is also the case of the Granger-causality [23–25] on time series, to which the names of
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BP 239, 54506 Vandœuvre-lès-Nancy, France.
4 Projet Non-A, INRIA Lille – Nord-Europe, France.

c© EDP Sciences, SMAI 2015

Article published online by EDP Sciences and available at http://www.esaim-proc.org or http://dx.doi.org/10.1051/proc/201549004

http://publications.edpsciences.org/
http://www.esaim-proc.org
http://dx.doi.org/10.1051/proc/201549004


38 ESAIM: PROCEEDINGS AND SURVEYS

Wiener [44] and Sims [40] are often associated. It has gained a huge popularity which is largely due to the
following facts:

• Granger-causality is easy and pragmatic, i.e., it seems to bypass to a large extent any philosophical
debate.

• Time is naturally incorporated.

Those attractive features lead to the attribution of the Nobel Prize in economic sciences to Granger in 2003 [26].1

A time series Y is said there to be a “cause” of a time series X if, and only if, the forecast of X benefits from the
knowledge of the past of Y . Granger-causality, which was introduced for answering questions stemming from
econometrics and financial engineering and was further developed in many other domains, like, for instance,
biology and psychology, has unfortunately not been as successful as many researchers and practitioners hoped.
The explanation lies perhaps in its most severe mathematical assumptions, on the

• linear structure of the time series,
• covariance stationarity of the corresponding signals.

They can be only partly weakened via complex operations like cointegration (see, e.g., [6, 26, 27]). In spite of
several attempts to obtain a nonlinear extension, no theory has been adopted and applied on a large scale to
the best of our knowledge.

Remark 1. See [35] for a well written historical account of the classic approach to time series in econometrics,
where Granger’s works play a key rôle.

1.3. Our approach

This paper suggests a quite different route for examining causality between time series. A theorem by Cartier
and Perrin [3] is fundamental. It was already presented in [12] where the connection with financial engineering
was developed (see also [13,15–17]). Let us summarize some important features of this new standpoint:

(1) The existence of trends.2

(2) The existence of quick fluctuations, which yield another setting for classic quantities like volatility [16].
(3) There is no need of a mathematical modeling of the time series. According to our opinion this need

might be the key explanation of the difficulties encountered today by the theory of time series.3

Uncertainty is then taken into account without the need any probabilistic law. We utilize the definition of beta
(β) in [15], where some shortcomings of the classic market, or systematic, risk were examined. Introduce for
two given time series X, Y their averaged means AV∆X, AV∆Y during a time interval ∆. The quotient

βXY (∆, t) =
AV∆X

AV∆Y

or more precisely, its variation, defines the relation, or influence,4 between X and Y at time t. In plain words,
the series X and Y are said to be, or not to be, related if the corresponding values of β may be related as
follows :

• If |β| is appreciable,5 i.e., is neither too small nor too big, and if β has a constant sign during a quite
“long” time T , we say that one series is positively (resp. negatively) related to the other during the time
lapse T if β > 0 (resp. β < 0).

• If the sign of β is changing too often, we say that there is no relation between the series.

1Sims also got in 2011 the Nobel prize. Its Nobel lecture on modeling [41] will be discussed elsewhere. See, nevertheless, [12,17],
[14], and Section 1.3.

2This is a key assumption in technical analysis or charting (see, e.g., [1,32] and the references therein). The notion of trends in
the usual time series literature (see, e.g., [22, 30]) does no coincide with ours.

3See [14] for a model-free control setting, which is most successful from an applied viewpoint.
4We are not employing on purpose the polysemic word cause, which was at the origin of so many heated controversies!
5This terminology is borrowed from nonstandard analysis (see, e.g., [4, 5]).
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It might be interesting to

• introduce a different time intervals on the mean averages in order to take into account delays,
• give a more canonical value to β by computing it via returns.

The forecast of β thanks to techniques which started in [12] yields moreover a prediction of the relation between
the series.

Remark 2. As already stated in [12, 13, 15–17], our approach is connected to recent advances in control
engineering and in signal processing.6 Let us point out therefore that previous works in control have already
been employed to analyze some aspects of the theory of causation:

(1) When the differential equations governing a system are known, the control variables, i.e., the causes
may be deduced [7].

(2) Determinism in discrete-time may be confirmed in the same way as for deterministic ordinary differential
equations in continuous time [8, 9].

1.4. Organization of the paper

Our paper is organized as follows. Section 2 summarizes our viewpoint on time series, which has already
been expounded elsewhere (see, e.g., [12, 17]). Section 3 extracts from [15] the necessary material on the new
coefficient β. The academic time series for the numerical experiments displayed in Section 4, which are borrowed
from [29], are, as in [28,29],7 given by closed-form continuous-time expressions. Some short concluding remarks
may be found in Section 5.

2. Time series

2.1. Nonstandard analysis and the Cartier-Perrin theorem8

Take the time interval [0, 1] ⊂ R and introduce as often in nonstandard analysis the infinitesimal sampling

T = {0 = t0 < t1 < · · · < tN = 1}

where tι+1 − tι, 0 ≤ ι < N , is infinitesimal, i.e., “very small”.9 A time series X(t) is a function X : T→ R.
The Lebesgue measure on T is the function ` defined on T\{1} by `(ti) = ti+1 − ti. The measure of any

interval [c, d] ⊂ T, c ≤ d, is its length d− c. The integral over [c, d] of the time series X(t) is the sum∫
[c,d]

Xdτ =
∑
t∈[c,d]

X(t)`(t)

X is said to be S-integrable if, and only if, for any interval [c, d] the integral
∫

[c,d]
|X|dτ is limited, i.e., not

infinitely large, and, if d− c is infinitesimal, also infinitesimal.
X is S-continuous at tι ∈ T if, and only if, f(tι) ' f(τ) when tι ' τ .10 X is said to be almost continuous if,

and only if, it is S-continuous on T \ R, where R is a rare subset.11 X is Lebesgue integrable if, and only if, it
is S-integrable and almost continuous.

6The connection between time series and control has been investigated quite a lot in the literature (see, e.g., [2]).
7Note that those two references [28, 29] are studying Granger-causality for a better understanding of some questions stemming

from neurosciences.
8See [12] for a more thorough introduction on this theorem, and on nonstandard analysis. Many more citations are also given.
9See, e.g., [4, 5] for basics in nonstandard analysis.
10a ' b means that a− b is infinitesimal.
11The set R is said to be rare [3] if, for any standard real number α > 0, there exists an internal set A ⊃ R such that m(A) ≤ α.
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A time series X : T→ R is said to be quickly fluctuating, or oscillating, if, and only if, it is S-integrable and∫
A
Xdτ is infinitesimal for any quadrable subset.12

Let X : T → R be a S-integrable time series. Then, according to the Cartier-Perrin theorem [3],13 the
additive decomposition

X(t) = E(X)(t) +Xfluctuat(t) (1)

holds where

• the mean E(X)(t) is Lebesgue integrable,
• Xfluctuat(t) is quickly fluctuating.

The decomposition (1) is unique up to an additive infinitesimal quantity.

Remark 3. The notion of quick fluctuations has been employed since [10] as a new approach to noise in
automatic control and signal processing. Let us emphasize that this setting was successfully utilized for obtaining
powerful estimation and identification techniques (see, e.g., [18–21,42], and the references therein). See [11] for
another advances in signal processing, which are based on nonstandard analysis.

2.2. Variances and covariances

2.2.1. Squares and products

Take two S-integrable time series X(t), Y (t), such that their squares and the squares of E(X)(t) and E(Y )(t)
are also S-integrable. The Cauchy-Schwarz inequality shows that the products

• X(t)Y (t), E(X)(t)E(Y )(t),
• E(X)(t)Yfluctuation(t), Xfluctuation(t)E(Y )(t),
• Xfluctuation(t)Yfluctuation(t)

are all S-integrable.

2.2.2. Differentiability

Assume moreover that E(X)(t) and E(Y )(t) are differentiable in the following sense: there exist two Lebesgue
integrable time series f, g : T→ R, such that, for any t ∈ T, with the possible exception of a limited number of

values of t, E(X)(t) = E(X)(0) +
∫ t

0
f(τ)dτ , E(Y )(t) = E(Y )(0) +

∫ t
0
g(τ)dτ . Integrating by parts shows that

the products E(X)(t)Yfluctuation(t) and Xfluctuation(t)E(Y )(t) are quickly fluctuating [10].

Remark 4. Let us emphasize that the product

Xfluctuation(t)Yfluctuation(t)

is not necessarily quickly fluctuating. This most easily verified by settingXfluctuation(t) = ±1, and Yfluctuation(t) =
Xfluctuation(t). Then

Xfluctuation(t)Yfluctuation(t) = (Xfluctuation(t))
2

= 1

2.2.3. Definitions

(1) The covariance of two time series X(t) and Y (t) is

cov(XY )(t) = E ((X − E(X))(Y − E(Y ))) (t)

' E(XY )(t)− E(X)(t)× E(Y )(t)

12A set is quadrable [3] if its boundary is rare.
13The presentation in the article by Lobry and Sari [33] is less demanding. We highly recommend it. Note that it also includes

a fruitful discussion on nonstandard analysis.



ESAIM: PROCEEDINGS AND SURVEYS 41

(2) The variance of the time series X(t) is

var(X)(t) = E
(
(X − E(X))2

)
(t)

' E(X2)(t)− (E(X)(t))
2

(3) The volatility of X(t) is the corresponding standard deviation

vol(X)(t) =
√

var(X)(t) (2)

The volatility of a quite arbitrary time series seems to be precisely defined here for the first time.

2.3. Returns

2.3.1. Definition

Assume from now on that, for any t ∈ T,

0 < m < X(t) < M

where m, M are appreciable.

Remark 5. This is a realistic assumption if X(t) is the price of some financial asset. If X(t) is a temperature,
express it in Kelvin degrees, for instance.

The logarithmic return, or log-return, of X with respect to some limited time interval ∆T > 0 is the time
series R∆T defined by

R∆T (X)(t) = ln

(
X(t)

X(t−∆T )

)
= lnX(t)− lnX(t−∆T )

From X(t)
X(t−∆T ) = 1 + X(t)−X(t−∆T )

X(t−∆T ) , we know that

R∆T (X)(t) ' X(t)−X(t−∆T )

X(t−∆T )
(3)

if X(t)−X(t−∆T ) is infinitesimal. The right handside of Equation (3) is the arithmetic return.
The normalized logarithmic return is

r∆T (X)(t) =
R∆T (t)

∆T
(4)

2.3.2. Mean

Replace X : T→ R by

lnX : T→ R, t 7→ ln (X(t))

where the logarithms of the prices are taken into account. Apply the Cartier-Perrin theorem to lnX. The mean,
or average, of r∆T (t) given by Equation (4) is

r̄∆T (X)(t) =
E(lnX)(t)− E(lnX)(t−∆T )

∆T
(5)

As a matter of fact r∆T (X) and r̄∆T (X) are related by

r∆T (X)(t) = r̄∆T (X)(t) + quick fluctuations
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Assume that E(X) and E(lnX) are differentiable according to Section 2.2.2. Call the derivative of E(lnX) the
normalized mean logarithmic instantaneous return and write

r̄(X)(t) =
d

dt
E(lnX)(t) (6)

Note that E(lnX)(t) ' ln (E(X)(t)) if in Equation (1) Xfluctuation(t) ' 0. Then r̄(X)(t) '
d
dtE(X)(t)

E(X)(t) .

2.3.3. Volatility

Formulae (2), (4), (5), (6) yield the following mathematical definition of the volatility of the time series X
when computed via its retun:

vol∆T (X)(t) =
√
E(r∆T − r̄∆T )2(t) (7)

It yields

vol∆T (X)(t) '
√
E(r2

∆T )(t)− (r̄∆T (t))2

3. Beta

It is well known that the coefficient β was introduced in financial engineering for studying some types of
risks. The presentation below is inspired by [15].

3.1. Arithmetical average

Assume that X : T → R is S-integrable. Take a quadrable set A ⊆ T such that
∫
A
dτ is appreciable. The

arithmetical average of X on A, which is written AVA(X), is defined by

AVA(X) =

∫
A
Xdτ∫
A
dτ

It follows at once from Equation (1) that the difference between AVA(X) and AVA(E(X)) is infinitesimal, i.e.,

AVA(X) ' AVA(E(X))

In practice, A is a time interval [t− L, t], with an appreciable length L. Set, if t ≥ L,

X(L, t) = AV[t−L,t](X) =

∫ t
t−LXdτ

L
'
∫ t
t−LE(X)dτ

L

3.2. A formula for betas

Take two

• S-integrable time series X,Y : T→ R,
• quantities LX , LY > 0.

If t > sup(LX , LY ) and if Y (LY , t) is appreciable, set

βX,LX

Y,LY
(t) =

X(LX , t)

Y (LY , t)
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If LX = LY = L, set

βXY (L, t) = βX,LY,L (t) =
X(L, t)

Y (L, t)
(8)

The relation, or influence, between X and Y has been already defined in Section 1.3. It depends of course on
the numerical values of βXY (L, t).

4. Numerical experiments

The academic time series, who are extracted from [29], i.e., a paper on neurosciences, are given by closed
form expressions. There is no room here for studying data from real life.

Remark 6. All the βs in this Section are computed by taking the returns of the time series.

4.1. Case 1

Figure 1 displays the two time series{
y1(t) = t

50

y2(t) = sin( t2

200 ) + 3 sin( t
10 )

As shown by Figure 2 there is no clear-cut relation after some time, i.e., t ' 80, with a short time lapse L = 0.1

in Equation (8). This is explained of course by the term sin( t2

200 ). If the time lapse L becomes larger, i.e.,

L = 10s, a relation may be read on Figure 3, since the influence of sin( t2

200 ) is reduced.

4.2. Case 2

The five time series in Figure 4 are borrowed from [29]:

x1(t) = .95
√

2x1(t− 1)− 0.9025x1(t− 2) + ε1(t)

+a1ε6(t) + b1ε7(t) + c1ε7(t− 2)

x2(t) = .5x1(t− 2) + ε2(t) + a2ε6(t) + b2ε7(t− 1) + c2ε7(t− 2)

x3(t) = −.4x1(t− 3) + ε3(t) + a3ε6(t) + b3ε7(t− 1) + c3ε7(t− 2)

x4(t) = −.5x1(t− 2) + .25
√

2x4(t− 1) + .25
√

2x5(t− 1) + ε4(t)

+a4ε6(t) + b4ε7(t− 1) + c4ε7(t− 2)

x5(t) = −.25
√

2x4(t− 1) + .25
√

2x5(t− 1) + ε5(t)

+a5ε6(t) + b5ε7(t− 1) + c5ε7(t− 2)

(9)

where

• εi(t), i = 1, · · · , 7, are zero-mean uncorrelated processes with identical variances;
• the coefficients ai, which represent exogenous inputs, are randomly chosen between 0 and 1;
• the terms biε7(t − 1) + ciε7(t − 2), bi = 2, ci = 5, i = 1, 2, · · · , 7, represent the influence of latent

variables.

Figure 5 displays the various βij , i, j = 1, . . . , 7, i 6= j, with a window length equal to 200Te, where Te is the
sampling time. The trends of those quantities are shown in Figure 6, which displays also the corresponding 25Te
forecasts. Those numerical results, which are of good quality, give a clear-cut interpretation of the relations
between the various time series. The trends are also presented in Figure 6. Figures 7 and 8 present respectively
the corresponding volatilities of xi’s and the associated βs. Here again the relations may be clearly deduced.
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Figure 1. Time evolution of signals

5. Conclusion

Let us stress again that this new setting for causality between time series, which has been outlined here, does
not need any complex deterministic or probabilistic mathematical modeling.14 It seems moreover to be rather
straightforward to implement. Its interest, which is obviously connected to some questions about big data, will
be hopefully soon confirmed via concrete case-studies, like, for instance, meteorology, where our approach to
time series begins to be employed [31].

14See also the “epistemological” comments in [12,17].
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Figure 2. Betas computed on a short time interval L = 0.1s
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[1] T. Béchu, E. Bertrand, J. Nebenzahl, L’analyse technique (6e éd.). Economica, 2008.
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Figure 5. Betas for all combinations of xi, i = 1, 2, · · · , 7
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(a) Trend of βx2
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(b) Trend of βx3
x1 (red −) and

25Te forecast (black −−)
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(c) Trend of βx4
x1 (red −) and

25Te forecast (black −−)
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(d) Trend of βx5
x1 (red −) and

25Te forecast (black −−)
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(e) Trend of βx1
x2 (red −) and

25Te forecast (black −−)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9

Time in Te

(f) Trend of βx3
x2 (red −) and

25Te forecast (black −−)
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(g) Trend of βx4
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25Te forecast (black −−)
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(h) Trend of βx5
x2 (red −) and

25Te forecast (black −−)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9

Time in Te

(i) Trend of βx1
x3 (red −) and

25Te forecast (black −−)
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(j) Trend of βx2
x3 (red −) and

25Te forecast (black −−)
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(k) Trend of βx4
x3 (red −) and

25Te forecast (black −−)
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(l) Trend of βx5
x3 (red −) and

25Te forecast (black −−)
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(m) Trend of βx1
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25Te forecast (black −−)
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(n) Trend of βx2
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(o) Trend of βx3
x4 (red −) and

25Te forecast (black −−)
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(p) Trend of βx4
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(q) Trend of βx1
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Figure 6. Forecasts of the βs
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Figure 7. Time evolution of vol10Te(xi)(t), i = 1, 2, · · · , 7
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Figure 8. βs for all combinations of vol10Te(xi)(t), i = 1, 2, · · · , 7
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[22] C. Gouriéroux, A. Monfort, Séries temporelles et modèles dynamiques (2e éd.). Economica, 1995. English translation: Time
Series and Dynamic Models. Cambridge Univ. Press, 1996.

[23] C.W.J. Granger, Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 1969,

424–438.
[24] C.W.J. Granger, Testing for causality: A personal viewpoint. J. Econ. Dynam. Control, 2, 1980, 329–352.

[25] C.W.J. Granger, Causality, cointegration and control. J. Econ. Dynam. Control, 12, 1988, 551–559.

[26] C.W.J. Granger, Time series analysis, cointegration, and applications. Nobel Lecture, 2003.
[27] C.W.J. Granger, Some thoughts on the development of cointegration. J. Econometrics, 158, 2010, 3–6.

[28] S. Guo, A.K. Seth, K.M. Kendrick, C. Zhou, J. Feng, Partial Granger causality – Eliminating exogenous inputs and latent

variables. J. Neuroscience Methods, 172, 2008, 79–93.
[29] S. Guo, C. Ladroue, J. Feng, Granger causality: theory and applications. In Frontiers in Computational and Systems Biology.

Eds.: J Feng,, W. Fu, F. Sun, chap. 5, pp. 83–111, Springer, 2010.

[30] J. D. Hamilton, Time Series Analysis. Princeton Univ. Press, 1994.
[31] C. Join, C. Voyant, M. Fliess, M. Muselli, M.-L. Nivet, C. Paoli, F. Chaxel, Short-term solar irradiance and irradiation

forecasts via different time series techniques: A preliminary study. 3rd Int. Symp. Environ.-Friendly Energy Appl., Paris,
2014. Available at

http:hal.archives-ouvertes.fr

[32] P.J. Kaufman, Trading Systems and Methods (5th ed.). Wiley, 2013.
[33] C. Lobry, T. Sari, Nonstandard analysis and representation of reality. Int. J. Control, 81, 2008, 517–534.

[34] M. Mboup, C. Join, M. Fliess, Numerical differentiation with annihilators in noisy environment. Numer. Algorithm., 50, 2009,

439–467.
[35] V. Meuriot, Une histoire des concepts des séries temporelles. Harmattan–Academia, 2012.
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