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Self-sustained oscillations resulting from fluid–solid instabilities, such as the flutter of
a flexible flag in axial flow, can be used to harvest energy if one is able to convert
the solid energy into electricity. Here, this is achieved using piezoelectric patches
attached to the surface of the flag, which convert the solid deformation into an electric
current powering purely resistive output circuits. Nonlinear numerical simulations in
the slender-body limit, based on an explicit description of the coupling between the
fluid–solid and electric systems, are used to determine the harvesting efficiency of the
system, namely the fraction of the flow kinetic energy flux effectively used to power
the output circuit, and its evolution with the system’s parameters. The role of the
tuning between the characteristic frequencies of the fluid–solid and electric systems is
emphasized, as well as the critical impact of the piezoelectric coupling intensity. High
fluid loading, classically associated with destabilization by damping, leads to greater
energy harvesting, but with a weaker robustness to flow velocity fluctuations due to the
sensitivity of the flapping mode selection. This suggests that a control of this mode
selection by a careful design of the output circuit could provide some opportunities to
improve the efficiency and robustness of the energy harvesting process.
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1. Introduction

The development of renewable energy sources is motivated by the limited
availability and environmental impact of fossil fuels. Significant research efforts are
currently being made to propose energy harvesting concepts and prototypes converting
the kinetic energy of geophysical flows such as winds, rivers and oceanic or tidal
currents into electricity (Westwood 2004). In parallel, particular attention is currently
being given to systems able to produce a limited amount of energy from different
vibration sources in order to power remote or isolated devices (Sodano, Inman &
Park 2004). Classical fluid–solid couplings and instabilities such as vortex-induced
vibrations, galloping and flutter in axial flows effectively act as energy extraction
mechanisms as they enable energy transfer from the incoming flow to the solid
body, and can therefore be used to produce electricity using displacement-based
(e.g. electromagnetic converters) or deformation-based (e.g. piezoelectric materials)
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conversion mechanisms (Bernitsas et al. 2008; Peng & Zhu 2009; Barrero-Gil, Alonso
& Sanz-Andres 2010; Singh, Michelin & de Langre 2012a). Because they are based
on fundamentally different mechanisms, such flow energy harvesters may be attractive
complements to the existing technologies of wind and water turbines, and proper
assessment of fundamental upper bounds on their respective efficiency is therefore of
critical importance.

A flexible plate placed in an axial flow becomes unstable to flutter above a critical
flow velocity when the destabilizing pressure forces dominate the stabilizing effect of
the structure’s rigidity (Kornecki, Dowell & O’Brien 1976; Paidoussis 2004; Shelley
& Zhang 2011). This critical velocity depends on the plate’s properties (e.g. density,
size and rigidity) and can therefore be adjusted in the system’s design to be lower
than the typical flow velocity. This so-called flapping flag instability leads to self-
sustained large-amplitude flapping of the plate in the form of travelling bending waves
(Connell & Yue 2007; Alben & Shelley 2008; Eloy et al. 2008; Michelin, Llewellyn
Smith & Glover 2008), which can be used to produce electricity using, for example,
piezoelectric patches attached to the plate’s surface (Allen & Smits 2001; Dunnmon
et al. 2011; Giacomello & Porfiri 2011; Akcabay & Young 2012).

An important research effort is required in order to assess the amount of energy
that can be harvested using such devices and to investigate possible intrinsic
limits or potential optimization strategies for their efficiency. In a theoretical or
numerical framework, the conversion mechanism and output circuit must be described,
to properly include the coupling of the fluid–solid and electric systems. Energy
harvesting eventually amounts to an extraction of energy from the solid dynamics.
Hence, a first and simpler model for the harvesting mechanism is an additional
structural damping (e.g. Kelvin–Voigt), and assessment of the system’s efficiency
is then equivalent to determining how much energy can be dissipated by the
flapping structure (Peng & Zhu 2009; Tang, Paı̈doussis & Jiang 2009; Singh et al.

2012a). Indeed, increasing damping would lead to a larger energy dissipation but
will eventually re-stabilize the system and reduce its harvesting efficiency. Although
simple to implement, this representation is not complete as it assumes that energy is
instantaneously and immediately dissipated, and cannot represent the dynamics of the
electrical circuit or of the coupling mechanism.

The innovation of the present work is to propose instead a fully coupled description
of a fluid–solid–electric system, namely a flexible plate in axial flow covered with
piezoelectric patch pairs powering simple resistive elements. Recently, Doaré &
Michelin (2011) followed this approach to study the impact of the piezoelectric
coupling on the linear stability of a two-dimensional plate and on the solid–electric
energy transfers. In particular, the role of the tuning of the fluid–solid and electric
characteristic time scales was emphasized, and a destabilization by the piezoelectric
coupling was identified in the case of large fluid loading, associated with the
destabilization by damping of negative energy waves (Benjamin 1963; Doaré 2010).
The present study extends this approach to study numerically the nonlinear dynamics
of this fluid–solid–electric system in the case of a slender flexible plate, and to
determine its harvesting efficiency. Here, the system’s efficiency is defined following
the classical definition used for wind turbines, as the ratio of the mean power output
and of the mean kinetic energy flux through the section occupied by the device in the
flow. In that sense, it differs from the measures of efficiency used in other existing
studies (Tang et al. 2009; Dunnmon et al. 2011).

In § 2, the model used to describe the dynamics of the flapping piezoelectric flag
is presented. In § 3 we present a short summary of the linear stability results in
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FIGURE 1. (a) Slender flexible plate flapping in a uniform axial flow. (b) Two-dimensional
flapping of a slender flexible plate covered with pairs of piezoelectric patches.

the case of a slender plate. In § 4 we address the numerical solution of the coupled
dynamics, define the system’s efficiency, and discuss the impact of the different system
parameters on this efficiency. Finally, conclusions and perspectives are presented in
§ 5.

2. Presentation of the fully coupled model

2.1. Piezoelectric flag dynamics

The system considered here consists of a rectangular flexible plate of length L, width
H and thickness h (h ≪ H, L) placed in a steady flow of density ρ and velocity U∞.
The plate is inextensible and clamped at its leading edge; for simplicity, only purely
planar motions of the plate are considered, so that the plate’s position X is only a
function of the streamwise curvilinear coordinate S and time T , and the solid does not
experience any spanwise displacement or twist. The local orientation of the flag with
respect to the horizontal axis is denoted by θ(S, T) (figure 1). In the following, lineic
quantities will be defined per unit length in S.

The surface of the plate is covered by pairs of piezoelectric patches (figure 1b)
with streamwise length l ≪ L and width H. The negative electrodes of each patch
are shunted through the plate and the positive electrodes are connected to the
output circuit. The deformation of the flag is coupled to the output circuit through
the piezoelectric coupling: (i) stretching and compression of the patches due to the
local curvature induces charge transfers between each patch’s electrodes; and (ii) an
electric voltage applied to its electrodes results in an additional internal torque on the
piezoelectric patch and on the flag. Considering the limit of a continuous coverage by
patches of infinitesimal length (Bisegna, Caruso & Maceri 2006; Doaré & Michelin
2011), the local electric state can be described in terms of the electric voltage between
the positive electrodes of each patch, V(S, T), and the charge transfer Q(S, T) per unit
length in the streamwise direction. In this limit, which differs from the single-patch
approach of Akcabay & Young (2012), both quantities are continuous functions of S

and T , and the piezoelectric coupling imposes that

Q = cV + χ∗ ∂θ

∂S
, (2.1)

M = B
∂θ

∂S
− χ∗V, (2.2)

where M is the total internal torque in the piezoelectric flag, and c and χ∗ are
the lineic capacitance and piezoelectric coupling coefficient, directly related to the
material and geometric properties of the patch pair (Doaré & Michelin 2011). An
Euler–Bernoulli model is assumed for the dynamics of the piezoelectric flag, with B
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FIGURE 2. (a) Piezoelectric patch pair powering a purely resistive circuit. (b) The
piezoelectric patch pair is characterized by the current generated by its deformation and
by its capacitance c.

the effective flexural rigidity of the three-layer piezoelectric plate; for more details, see
Lee & Moon (1989) and Doaré & Michelin (2011).

The positive electrodes are connected to a purely resistive circuit of lineic
conductivity g (figure 2a), such that

∂Q

∂T
+ gV = 0. (2.3)

The conservation of momentum and inextensibility condition for the flag lead to

µ
∂2
X

∂T2
=

∂

∂S

[

FTeτ −
∂M

∂S
en

]

+ Ffluid, (2.4)

∂X

∂S
= eτ , (2.5)

where µ is the lineic mass of the piezoelectric flag, FT(S, T) is the local tension,
acting as a Lagrangian multiplier to enforce the plate’s inextensibility (2.5), and M

is the internal piezo-elastic torque in (2.2). The following clamped-free boundary
conditions must also be satisfied:

X = 0, θ = 0 at S = 0, (2.6)

M =
∂M

∂S
= FT = 0 at S = L. (2.7)

The conservation of mechanical and electrical energy takes the following form:

d

dT

(

Ek + Ep

)

= Wp − F ,
dEel

dT
= F − P, (2.8)

where

Ek =
∫ L

0

1

2
µ

∣

∣

∣

∣

∂X

∂T

∣

∣

∣

∣

2

dS, Ep =
∫ L

0

1

2
B

(

∂θ

∂S

)2

dS, Eel =
∫ L

0

1

2
cV2 dS (2.9)

are respectively the kinetic and potential elastic energy of the flag and the energy
stored in the capacitance of the piezoelectric elements, and

Wp =
∫ L

0

Ffluid ·

∂X

∂T
dS, F = −χ∗

∫ L

0

V
∂2θ

∂T∂S
ds, P = −

∫ L

0

V
∂Q

∂T
dS (2.10)

are the rate of work of the fluid forces, the rate of energy transfer from the solid
to the electric circuit and the power used in the output circuit, respectively. For a
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purely resistive circuit P is always strictly positive, and in permanent periodic regime,
〈P〉 = 〈F 〉 =

〈

Wp

〉

, with 〈·〉 the time-averaging operator.

2.2. Fluid modelling: Lighthill’s theory

The relative motion of the solid body with respect to the incoming flow results in fluid
forces Ffluid applied to its surface. In the particular limit of a slender body (H ≪ L)
and for a purely potential flow, the extension of Lighthill’s elongated body theory
to large-amplitude displacements leads to the following leading-order expression for
the reactive fluid forces Freac associated with the local transverse motion of each
cross-section along the plate:

Freac = −maρH2

(

∂Un

∂T
−

∂

∂S
(UnUτ ) +

1

2
U2

n

∂θ

∂S

)

en, (2.11)

where ma is the non-dimensional added mass coefficient of the local cross-section,
namely ma = π/4 for a flat plate. In (2.11), Uτ and Un are respectively the tangential
and normal components of the local relative velocity of the solid with respect to the
incoming flow:

U =
∂X

∂T
− U∞ex = Uτeτ + Unen. (2.12)

Initially proposed by Lighthill (1971), this so-called large-amplitude elongated body
theory (LAEBT) was recently shown to provide a good estimate of the transverse fluid
forces, in comparison with Reynolds-averaged Navier–Stokes (RANS) simulations on
a towed and deforming fish body (Candelier, Boyer & Leroyer 2011). However,
Candelier et al. (2011) emphasized that this purely reactive formulation cannot by
itself represent properly the deformation amplitude of freely moving bodies, since
effects such as drag and separation will be significant and must be accounted for by
an additional resistive component Fresist (see for example Taylor 1952). In the case of
a freely flapping slender body, Singh, Michelin & de Langre (2012b) indeed observed
that the purely reactive model would lead to non-physical overestimates of the flapping
amplitude. Following Eloy, Kofman & Schouveiler (2012) and Singh et al. (2012a),
the present model only retains the resistive drag associated with the plate’s normal
displacement

Fresist = − 1

2
ρHCDUn |Un| en, (2.13)

with CD = 1.8 for a flat plate in transverse flows.
The reactive part of the LAEBT corresponds to the asymptotic limit of the potential

flow equations when H/L ≪ 1 (Candelier et al. 2011), but the recent work of Eloy
et al. (2012) showed nonetheless, using comparisons with wind-tunnel experiments,
that the combination of the reactive and resistive components (2.11) and (2.13)
can provide a good prediction of the flapping properties of the plate even when
H/L = O(1). In the following, an aspect ratio H∗ = H/L = 0.5 will therefore be
considered.

2.3. Non-dimensional equations

Equations (2.1)–(2.13) are non-dimensionalized using L, L/U∞, ρHL2, U∞
√

µ/c and
U∞

√
µ c as characteristic length, time, mass, voltage and charge density, respectively:

∂2
x

∂t2
=

∂

∂s

[

fTeτ −
∂

∂s

(

1

U∗2

∂θ

∂s
−

α

U∗ v

)

en

]

+ M∗ffluid en, (2.14)
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ffluid = −
1

2
Cdun |un| − maH∗

(

∂un

∂t
−

∂

∂s
(unuτ ) +

1

2
u2

n

∂θ

∂s

)

, (2.15)

q = v +
α

U∗
∂θ

∂s
, (2.16)

β
∂q

∂t
+ v = 0 (2.17)

and the tension fT is obtained using the inextensibility condition (see for example
Michelin et al. 2008; Alben 2009)

∂x

∂s
= eτ . (2.18)

The clamped-free boundary conditions become

at s = 0, x = 0, θ = 0, (2.19)

at s = 1, fT =
∂θ

∂s
− αU∗v =

∂2θ

∂s2
− αU∗ ∂v

∂s
= 0. (2.20)

Five non-dimensional parameters characterize the system, namely the fluid–solid
inertia ratio, the non-dimensional velocity U∗, the coupling coefficient α, the tuning
coefficient of the fluid–solid and electric system β and the aspect ratio of the plate H∗:

M∗ =
ρHL

µ
, U∗ = U∞L

√

µ

B
, α =

χ∗
√

Bc
, β =

c U∞

gL
, H∗ =

H

L
. (2.21)

The innovation of the present work is to offer a full description of the
fluid–solid–electric system. Equations (2.14), (2.16) and (2.17) show that the effect
of the piezoelectric coupling is more complex than the simple Kelvin–Voigt damping
model generally assumed for simplicity in most studies on energy harvesting flags
(Tang et al. 2009; Singh et al. 2012b). Indeed, combining (2.16) and (2.17), one
obtains

βv̇ + v = −
αβ

U∗
∂2θ

∂s∂t
. (2.22)

Equation (2.22) shows that the effective damping introduced by the piezoelectric
coupling is frequency-dependent. In fact, a Kelvin–Voigt damping model could only be
recovered in the particular limit of β ≪ 1 and finite αβ/U∗. However, this asymptotic
limit is unlikely to be achieved in practice because of the material restrictions on
the coupling coefficient α for currently available piezoelectric materials (Doaré &
Michelin 2011).

3. Linear stability analysis

The linear stability of the piezoelectric flag is first analysed to identify the impact of
the piezoelectric coupling and output circuit on the stability properties of the system,
and also identify the operating regime of the harvesting devices, namely the parameter
values for which self-sustained oscillations can develop. The present linear study only
differs from that in Doaré & Michelin (2011) by the fluid model considered, which
corresponds to a different range for the plate’s aspect ratio; therefore only the main
results will be recalled, and the reader is referred to this previous contribution for
more in-depth analysis of linear stability.
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FIGURE 3. (a) Critical velocity threshold U∗
c as a function of the mass ratio M∗ for β = 1 and

varying α. (b) Critical velocity threshold U∗
c as a function of the mass ratio M∗ for α = 0.5

and varying β.

The displacement of the flag is purely vertical and denoted by y(s, t) ≪ 1. At
leading order, (2.14)–(2.20) simplify into the following linear systems for (y, v):

(1 + maM∗H∗)
∂2y

∂t2
+ 2maM∗H∗ ∂2y

∂t∂s
+ maM∗H∗ ∂2y

∂s2
+

1

U∗2

∂4y

∂s4
−

α

U∗
∂2v

∂s2
= 0, (3.1)

β
∂v

∂t
+ v +

αβ

U∗
∂3y

∂s2∂t
= 0, (3.2)

with boundary conditions

at s = 0, y =
∂y

∂s
= 0, (3.3)

at s = 1,
∂2y

∂s2
− αU∗v =

∂3y

∂s3
− αU∗ ∂v

∂s
= 0. (3.4)

Searching for solutions of the form [y, v] = Re
(

[Ỹ, Ṽ]e−iωt
)

, (3.1)–(3.4) become an

eigenvalue problem for ω and [Ỹ(s), Ṽ(s)], which is solved numerically using a
Chebyshev collocation method to determine the stability of the piezoelectric flag,
and in particular the critical velocity above which the flag becomes unstable (figure 3).

The piezoelectric coupling α enables the transfer of energy from the fluid–solid
system to the electrical circuit, where part of it is dissipated, resulting in a net
damping on the solid motion. This additional damping is therefore expected to
increase the critical velocity in comparison with the uncoupled flag (α = 0), an effect
indeed observed for M∗ . 1 (figure 3a). At larger M∗, the piezoelectric coupling
instead destabilizes the system, at least initially. This destabilization by damping was
previously reported in the case of a two-dimensional flag by Doaré & Michelin (2011),
and is associated with the existence of negative energy waves in the local stability
analysis of the non-dissipative flag (Benjamin 1963). From an energy harvesting point
of view, it increases the operating range of the piezoelectric flag as self-sustained
oscillations develop for lower velocities.

For a fixed piezoelectric coupling, β measures the tuning of the fluid–solid and
electric time scales of the system. When forced by the flag at a frequency much lower
than 1/τRC = g/c (β ≪ 1), the output resistive elements are seen by the piezoelectric
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patches as short circuits, and the voltage at the electrodes remains negligible. The
critical velocity is therefore equal to that of the uncoupled piezoelectric flag (α = 0)
as no piezoelectric feedback is applied to the structure. For a large forcing frequency
(β ≫ 1), however, the resistive elements are seen as open circuits, and from (2.1), the
voltage at the piezoelectric electrodes is proportional and opposite to the curvature: the
piezoelectric coverage then acts as an additional rigidity on the system. Between these
two limit regimes, a destabilization is observed for large M∗ which corresponds to the
destabilization mechanism mentioned above (figure 3b).

These results confirm and extend to the slender-body limit the conclusions of the
infinite-span flag analysis of Doaré & Michelin (2011). It is worth noting that the
results obtained with each model differ mostly at low M∗, consistent with the results
of Eloy, Souilliez & Schouveiler (2007) on the impact of aspect ratio on flag stability.

4. Nonlinear dynamics of a piezoelectric flag

To determine the amount of energy that can be produced using such a system, the
nonlinear dynamics of the piezoelectric flag must be studied, in particular to determine
its flapping amplitude and frequency.

4.1. Nonlinear simulations and energy harvesting efficiency

Following Alben (2009), the nonlinear system (2.14)–(2.20) is integrated numerically
in time using a second-order accurate implicit method, and spatial derivatives are
computed using Chebyshev collocation. Starting from rest (θ(s, t < 0) = 0), the flag
is excited by a small perturbation in the vertical component of the upstream flow.
The harvested energy is computed as the temporal average of the non-dimensional
power P = P/(ρU3

∞HL) dissipated in the resistive elements in the permanent
regime:

Q = 〈P〉 =
〈

1

βM∗

∫ 1

0

v2 ds

〉

. (4.1)

Here the temporal average is understood and computed as follows: when the system
converges to limit-cycle oscillations, it is defined as the mean value over a period of
oscillation, but when no limit-cycle oscillation can be identified, it is computed as the
statistical average over a sufficiently long time frame. Similarly, the non-dimensional
flapping amplitude A = A /L is defined from the trailing edge displacement ye(t) as a
measure of the peak flapping amplitude:

A =
√

2
〈

y2
e

〉

. (4.2)

The harvesting efficiency of the system, η, is defined as the fraction of the fluid kinetic
energy flux through the cross-section 2A H occupied by the flag (figure 1) actually
transferred to the output circuit, namely

η =
〈P〉

1

2
ρU3

∞ × 2A H

=
Q

A
. (4.3)

4.2. Nonlinear flapping dynamics

Above the critical velocity U∗
c , defined using the linear stability analysis of § 3, an

initial perturbation of the flag’s state of rest leads to an exponential growth of
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FIGURE 4. Limit-cycle oscillations: (a–c) flapping mode shape, (d–f ) time-series of the
non-dimensional harvested power P(t) and (g–i) phase space trajectory for the trailing edge
orientation θe(t) for M∗ = 10, α = 0.5, β = 0.158, and (a,d,g) U∗ = 10.5, η = 3.8 %, (b,e,h)
U∗ = 11, η = 1.7 % and (c,f i) U∗ = 14.5, η = 3.3 %.

the flapping amplitude until saturation is reached, and the permanent regime takes

one of the two following forms: (i) a strongly periodic regime characterized by

the identification of a limit-cycle in phase space; or (ii) a more complex nonlinear

regime where no clear limit-cycle can be identified. This transition from periodic to

non-periodic regime has been observed in numerous experimental (Eloy et al. 2012)

and numerical studies (Connell & Yue 2007; Alben & Shelley 2008; Michelin et al.

2008), and has been conjectured to result from the nonlinear interactions of different

fundamental modes. Limit-cycle oscillation is particularly interesting from an energy

harvesting point of view, as it provides steady output current amplitude and frequency.

Even below the transition to chaotic flapping, non-periodic flapping regimes can be

observed as the system switches from one flapping mode to another when one of the

parameters (e.g. U∗) is modified. This mode switch results in a change of flapping

amplitude and frequency, but also of the flag kinematics, resulting in a modification of

the forcing distribution on the piezoelectric elements (figure 4).
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4.3. Variations of the energy harvesting efficiency

In the following, the impact of the different parameters on the harvesting efficiency is
presented.

4.3.1. Effect of the tuning ratio
The ratio β = cU∞/(gL) measures the relative tuning of the fluid–solid and electric

time scales, τadv = L/U∞ and τRC = c/g, respectively. All other parameters being
fixed, it is observed that the harvested energy efficiency reaches a maximum when
βω = O(1), where ω is the non-dimensional flapping frequency of the flag (figure 5).

The existence of this maximum comes as no surprise: when β ≪ 1 and β ≫ 1,
the resistive element acts as a short circuit or open circuit, respectively. In both
cases, no energy is dissipated and η = 0. βω = O(1) corresponds to a forcing of
the RC output circuit at its characteristic time scale, which is expected to result in
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(b,d) M∗ = 10. For both cases, α = 0.5. The black dashed line corresponds to the instability
threshold U∗

c , below which η = A = 0.

maximum energy dissipation in the resistive element. The forcing frequency, however,
is not a property of the fluid–solid system only, but is instead the result of the
nonlinear coupling between the fluid–solid system and the electric output through
the piezoelectric material (figure 5). Similarly, the flapping amplitude is significantly
modified when β is varied: in particular, for M∗ = 1 (figure 5c), a sharp drop in the
flapping amplitude is observed as β is increased.

This result is also confirmed in figures 6 and 7. For each value of U∗ an optimal
tuning ratio can be determined, and the optimal β is a decreasing function of U∗

(figure 6b). This is consistent with the observed increase in flapping frequency ω with
U∗ (figure 7) and the criterion βω = O(1) for optimal energy harvesting.

4.3.2. Effect of the flow velocity
Previous experimental results on the dynamics of flexible flags have established that

the flapping amplitude is in general an increasing function of the non-dimensional
velocity U∗ above the instability threshold (Shelley, Vandenberghe & Zhang 2005;
Eloy et al. 2008, 2012), before saturation of this flapping amplitude is reached.
For a given flapping mode shape and frequency, the harvested power P varies
quadratically with the amplitude A, and therefore it is expected that raising U∗

will lead to an increase in the system’s efficiency. This is confirmed partially in
figure 6: when a given flapping mode remains dominant, η is indeed an increasing
function of U∗, mainly due to the associated increase in flapping amplitude. However,
when a mode switching event occurs as described in § 4.2, a sudden decrease in
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FIGURE 7. Evolution with U∗ of the limit-cycle dominant frequency ω (black star) for
M∗ = 10, α = 0.5, and (a) β = 0.03, (b) β = 0.31. In each case, the frequencies of the
different linear modes are shown: light dotted lines correspond to stable modes and thick grey
lines correspond to unstable modes. In each figure, from left to right, unstable frequencies
correspond to flapping modes of increasing order and decreasing characteristic wavelength.

efficiency is observed, mainly associated with a reduction in the flapping frequency
(figure 7).

Figure 7 shows that the nonlinear flapping frequency is very close to the frequency
of one of the unstable linear modes of the piezoelectric flag. A mode switching event,
as U∗ is increased, consists of a transition from one linearly unstable mode to another
with lower frequency. A study of the associated linear growth rate, however, does not
show any coincidence of such event with a change in the most unstable linear mode,
and this mode switching event is therefore the result of a purely nonlinear mechanism.
Figure 6 shows that such mode switching events take place at lower values of U∗ for
lighter flags (large M∗) while for M∗ . 1, no such event is detected below U∗ = 20.

This mode selection mechanism is also observed for a flapping flag without any
piezoelectric coupling (α = 0). Regardless of its origin, however, its importance is
essential for the performance of the energy harvester: as long as the same nonlinear
flapping mode can be maintained, the efficiency of the system increases with U∗ and
the occurrence of a mode switching event results in an important performance loss for
the device. A better understanding of this phenomenon and, in particular, of the impact
of the piezoelectric coupling on the transitions, is therefore required and could lead to
significant improvements in the harvesting efficiency by constraining the system to a
more efficient flapping.

4.3.3. Effect of the mass ratio

The linear analysis of Doaré & Michelin (2011) identified significant differences in
the performance of lighter (large M∗) or heavier flags (small M∗), as measured by the
energy transfer from the structure to the output circuit. Higher performance at large
M∗ was associated with the destabilization by damping of negative energy waves.

A similar result is observed here in nonlinear simulations for the harvesting
efficiency η (figures 8 and 9): harvesting efficiencies up to 10–12 % can be achieved
for M∗ = 20 and U∗ 6 20, while the optimal value of η is less than 1 % below
M∗ = 1.
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FIGURE 9. (Colour online) Harvesting efficiency obtained for the optimal tuning β as a
function of the mass ratio M∗ and non-dimensional velocity U∗ for α = 0.5. For each value
of M∗ and U∗, β is chosen so as to maximize the harvesting efficiency. The black dashed line
shows the minimum of the instability threshold over all possible values of β, below which
η = 0 for all β.

Comparing figures 8(a) and 8(b), the optimal M∗ appears to be closely related to the
tuning parameter β, again emphasizing the importance of the synchronization of the
fluid–solid and electric systems: for small β, regions of greater M∗ will be optimal as
they correspond to larger flapping frequencies, while heavier flags (smaller M∗) will be
optimal for larger values of β.

Finally, figure 9 shows the optimal-tuning efficiency as a function of (M∗,U∗). Up
to 12 % of the kinetic energy flux can be harvested for the largest value of M∗ and
U∗ considered. However, it is also important to emphasize that this parameter region
corresponds to closely spaced mode switching events, making the efficiency of the
system quite sensitive to fluctuations in the flow velocity.
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4.3.4. Effect of the piezoelectric coupling

The coupling coefficient α is a measure of the intensity of the fluid–solid and

electric systems’ forcing on each other, and as such is clearly expected to impact

the amount of energy transferred to the output load. Figure 10 shows the evolution

of A and η when α is increased. For small coupling α ≪ 1, the flapping dynamics

is only marginally modified and the amplitude of the charge transfer q and electric

potential v increase linearly with α as seen in (2.16). As a result, Q and η initially

increase quadratically with α (see inset in figure 10). However, when α is increased

further the feedback piezoelectric coupling modifies the flapping dynamics, resulting

in a linear decrease in flapping amplitude and harvesting efficiency and, eventually,

the restabilization of the system. One can therefore identify an optimal value of the

coupling coefficient, in the same way that an optimal damping was determined for

maximum energy dissipation in Singh et al. (2012a,b). The value of the optimal

coefficient αc clearly depends on the other system parameters, and will be greater

when the flag is far from its stability threshold before piezoelectric coupling is

introduced, or when destabilization by damping occurs as for larger M∗.

Achieving the optimal α, however, is not necessarily possible in practice: α is

a characteristic of the material’s electric and mechanical properties and is of order

α ≈ 0.3 for typical piezoelectric materials such as PZT and even lower for PVDF

(Doaré & Michelin 2011). Except in the vicinity of the instability threshold, the

optimal α leading to maximum energy efficiency is expected to be greater than

this value, suggesting that an optimization of the piezoelectric flag design or future

technical improvements in the properties of available piezoelectric materials can

potentially increase the achievable values of α and lead to significant efficiency gains.
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5. Discussion and perspectives

The present study focused on the fully coupled dynamics of a classical fluid–solid
system, a flexible plate in axial flow, and a simple resistive circuit coupled through
piezoelectric patches attached to the surface of the plate and converting the plate’s
bending deformation into an electric current. In the limit of continuous coverage by
infinitesimal patches, the energy harvesting efficiency was determined as a function
of the different system parameters, namely the inertia ratio, the non-dimensional
flow velocity, the coupling coefficient and the tuning ratio. For realistic coupling
coefficients, as much as 10 % of the kinetic energy flux can be transmitted to the
output circuit, but this efficiency was found to be highly sensitive to several important
parameters, in particular the coupling coefficient and the flow velocity.

This study confirms the results by Doaré & Michelin (2011) on the impact of
destabilization by damping and on the solid–electric energy transfers: in nonlinear
saturated regimes, those parameter regions do indeed correspond to maximum energy
harvesting efficiency. The critical role played by the tuning ratio is also confirmed:
maximum energy transfers are obtained when the output circuit characteristic time
scale is tuned to the flapping frequency. This frequency is itself determined through
the nonlinear coupling of the fluid, solid and electric systems, and modifications in
the flapping frequency associated with a switch in the flapping mode directly impact
the efficiency of the system and its robustness to fluctuations in flow velocity, for
example. Controlling the flapping mode selection is therefore an important challenge
for the improvement of the efficiency of this model energy harvester, and should be
considered in future work.

By coupling the fluid, solid and electric systems in a nonlinear model and by using
an explicit description of the coupling mechanism and output circuit, the present
approach provides some important insight into the nature and importance of the
feedback of energy harvesting on the solid dynamics, as illustrated by the modification
of the flapping amplitude and frequency, for example. Even though the simplest
possible circuit (a purely resistive element) was used here, the impact of the tuning
ratio β on the efficiency suggests that significant efficiency gains should be expected
via careful design of the output circuit, using more complex and possibly active
circuits, as well as state-of-the-art power electronics techniques such as synchronized
switching techniques (Lefeuvre et al. 2006).
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