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We study the thickness hd of the liquid film left on a wet surface after scraping it
with an elastic wiper (length L, rigidity B) moved at a velocity V . The scraper is
clamped vertically at a given distance above the substrate, and hd is maximal when
the tip of the scraper is just tangent to the surface. We show experimentally and

theoretically that this maximum thickness is hmax ≃ 0.33L (ηVL2/B)
3/4

, where η is the
liquid viscosity. The deposition law is found to be sensitive to the shape of the wiper:
the film thickness can also be tuned by using wipers with a permanent curvature, and
varying this curvature.

Key words: interfacial flows (free surface), low-Reynolds-number flows, thin films

1. Introduction

Scraping a fluid from a solid surface is a common situation in everyday life and in
industrial processes, which is performed using a large variety of tools, from rigid paint
scrapers to rubber squeegees. It is important to realize that wipers always deposit a
wetting liquid film (of thickness hd) behind them, and as such, scraping and coating
are two faces of the same phenomenon.

On the one hand, hd needs to be minimized in cleaning applications (e.g. car wipers
or floor squeegees), in order to decrease the drying time and to impose strong shearing
stresses to remove dust particles. On the other hand, some coating processes work by
removing an excess of liquid with a flexible blade (Kistler & Schweizer 1997), and
require precise control of the deposited film. For example, so-called knife or blade
coatings have become the standard method for paper coating. In these set-ups, the
paper is often horizontal and pre-coated with a large amount of aqueous solution. The
excess fluid is then scraped off when the surface is run at high speed (1–20 m s−1)

under a metering steel blade (100–500 µm thick), leaving a film of thickness in the
1–10 µm range. The scraper is held against the surface at an angle between 10 and 60◦,
with a fixed force that controls the coating. This provides an important advantage of
the method: it allows a prescribed coating thickness to be maintained while increasing
the speed of the process. As reported by Eklund (1984), due to the elasticity of the
knife, the force–thickness relationship exhibits a complex behaviour: it qualitatively
changes with the angle of the scraper, and can exhibit non-monotonic behaviours.

One of the first studies of these systems was that of Taylor (1962), who calculated
analytically the viscous flow in a corner of arbitrary angle θ , representing the flow
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under a rigid spatula moving at a constant velocity V parallel to a planar substrate.
A key feature of this calculation is the divergence of hydrodynamic stresses where
the scraper and the surface meet, which explains why a small quantity of liquid is
always left on the surface. If a rigid scraper is used to dry a surface, it must be
held almost vertically with a lot of force in order to minimize hd. However, such a
device is impractical, since it does not conform to the surface to be cleaned. Real
wipers are most commonly flexible, and bent against the substrate: elastic forces
cannot be neglected, hydrodynamic forces deform the scraper and Taylor’s model is
not applicable.

Given the practical importance of blade coating, most previous studies focused
on the interplay between elastic and hydrodynamic forces. In the simplest approach,
the flow under the blade is calculated in the lubrication approximation and coupled
to the elasticity of the scraper, and the resulting equations are solved numerically.
Other phenomena have also been included in the calculations: capillary effects at the
tip of the scraper, deformability of the substrate, non-Newtonian behaviour of the
coating solution, erosion of the blades, etc. (Sullivan & Middleman 1986; Pranckh &
Scriven 1990; Corvolan & Saita 1995). More recently, Iliopoulos & Scriven (2005)
went one step further and removed the lubrication assumption. Despite the number of
phenomena at play in ‘real’ processes, these models compare favourably with available
data and recover in particular the non-monotonic behaviour reported by Eklund (1984).

Following another path, Saita (1989) proposed a simplified model, where the viscous
stresses deforming the scraper are calculated as if the latter were straight. Considering
two limit cases, he proposed an implicit expression for lower and upper limits of the
coating thickness. Due to this assumption, these limits are only valid in the regimes
where the scraper is almost straight.

Our goal is to gain some deeper understanding of these phenomena by taking
a slightly different approach and simplifying the scraping or coating process. The
experimental set-up is presented in § 2, followed by experimental results in § 3 and the
model in § 4. Possibilities for tuning the deposition law are finally discussed in § 5.

2. Experimental set-up and protocol

Our set-up is sketched in figure 1(a). Before each experiment, the glass surface
(s) to be coated (generally 30 cm long and 3 cm wide) is cleaned, dried, weighed,
and pre-coated with a large excess of silicone oil (o) (a few millimetres thick).
Silicone oils totally wet the surfaces and their viscosity η can be varied over a large
interval (here between 0.1 and 17.4 Pa s), for fixed surface tension γ = 0.02 N m−1

and density ρ = 960 kg m−3. The solid is then drawn at a constant speed V (0.7
to 19.1 mm s−1) by a motor-driven stage, under the elastic scraper (w) of length L

(between 2 and 8 cm) clamped vertically at an adjustable height y0 (0 < y0 < L) above
the glass. The wipers of length L, width b and thickness t are cut from plastic sheets
with t = 260 µm or t = 380 µm. We determined their rigidities B by measuring their
deflection under their own weight when clamped horizontally (as described thoroughly
in Mahadevan & Keller 1999). The values found, 4.2 and 14.3 mN m respectively,
are consistent (within 10 %) with the theoretical expression B = Et3/12(1 − ν2), with
a Poisson ratio of ν = 0.38 and Young’s modulus of E = 2.6 × 109 Pa, typical for
plastic materials such as Mylar. Concerning the width b, these elastic sheets are a few
millimetres wider than the coated glass surface to ensure rejection of the excess liquid.

The scraper expels most of the oil initially present, leaving a liquid film of thickness
hd ranging from 10 µm to 1 mm. As shown in figure 2, the deposited quantity of
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FIGURE 1. (a) Experimental set-up: a horizontal glass surface (s) coated with an excess of
silicone oil (o) is run at a constant speed V under a flexible wiper (w). The scraper, which is
clamped vertically at a distance y0 from the glass, thins the oil film to a thickness hd, which
is measured by reflectometry via a probe (p) and/or by weighing the coated substrate. (b)
Characteristics of the elastic sheet.

liquid does not depend on the initial thickness h0, provided that h0 is several times
thicker than the final coat. Depending on its expected value, hd is measured by
reflectometry and/or by weighing. As for reflectometry, a beam of white light is
shone via an optical fibre on the coated substrate, and the reflected light is collected.
Its spectrum presents oscillations (due to the interference between the light reflected
on the surface of the film, and the light reflecting off the substrate), which are
fitted to determine the film thickness. This method allows a local (0.5 mm lateral
resolution) and precise (within 5 %) measure of thicknesses, and it works between
1 and 70 µm. Using this method, we scanned a few films to check the uniformity
of the coating (figure 3a), whose thickness was found to be constant within a few
per cent. When using this technique, we sampled the film thickness in typically five
locations distributed on the film surface: median values are plotted on the graphs, with
error bars spanning the entire recorded range. For thicker films (up to 1 mm), we first
removed oil spills stuck on the underside of the glass and the first few centimetres
of the film. We then weighed the surface to determine the mass of deposited oil,
and hence its average thickness. Figure 3(b) shows that the two techniques agree in
the 30–70 µm range, but weighing produces inconsistent measures for thinner films
(probably due to incomplete removal of oil from the glass), restricting this technique
to thicker films.

3. Experimental results

One novelty of this kind of coating arises from the possibility of varying the
pressure on the film, by manipulating the scraper’s rigidity and height. We show in
figure 4 how hd depends on the scraper’s clamping height y0. In our set-up, y0 is a
complex parameter since it controls both the loading of the blade and its shape: as
sketched in the figure, the scraper goes from almost straight and vertical when y0 ∼ L

to highly bent when y0 ≪ L. Starting from a constrained wiper, hd first rises with y0 as
expected, since the force exerted by the scraper then decreases. It reaches a maximum
of hmax (0.5 mm for these particular settings), which corresponds to a scraper whose
tip is just tangent to the surface. Increasing y0 even further results in a sharp decrease
of the coating thickness. This somewhat counter-intuitive result (the scraper is less
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FIGURE 2. For a given set of parameters (B = 4.2 mN m, L = 4 cm, y0 = 18.4 mm,
η = 0.98 Pa s, V = 8.2 mm s−1), the film thickness hd after scraping is measured as a function
of the oil thickness h0 initially on the surface. First hd increases with h0, showing that the
coating thickness can be limited by the quantity of liquid initially available. Once h0 is
approximately 5 times larger than the final coating, the curve reaches a plateau and hd no
longer depends on the initial quantity of oil. All the measurements presented thereafter are
performed in this plateau regime.
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FIGURE 3. (a) Thickness hd at the centre line of a coated surface along its length x. In
this graph, the scraper moved from right to left. This longitudinal profile was obtained by
moving the substrate under the interferometer, and taking measurements at regular intervals
(1 s). For this particular experiment, B = 7.4 mN m, L = 8 cm, y0 = 3.7 cm, η = 0.98 Pa s,
V = 8 mm s−1. The liquid film is uniform within measurement accuracy (the round mean
square of the profile is 4 %). (b) hd for a given set of parameters (B = 4.2 mN m, L = 4 cm,
y0 = 18.4 mm, η = 0.98 Pa s) as a function of the scraping velocity V , measured by
reflectometry (�) or weighing (©). The two methods agree in the 30–70 µm range, whereas
weighing deviates and becomes unreliable for thinner films.

and less constrained, so it exerts a smaller force on the liquid) arises from the very

different shape of the scraper in this regime, the wiper meeting the surface at a finite

angle that increases with y0. Although our experiment cannot be directly compared to

industrial blade coating apparatus, Eklund (1984) observed a similar non-monotonic

dependence of the coating thickness on blade loading, in some operating regimes.

From a practical standpoint, if the goal is to sweep liquid from a surface, we find that

it is much easier to use an almost vertical scraper and apply little force, which is what

decorators plastering a wall do intuitively when trying to remove an excess of plaster.

Conversely, the deposition of an even (thick) coat of filler to cover a crack is best

performed with the scraper highly bent and tangent to the wall.
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FIGURE 4. Deposited thickness hd as a function of the reduced clamping height y0/L, for
V = 8.2 mm s−1, η = 17.4 Pa s, B = 4.2 mN m and L = 4 cm. Error bars lie within the
symbols. As sketched, small values of y0 correspond to highly bent scrapers and thin films. As
y0 increases, the scraper straightens out and the film thickens by approximately one order of
magnitude, before thinning by the same amount. The maximum thickness hmax is obtained for
a wiper just tangent to the surface (middle sketch). In the decreasing region of the graph the
wiper meets the surface with a non-zero angle. The rest of the study focuses on the maximum
thickness hmax , fixing y0 = 0.46 L (dashed lines).

The coating law in figure 4 qualitatively holds over the whole range of parameters
that we explored. The coating thickness, however, obviously depends on L, B, η and V .
In order to characterize these variations, we focus in the rest of this study on the value
of the maximum film thickness hmax , and adjust for each experiment the scraper’s
height to make its tip tangent to the surface: classical thin beam elasticity shows that
this imposes y0 ≃ 0.46L (Landau, Lifshitz & Kosevich 1990), in agreement with the
location of the maximum in figure 4. Although the clamping height of the scraper is
set prior to the experiments, its shape is very slightly affected by the deposition of the
liquid film, since hmax ≪ y0.

Figure 5 summarizes our experimental data. Each curve corresponds to a particular
scraper (i.e. given values of L and B), and the deposited thickness hmax was measured
when spanning the range of coating velocities V , and for three different viscosities:
η = 0.1 Pa s (squares), η = 0.98 Pa s (circles), η = 17.4 Pa s (triangles). The different
sets line up when plotted as a function of ηV , emphasizing that viscous forces
are responsible for entrainment. The three curves follow a power law of exponents
0.83 ± 0.07, 0.88 ± 0.04 and 0.75 ± 0.06 (bottom to top). The lowest curve (black
symbols) is for a relatively stiff and short scraper (B = 14.3 mN m, L = 4 cm
and accordingly y0 = 1.84 cm). Using a more flexible scraper of the same length
(grey symbols, B = 4.2 mN m) results in a thicker coating. Using a slightly longer
scraper (empty symbols, L = 6 cm) also increases hmax . Both these behaviours can be
explained qualitatively if considering that elastic forces oppose entrainment. Indeed,
decreasing B lowers the elastic stresses, thus increasing hmax . It is likely that when the
length L is increased the curvature is reduced (the scraper is less constrained since y0

increases with L), again lowering elastic forces.
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FIGURE 5. Maximum deposited thickness hmax for three different scrapers. Each curve
presents data obtained by varying the coating velocity (between 0.7 and 19.1 mm s−1), for
three different viscosities: η = 0.1 Pa s (squares), η = 0.98 Pa s (circles) and η = 17.4 Pa s
(triangles). The three sets collapse if hmax is plotted as a function of ηV . Black symbols
correspond to a stiff and short scraper (B = 14.3 mN m, L = 4 cm). The deposited thickness
increases for a more flexible one (grey symbols, B = 4.2 mN m and L = 4 cm), or for
a longer one (empty symbols, B = 4.2 mN m and L = 6 cm). The experimental curves
follow power laws (solid lines) with fitted exponents 0.83 ± 0.07, 0.88 ± 0.04 and
0.75 ± 0.06.

4. Model

4.1. Scaling arguments for the value of hmax

When the tip of the scraper is tangent to the surface (hd = hmax), our experiment
has some similarities to dip-coating, one of the simplest coating processes. In dip-
coating, the surface to be covered is withdrawn from a liquid bath at a constant
velocity V . When a Newtonian fluid is used, Landau & Levich (1942) and Derjaguin
(1943) (LLD) showed that the thickness hd of the film scales like the capillary
length a =

√
γ /ρg and increases with the capillary number Ca = ηV/γ , as Ca2/3.

This behaviour results from a balance between viscous and capillary forces, the
latter arising from the dynamic deformation of the meniscus. In this sense, the
meniscus acts as a ‘liquid wiper’, so that deposition can be tuned by modifying
its properties. This can be done chemically by adding surfactants (Ramdane &
Quere 1997; Shen et al. 2002), or geometrically by constraining it inside a tube
(Bretherton 1961). In both these examples, the power law in capillary number is
generally not affected by the meniscus modifications, which mainly impact the
numerical factor in the law. Our experiment can be viewed as a variation on
this celebrated study where the liquid meniscus has been replaced by an elastic
one.

Throughout our range of parameters, the Reynolds number based on film thickness
is much smaller than unity (Re = ρVhmax/η = 10−6–10−2), justifying the fact that
viscous forces dominate inertia. In addition, the capillary number Ca = ηV/γ is large
(10–104), suggesting that surface tension may be neglected. Film thickness thus results
from a balance between viscous and elastic forces. In the absence of flow, the tip
of the scraper is tangent to the surface to be coated. Since its curvature at the tip
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FIGURE 6. In the absence of flow, the shape of the wiper is determined by elasticity and
geometrical constraints. In particular, as its end is free, it approaches the surface with zero
curvature. When liquid is entrained, it lifts the scraper. Hydrodynamic forces are negligible if
the height of the scraper is greater than hmax , which determines the length l of the deformed
region.

must vanish to satisfy the elastic boundary condition, we deduce that its shape close
to the contact goes as y ∼ −x3/L2. We discuss the coating in the limit of ‘small’
velocities where the shape of the elastic sheet is weakly affected (hmax ≪ L). In this
limit, the fluid is forced in the gap under the wiper, which gets locally deformed by
hydrodynamic forces, as sketched in figure 6. The gap at the tip is of order hmax ,
and this allows us to estimate the horizontal extent l of the region of deformation,
i.e. hmax ∼ l3/L2, or

l ∼ (hmaxL
2)

1/3
. (4.1)

This deformation of the elastic sheet results from the balance between the elastic
force fel and the viscous force fh ∼ ηV/h2

max . Since the curvature of the scraper is of
order 1/L, it exerts a total force per unit length of order B/L2, which generates an
‘elastic’ pressure gradient fel ∼ B/l2L2. Balancing fh and fel and using (4.1) yields a
prediction for the deposited film thickness:

hmax ∼ L5/2

(

ηV

B

)3/4

∼ LCe3/4. (4.2)

In this expression, the number Ce ∼ ηVL2/B compares viscous and elastic forces. Ce
plays the role of the capillary number in the LLD theory, replacing the surface tension
by the elastic energy per unit area B/L2. The exponent is also different (3/4 instead
of 2/3), which arises from the specific boundary condition related to the presence
of a bent elastic solid. Equation (4.2) captures the different trends found in figure 5,
and particularly the observed scaling law in ηV . To address the other variations, in
figure 7 we have plotted hmax as a function of the thickness predicted by (4.2), for the
entire set of data. Thickness hmax is indeed proportional to LCe3/4 with a numerical
coefficient of 0.10 ± 0.05. A slight deviation is observed when reaching millimetric
thicknesses. This might be an artifact due to the difficulty of dealing with such thick
films on a narrow surface, or a sign that our assumption of small disturbance no longer
holds. Indeed, the model assumes hmax ≪ L; from (4.2) this implies Ce3/4 ≪ 1, which
becomes questionable for the highest Ce explored.
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FIGURE 7. Comparison between the measured thickness hmax and (4.2). The line has a slope
1 and the fit allows us to determine the numerical coefficient 0.10 ± 0.05 (solid line). Data
correspond to three viscosities (η = 0.1, 0.98 and 17.4 Pa s), two bending rigidities (B = 4.2
and 14.3 mN m), several scraper lengths (L = 2, 4, 6 and 8 cm) and velocities V between 0.7
and 19 mm s−1, so that four orders of magnitude could be explored.

4.2. Theory for the maximum coating thickness hmax

We now consider the shape of the scraper in greater depth. We separate the
undeformed region (‘static scraper’), whose shape is known from classical elastic
theory, from the deformed region (‘dynamic scraper’), whose shape is given by a
balance between elastic and hydrodynamic forces. We further assume that the dynamic
scraper lies almost flat (hx ≪ 1 in the notation of figure 6), and use the lubrication
approximation. The fluid velocity is parallel to the coated surface, and it only varies
in the vertical direction: v = v(y)ex. As a result, the pressure is independent of y and
can be deduced from the continuity of stress at the scraper’s surface. In the small
slope limit, the pressure just under the blade is p = patm + B hxxxx (Hosoi & Mahadevan
2004). The Stokes equation relates v to the scraper profile h(x): ηvyy = px = B hxxxxx. It
is integrated with no-slip conditions at the moving coated surface (v(0) = V) and on
the wiper (v(h) = 0), yielding the liquid flux (per unit width). The flux is evaluated in
the deposited film, where it is q = Vhmax . Hence we obtain

q = −B hxxxxx

h3

12η
+

Vh

2
= Vhmax . (4.3)

Using hmax to scale the thickness (Y = h/hmax) and l = hmax/ (6ηVh2
max/B)

1/5
to scale

x (X = x/l), we get a non-dimensional equation for the profile of the dynamic scraper:

Y (5) =
Y − 2

Y3
. (4.4)

Boundary conditions are needed to solve (4.4). The dynamic scraper is connected
to the entrained film and thus becomes horizontal for x → ∞, which gives
Y(x → ∞) = 2. This value of 2 (instead of the 1 in the LLD problem) comes from
the difference in boundary conditions under the scraper (no slip on the top boundary
yielding a Poiseuille flow) and in the film (no tangential stress yielding a plug flow).
To take this boundary condition into account in the numerical integration, we look for
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FIGURE 8. Profiles of the dynamic scraper, obtained from integration of (4.4) for different
values of ǫ0: 0.0012 (solid lines), 0.0017 (dashed) and 0.0007 (dotted). X and Y are
dimensionless coordinates defined in the text. Y diverges for decreasing X, and YXXXX

converges towards a constant value controlled by ǫ0.

an asymptotic solution of (4.4) of the form Y = 2 + ǫ, with ǫ ≪ 1. At first order, the
general solution is given by ǫ(x) = ai eriX , where ri are the fifth roots of 1. Requiring
the solution to be real and to vanish for X → ∞ cancels four of the five ai coefficients.
Thus ǫ(X) depends only on one free parameter ǫ0, and may be written as

ǫ(X) = ǫ0e−(cosπ/5)/(81/5)X cos

(

−
sinπ/5

81/5
X

)

. (4.5)

Figure 8 shows different profiles obtained from integration of (4.4) (with initial
conditions computed from expression (4.5)), for different values of ǫ0. In the limit
X → −∞, Y diverges and YXXXX tends towards a constant (which depends on ǫ0), as
expected from (4.4). The value of this constant is selected from the matching with
the static scraper, which is imposed to analyse its shape. It is given by the elastica
equation (Landau et al. 1990), and can be written in curvilinear coordinates (see
figure 6 for notation):

d2θ

ds2
= −

fel

B
sin θ. (4.6)

Equation (4.6) is solved with the usual conditions: θ(s = 0) = 0 (vertical clamping)
and θs(s = L) = 0 (free end). Here fel is the force exerted by the scraper’s tip on the
surface, and it is not known a priori: it is a free parameter chosen to satisfy the
geometric constraint given by y0. In the configuration of maximum coating thickness
(y0 = 0.46 L), we have fel = 3.43 B/L2: we recover the scaling used in § 4.1. Equation
(4.6) reduces close to the coated surface to hxxx = −fel/B and hxxxx = 0, providing
a matching constraint with the dynamic scraper on the third derivative. Although it
arises from mathematical considerations, this constraint has a clear physical meaning:
in the small slope limit, hxxx(x0) is proportional to the force applied on the scraper
for x > x0. The matching condition simply expresses that the hydrodynamic force
under the deformed region balances the force exerted by the scraper. This condition
is met on the ‘left side’ of the dynamic meniscus (that is, for x → −∞) for one
particular value of ǫ0 (solid lines in figure 8), yielding YXXX(x → −∞) = −0.478,
or in dimensional units hxxx(x → −∞) = −0.478hmax/l3. Equating this quantity with
−3.43 B/L3 gives the deposition law

hmax ≃ 0.33 LCe3/4, (4.7)



Flexible scraping of viscous fluids 433

0

30

60

10 20

FIGURE 9. Deposited thickness hmax as a function of the scraper’s width b, for a typical set of
parameters (η = 0.98 Pa s, V = 19 mm s−1, B = 4.2 mN m and L = 2 cm) and various scraper
widths b. First hd increases with b, then reaches a value close to the prediction of the model
(4.7) shown by the dashed line.

where Ce = ηVL2/B must be smaller than unity to satisfy the assumptions made in this
calculation.

4.3. Comparison with experimental data

Equation (4.7) complies with the previous scaling arguments (4.2). It also provides
a numerical coefficient for the law, which is found to be of the correct order
of magnitude, yet significantly bigger than measured (0.33 instead of 0.10). The
discrepancy may come from different factors, but the dominant cause seems to be
related to the assumption of invariance in the transverse direction z. This is certainly
true when the width b of the experiment tends to infinity. When b is finite, though,
liquid escaping from the side of the scraper may decrease the deposited thickness. This
was tested by performing coating experiments with different scraper widths ranging
from 2 to 20 cm. Figure 9 shows that the deposited thickness first increases with b

until b ∼ 12 cm. The coating experiments previously shown were all performed with
b = 3 cm, and thus lie in this varying regime of important finite-width effects. For
b > 12 cm, however, hd reaches an asymptote close to the value calculated by our
theory ((4.7), dashed line in graph).

The finite width of the scraper should also affect the coating law. Indeed, letting
P denote the typical pressure under the scraper, the lateral flux of liquid scales as
Ph3

max l/ηb, whereas the longitudinal flux scales as Ph3
maxb/lη. For a given scraper, l

increases with the deposited thickness, and deviations from the two-dimensional case
should increase as well. This effect is subtle and seems to lie within experimental
error; the slight concavity of the deposition curve (figure 5) might reflect this idea.

5. Tuning the deposition law

Our model suggests that the deposited thickness depends on the shape of the scraper
near its tip, because this determines the length l of the deformed region over which the
elastic force is distributed. In the present work, the ‘elastic meniscus’ has a vanishing
curvature, but would we expect different coating laws if the scraper were curved? To
answer this question, we ran a series of experiments using scrapers with a finite radius
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FIGURE 10. Deposited thickness hd, with scrapers having a spontaneous radius of curvature
R = 1.4 cm (circles) and R = 2.7 cm (squares). The elastic force fel exerted by the scraper
is the same for every experiment. (a) Solid lines represent power law fits, of exponents
0.88 ± 0.15 and 0.94 ± 0.11. The cross symbols and dashed lines are for a straight scraper and
serve as a reference. (b) Data for curved scrapers collapse when plotted in dimensionless form
as suggested by (5.1). The solid line is a linear fit, with a coefficient 0.07.

of curvature. These were cut from a flat sheet of 250 µm thick Lexan, rolled inside a
metallic pipe of centimetric diameter, heated to 140 ◦C for 3 h, and then cooled. Once
removed, the scrapers exhibit a permanent radius of curvature R (1.4 and 2.7 cm for
the two wipers tested). For ease of comparison with previous experiments, the height
of clamping was adjusted manually for each scraper to match the elastic force exerted
by a given scraper in the tangent configuration discussed above (32 g equivalent for
L = 4 cm, B = 4.2 mN m and b = 3 cm).

The resulting coating curves, displayed in figure 10, are power laws in ηV , with
exponents of 0.88 ± 0.15 and 0.94 ± 0.11, differing from the previous scaling (3/4 in
(4.7)). Moreover, the deposited thickness increases with the radius of curvature of the
scraper. Scaling arguments similar to those leading to prediction (4.2) can explain why.
The only difference is the shape of the scraper near its tip, now of constant curvature
1/R, which modifies the evaluation of l. We now have hd ∼ l2/R, or l ∼

√
hdR. This

yields a new scaling for the deposited thickness:

hd ∼ R
ηV

fel

. (5.1)

Equation (5.1) is compatible with the ηV dependence observed in figure 10(a). The
governing length scale of the problem is now the radius of curvature R instead of the
length of the scraper, which explains why hd increases with R. The data collapse when
plotted in the dimensionless form suggested by (5.1) (see figure 10b), confirming the
robustness of the scaling arguments developed here.

6. Conclusions and perspectives

We presented a set-up to study the scraping of viscous fluids by an elastic wiper,
and to measure the thickness of the residual film. In the regime we explored, coating
is controlled by a balance between viscous and elastic forces, so that it depends on the
liquid viscosity, the deposition speed and the length, rigidity, shape and confinement of
the scraper.

The wiper shape and the force it exerts on the liquid film are related and controlled
by the clamping height. We found experimentally that the deposited thickness is
maximized when the tip of the scraper is tangent to the solid, and we focused on
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understanding what parameters control this maximum value. Using scaling arguments,
we explained why it varies like LCe3/4 (where Ce = ηVL2/B compares viscous and
elastic forces), and calculated the coefficient of this power law.

As a result of this analysis, the coating thickness is expected to depend on the shape
of the scraper. It can thus be modified by using a blade with a given curvature. In this
case, similar scaling arguments allowed us to predict a novel coating law, which was
checked experimentally.

Future efforts will aim at understanding the dependence of the deposited thickness
on the clamping height of the scraper (figure 4). The theory developed here for
hmax will be adapted to explain the configuration where the scraper is closer to the
surface. The opposite regime, where the scraper meets the surface at an angle, is
more mysterious. As showed by Taylor (1962), the existence of this finite angle can
have a dramatic effect on the coating thickness, which we shall now try to check
experimentally.

Lastly, the present study leads us to consider a related and even more common
coating situation, which seems to present new challenges: painting with a brush. One
might think that the situation is similar to blade coating, and that the thickness of
paint left on the surface is controlled by the flexibility of the bristles. A first difference
is the importance of capillarity, which holds the paint in the brush. Moreover, this
reservoir of paint has a limited volume, and the deposited thickness does vary with its
depletion.
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