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We propose a model for the propulsion of Leidenfrost solids on ratchets based on viscous drag due to the
flow of evaporating vapor. The model assumes pressure-driven flow described by the Navier-Stokes equations
and is mainly studied in lubrication approximation. A scaling expression is derived for the dependence of the
propulsive force on geometric parameters of the ratchet surface and properties of the sublimating solid. We show
that the model results as well as the scaling law compare favorably with experiments and are able to reproduce
the experimentally observed scaling with the size of the solid.
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The propulsion mechanism of self-propelling Leidenfrost
drops on ratchets has been debated since the first publication
of the phenomenon by Linke et al. in 2006 [1]. A simpler
system that leaves out many of the complications due to the
deformable nature of the drops [2–5] are Leidenfrost solids.
Similar to drops, a platelet of dry ice levitating on a cushion
of its own vapor over a hot ratchet surface shows directed
motion [6]. Even for such a simplified system a debate is
going on about what the physical mechanism responsible for
propulsion could be. It has been suggested that the Leidenfrost
solid is driven by a “rocket effect” originating from the recoil of
the vapor produced from sublimation [6]. On the other hand, an
attempt to explain the propulsion via thermal creep flow due
to rarefaction effects in the vapor phase has been published
[7]. Finally, a viscous mechanism due to pressure-driven flow
has been suggested [1,3,8]. As sublimated vapor is drained
sideways along the grooves, perpendicular to the movement
of the Leidenfrost solid, it is additionally directed down the
slope of the ratchet towards the deep sections of the groove,
dragging the levitated solid along [8].

In this Rapid Communication, we corroborate the picture
of pressure-driven viscous flow as the main propulsion
mechanism for typical scenarios studied in experiments. Our
work is based on a combination of model calculations and ex-
perimental studies. We propose a model based on a continuum
description for the velocity, pressure, and temperature fields in
the gap between the hot surface and the dry ice. The propulsive
force is obtained from the viscous drag on the surface of
the Leidenfrost solid, and we develop a scaling expression
reflecting how this force depends on geometric parameters of
the ratchet surface and properties of the sublimating solid. As
such, it supersedes the scaling analysis given in [8] by taking
into account the three-dimensional (3D) character of the vapor
flow, allowing us to understand the series of experiments also
presented here.
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For our model we assume that the gas velocity ui and
pressure p as well as the temperature distribution T between
the hot surface and the platelet of dry ice are governed by the
steady-state incompressible Navier-Stokes equations

ρuj∂jui = ∂j {η(∂iuj + ∂jui) − δijp}, (1)

with ∂iui = 0 and the energy equation

ρcpui∂iT = ∂i(λ∂iT ). (2)

For simplicity we assume the vapor properties to be constant.
In particular we will use a density of ρ = 1.2 kg/m3, a
viscosity η = 22 μPa s, heat capacity cp = 980 J/(kg K) and
thermal conductivity λ = 29 mW/(m K), corresponding to
carbon dioxide at a temperature of 180 ◦C and a pressure of
1 bar.

Further, we assume the no-slip boundary condition at the
surfaces of the ratchet and the dry ice. The sublimation
rate is determined by equating the heat flux normal to the
wall Jq = −λ∂nT with the heat sink due to sublimation,
such that the normal velocity at the ice surface becomes
un = λ∂nT /(ρ �Hsubl), where the subscript n designates the
normal component and �Hsubl = 598 kJ/kg is the latent heat
of sublimation. We assume the ice surface to be at saturation
temperature, Tsubl = −78.6 ◦C, and the ratchet surface to
be at a constant temperature of T0 = 450 ◦C. Despite the
inhomogeneous sublimation, we also consider that the ice
surface remains flat. Since the platelet moves across the
ratchet and hence the surface samples over regions of different
sublimation rate, this assumption should be reasonable.

The main parameters of interest are the average pressure p̄

and shear stress τ ≡ τ̄zx at the ice surface. The first determines
which weight of the ice block can be supported by the
vapor cushion, and the second the viscous propulsion force.
Using the density 1560 kg/m3 of dry ice, the pressure can
be converted into a platelet thickness. From the evaporation
rate it is apparent that the normal velocity scale is governed
by U0 = (λ�T/	)/(ρ�Hsubl), where �T is the temperature
difference between the surfaces and 	 is some length scale of
the order of the gap width between ratchet and ice, see Fig. 1.
Note in particular that the corresponding Reynolds number
Re = ρU0	/η is independent of this length scale. With the
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FIG. 1. (Color online) Sketch of the geometry considered. The
dry ice at temperature Tsubl hovers a distance B above the ratchet
geometry. The ratchet grooves have periodicity L and depth H . In
our modeling we consider a single groove of y extension 2R with
periodicity in the x direction, as well as a disk of radius R, covering
several grooves.

above parameters we get Re ≈ 1. Correspondingly, since the
forces are assumed to be viscous, the relevant scale for the
stresses is 
0 ∼ ηU0/	 ∼ ηλ�T/(	2ρ�Hsubl), containing
all of the material properties of the vapor and the temperature
difference.

To start with, consider only a single groove of width L

and depth H (see Fig. 1). This situation can be thought of
as a platelet that hovers over many grooves, of which one is
studied. An ice block of width 2R is assumed to levitate at
a distance B from the surface. Further, we assume the flow,
pressure, and temperature fields to be periodic in the direction
normal to the groove (x direction). At the sides of the ice block
(y = ±R) the pressure is ambient and the normal derivatives
of temperature and velocities vanish. Since R � L,H,B, the
details of this boundary condition do not strongly affect the
flow inside the groove.

As an example, we consider the parameters R = 5 mm, L =
1 mm, H/L = 0.15 and B = 75 μm. We solve Eqs. (1) and
(2) via finite-element discretization as implemented in COMSOL

MULTIPHYSICS 4.1. The structure of the solution is as follows.
The main pressure gradient is along the groove, underpinning
that the groove itself acts mainly as a drain for the vapor. The
temperature profile and the gradients in pressure normal to the
y direction become essentially independent of y. Figure 2
shows the flow field projected onto the plane normal to the
groove (arrows), at position y = R/2. Again, this distribution
is almost independent of y. The flow field is essentially as
described above: the strong flow along the groove is fed by the
regions of strong sublimation at the narrow gap. The velocity
field is almost parabolic, albeit slightly squeezed in the xz

projection due to the evaporation mass flux at the top wall.
Since a direct computation of the flow below a real-

istically large platelet is beyond our reach, we propose a
simplified model, assuming—in the spirit of a lubrication

FIG. 2. Projected velocity profiles at y = R/2, both xz (top)
and yz velocities (bottom); since uy � ux the arrow scales are not
identical [differing by a factor O(10) at this position]. R = 5 mm,
L = 1 mm, H/L = 0.15, B = 75 μm.

approximation—a parabolic flow profile everywhere, neglect-
ing all inertial terms. Defining the average flow rate in the i

direction (i ∈ {x,y}) by integrating over the height

Qi(x,y) =
∫ h(x,y)

0
dz ui(x,y,z), (3)

where h(x,y) is the local distance between the ratchet and ice
surfaces, the Reynolds (lubrication) equation becomes

∂ip(x,y) = − 12η

h3(x,y)
Qi(x,y). (4)

Mass conservation dictates ∂iQi = un, with a source term due
to sublimation equal to the normal velocity at the ice surface as
defined before. In the spirit of the lubrication approximation
we assume the local temperature gradient to be proportional
to 1/h(x,y). Taking the divergence of the Reynolds equation
then yields

∂i(h
3∂ip) = −12(
0	

2)/h. (5)

We solve Eq. (5) in the case of a single groove, assuming
periodicity [p(x,y) = p(x + L,y)], as well as in the case of
a circular platelet. As the boundary condition at the edge
of the domain �, i.e., the circumference of the platelet, we
assume p|∂� = 0 and neglect any outlet effects beyond that.
For the solution, a finite-element discretization as implemented
in COMSOL MULTIPHYSICS is used. In our approximation, the
wall shear stress is given by τw = − 1

2h∇p.
The lubrication model and the 3D model for a single

groove give similar shear stress distributions at the upper
wall. In both cases a net shear stress is generated driving
the platelet in the positive x direction. To verify the model
predictions, experiments with levitated dry ice platelets have
been performed. A quantity that is directly accessible experi-
mentally is the acceleration and hence the net force on a dry
ice platelet of known mass. The stress simply is this force
divided by πR2. For this, cylinders of dry ice with a diameter
of 2R = 14 ± 0.6 mm and of different heights are placed on a
ratchet heated to 450 ◦C. Subsequently, the propelling force is
measured using the method described in [8] (see Supplemental
Material [9]). The geometry parameters of the ratchet are
L = 1.5 mm and H = 0.25 mm. In Fig. 3 the experimentally
obtained average wall shear stress is plotted vs the platelet
thickness for values between 1 and 10 mm. In the same diagram
the corresponding values obtained with the 3D model for a
single groove and with the lubrication model for both a single
groove and a circular disk are displayed. The model results are
unanimously compatible with a scaling τ̄zx ∼ H 1.7

ice of the shear
stress with the thickness of the platelet, agreeing well with
the experimental data. However, the different models predict
slightly different values for the shear stress at a given thickness.
For the single groove, the lubrication model predicts a slightly
larger shear stress compared to the more complete 3D model.
This is partly due to the neglect of inertial effects and partly
due to the simplified temperature profile used in the lubrication
model. Comparing the lubrication results obtained for a single
groove and the more adequate circular disk, the latter predicts
a larger shear stress. This is due to the fact that for the disk
a portion of the vapor can also escape to the front and back.
Therefore the disk hovers closer to the surface, resulting in
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FIG. 3. (Color online) Average shear stress τ vs thickness of ice.
Experimental data (blue circles), 2D lubrication model (disk: dark
blue diamonds; single groove: red triangles), 3D simulation (single
groove: green squares). The dotted line shows τ ∼ H 1.7

ice . L = 1.5 mm,
H = 0.25 mm, R = 7 mm.

a larger sublimation rate and shear stress τ . This same effect
would also play a role in a more complete 3D model of a
full disk, raising the model results closer to the experimental
data. We conclude that a model based on viscous forces due
to the sublimation mass flux not only gives the correct order
of magnitude for the forces on a Leidenfrost solid but also is
able to reproduce the scaling of the forces with respect to the
height of the platelet.

Based on that, we extend the discussion to scaling with
respect to the geometric parameters of the ratchet. In doing so
we assume a constant thickness of the ice platelet such that it is
supported by an average gas pressure (above ambient pressure)
of p̄ = 100 Pa, which corresponds to a platelet of thickness of
Hice 	 6.4 mm. The Reynolds equation is solved for a circular
platelet, and B is varied till the average pressure is p̄. Figure 4
gives an example for the obtained scaling with tan α = H/L.
Overall, the scaling with geometric parameters is roughly
τ (L,H,R) ∼ L1H 3R−3. A similar scaling is obtained when
considering a single groove in lubrication approximation or
in the 3D model, albeit with slightly different exponents,
varying by about 10%. Note that for large angles the curve
for τ vs tan α = H/L deviates from the scaling function, and
the force increases more rapidly. In this region B becomes
very small, and eventually the pressure below the disk is
unable to support its weight, i.e., touchdown occurs. In our
experiments no movement of the disks was observed when
increasing the angle to tan α 	 0.29, indicating touchdown.
Note that a similar deviation from the scaling law would be
observed for small R for the same reason as for large tan α.

To corroborate the findings of the scaling analysis, we show
in Fig. 5 the mean stress τ measured on a platelet as a function
of its radius, for a height Hice = 5 mm. Corresponding results
obtained in the lubrication approximation for a disk are shown
in the same figure. The stress decreases as the radius increases,
and the dashed line of slope −3 shows a fair agreement with
experiments and model results.

FIG. 4. (Color online) Average shear stress τ for a disk in
lubrication approximation as function of the groove angle; tan α =
H/L is varied at fixed L = 1.5 mm and R = 5 mm. B is chosen such
that the average pressure below the disk becomes p̄ = 100 Pa. The
dotted line shows τ ∼ tan3 α.

It is interesting to understand this behavior (and more
generally the scalings found in this study) based on a simple
intuitive picture. We divide the flow in a single groove into
two parts. First, the vapor flows down the incline (along the x

axis in Fig. 1). In the lubrication approximation, the velocity
of this flow is U1 ∼ (	2/η)(�P1/L) where 	 is a typical
vertical length scale, and �P1 is deduced from mass flux
conservation [see Eq. (5)]: �P1 ∼ ηλ�T L2/(	4ρ�Hsubl).
The �P1 ∼ L2 scaling stems from the quadratic pressure
increase with length in a channel with constant inflow across
permeable walls. Second, the flow escapes laterally (along
the y axis in Fig. 1) with a velocity U2 ∼ (H 2/η)(�P2/R).

FIG. 5. (Color online) Average shear stress τ as a function of
the platelet radius R. A platelet of height Hice = 5 mm and radius
R = 7 mm is considered. Blue circles are experimental results,
red squares are results obtained in the 2D lubrication model for a
disk of corresponding dimensions. The dotted line shows τ ∼ R−3.
L = 1.5 mm, H = 0.25 mm.
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The pressure associated with this flow balances the weight
of the platelet (�P2 ∼ ρicegHice where ρice is the dry ice
density).

The shear stress arises from the “first” flow, so it scales
as ηU1/	. We deduce the length 	 from mass conservation
between the two flows: U1	R ∼ U2	L. Eventually, we get
an expression for τ which is

τ ∼
(

ρ�Hsublg
3ρ3

ice

η�T λ

)1/2
H

3/2
ice LH 3

R3
. (6)

We find that the stress should vary as H 1.5
ice , R−3, H 3,

and L, scalings very close to the ones derived from the
lubrication approximation (only H 1.7

ice deviates slightly). Note
that this scaling of Eq. (6) is also obtained in the lubrication
approximation for a single groove in the limit of small angles
(see Supplemental Material [9]).

The experimental results and the model both reveal a
decrease of the propelling force with the radius of the platelet
(F ∼ τR2 ∼ R−1). This behavior stands in contrast to what
can be observed for Leidenfrost droplets self-propelling on
ratchets, for which the force was shown to increase rapidly
with the radius [6]. The systems are indeed quite different: a
drop on a hot ratchet follows the asperities of the texture, so

that the characteristic length scales involved in the scaling laws
above get modified—changing the geometry in these systems
has a deep implication on the resulting force.

Based on the observations above, we conclude that viscous
drag from pressure-driven flow due to sublimation seems the
most important driving force for self-propelling Leidenfrost
solids on ratchets. However, despite the excellent agreement
with scaling predictions our model results consistently lie
below the measured values, indicating that some detail may
not be fully captured yet. Also note that these findings do not
necessarily carry directly over to Leidenfrost drops for which
additional effects such as deformability or interfacial stresses
come into play.

Contrasting this viscous mechanism based on pressure-
driven flow, it was recently suggested that rarefaction effects,
in particular thermal creep flow, could play a dominating
role for the propulsion on Leidenfrost ratchets [7]. We have
investigated these effects using Monte Carlo simulations in
[10]. For typical geometries used in experiments it is shown
that such rarefaction effects based on the finite mean free path
of gas molecules only play a minor role.
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Foundation (DFG) through the Cluster of Excellence 259.
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