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2Ladhyx, UMR 7646 du CNRS, École Polytechnique, 91120 Palaiseau, France
3Center of Smart Interfaces, TU Darmstadt, Darmstadt, Germany

(Received 30 November 2012; accepted 15 March 2013; published online 23 May 2013)

Placed on a hot surface, a solid that sublimates at atmospheric pressure can levitate

on a cushion of its own vapor. Discovered by Leidenfrost, this effect has mostly

been studied with liquids. Whereas the shape of a droplet is determined by a com-

petition between gravity, surface tension, and stress in the vapor layer, a solid does

not deform. In this paper, we show experimentally and theoretically that asymmet-

ric mass distributions in a Leidenfrost solid can lead to a non homogenous vapor

layer in which the lubrication flow generates a lateral force able to propel the body.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807007]

Droplets, on a surface whose temperature is high above the boiling point of the liquid, levitate.

In the Leidenfrost effect,1 the strong evaporation creates a cushion of vapor whose pressure can

be high enough to sustain the drop. The absence of contact with the substrate reduces a lot of the

friction,2 which generates bouncing3 and vibrations4 making the control of such drops problematic.5

Levitation and vapor production were exploited by Linke et al. who designed a substrate made of

millimetric asymmetric teeth: a Leidenfrost drop placed on this ratchet gets propelled in a well-

defined direction.6 The explanation for this effect has been recently debated.7–10 Linke suggested

a viscous entrainment as responsible for the motion, which was confirmed by experiments and

simulations where platelets of solid carbon dioxide were found to similarly self-propel on hot

ratchets7, 9, 10 (Figure 1). Solid carbon dioxide, also called dry ice, sublimates at −78 ◦C: left on a

hot plate, it floats in the Leidenfrost state. Since dry ice is not deformable, the geometry is made

much simpler compared to a liquid, which helped to confirm that propulsion arises from a viscous

drive by the underlying vapor flow.9, 10

Unlike liquids, solids can be sculpted into different shapes. In this paper, we investigate exper-

imentally and theoretically the behavior of uneven pieces of dry ice placed on horizontal smooth

plates. To control the unevenness, we add a small weight on the side of a cylindrical platelet

(Figure 2). The non-homogenous distribution of mass leads to non-uniform vapor layers, as sketched

in Figure 3. The bottom of the dry ice is tilted by a small angle θ , the vapor layer being thinner

where the body is heavier. As a consequence, the platelet does not remain at rest, it self-propels in

FIG. 1. A platelet of dry ice self-propels on a hot ratchet (450 ◦C). The white arrow shows the direction of propulsion. The

bar indicates 3 mm (enhanced online). [URL: http://dx.doi.org/10.1063/1.4807007.1]
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FIG. 2. A centimeter-size platelet of dry ice on a hot flat surface (320 ◦C) with a small weight (m = 0.54 g) on the right

side. The added mass tilts the platelet (by an angle θ = 0.3◦), so that the ice gets propelled (enhanced online). [URL:

http://dx.doi.org/10.1063/1.4807007.2]. Two pictures are separated by 0.3 s and the scale represents 1 cm. The asymmetry

can also be made by sculpting the dry ice (enhanced online). [URL: http://dx.doi.org/10.1063/1.4807007.3]

the direction of the added weight. Geometrically, this system seems close to the one of axisymmetric

platelets on ratchets:6–10 in both cases, the gap between the levitating solid and the substrate makes

an angle (asymmetric platelet) or a series of angles (ratchet), which creates propulsion. However, the

motion is directed toward the direction of closing angle for the asymmetric ice (Figure 2), whereas

it takes place in the direction of opening angles over a ratchet (Figure 1).

The vapor flow exerts two forces on the platelet (Figure 3(b)): a viscous force FS , parallel to

the bottom surface, and a pressure force F P , perpendicular to this surface. We expect FS to be in

the direction of opening angle, like for the ratchet where it is indeed the driving force. However, the

bottom surface of the asymmetric platelet being tilted, the pressure force F P also has a horizontal

component θFP that acts in the direction of propulsion. If it exceeds the viscous contribution

(θFP > FS), the propulsion can indeed take place in the direction of closing angle θ .

Experiments are performed with dry ice platelets of radius R = 7.6 ± 0.4 mm and height

H = 10.0 ± 0.5 mm hovering over a flat aluminum surface brought to a temperature of 320 ◦C. We

record the ice trajectory x(t) with a high speed video camera on a distance of 15 cm. Figure 4 shows

the time-dependence of the velocity v = x ′(t) for three platelets with different added masses m of

0.21 g, 0.78 g, and 1.24 g. In comparison, the mass of the platelet is M = 2.8 g. The velocity of a

platelet is a linear function of time, from which we can derive a constant acceleration x′′, and thus

(a) (b)

FIG. 3. (a) Sketch of the experiment: a platelet of dry ice of mass M with an extra weight of mass m on a side hovers above

a flat surface. (b) Viscous force FS and pressure force F P applied by the vapor flow on the platelet.
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FIG. 4. Velocity v as a function of time for a given platelet (of mass M = 2.8 g) and different added weights (of respective

masses m = 0.21 g, 0.78 g, and 1.24 g). The stronger the added mass, the more accelerated the platelet (enhanced online).

[URL: http://dx.doi.org/10.1063/1.4807007.4]

deduce the propelling force F = (M + m)x′′. We find forces on the order of 100 μN, which increase

with the added weight.

In order to understand the origin of the propelling force, we focus on the flow in the vapor layer

(Figure 3). Due to the added weight, the platelet makes an angle θ with the horizontal. Experimentally,

θ is typically 0.01 rad and it increases with m, always satisfying θ ≪ 1. Since the vapor layer is

thin, with a thickness h0 much smaller than R (h0 ≈ 100 μm and R = 7.6 mm), the flow below a

Leidenfrost solid can be described by a viscous flow in the lubrication approximation.9 The local

flux conservation is written ∇.(hU) = V , where U(x, y) is the horizontal velocity averaged along

the z-axis, h(x) is the local thickness of the vapor layer (h = h0 − θx), and V (x) is the velocity of the

vapor ejected by sublimation at the surface of the platelet. Conduction dominates the heat transfer,11

so that V is equal to (κ/ρL)(∂T/∂z), where T, ρ, and κ are, respectively, the temperature, the density,

and the thermal conductivity of the vapor (ρ = 1 kg/m3, κ ≈ 0.03 W/m/K), and L is the latent heat

of sublimation of dry ice (L ≈ 7.105 J/kg). Since R ≫ h, we assume ∂T/∂z ≈ �T/h, where �T is the

temperature difference between the solid and the platelet (�T ≈ 400 ◦C). U is calculated assuming

a Poiseuille law in the vapor layer: U = −(h2/12η)∇ p, where p(x, y) is the vapor pressure and η its

dynamic viscosity (η ≈ 2.10−5 Pa s). This particular case of Darcy’s law is obtained for a flow in a

narrow gap, averaged over the perpendicular coordinate (z-axis here). With the conservation of flux,

it leads to the differential equation

∇.
(

h3
∇ p

)

= −
12ηκ�T

ρLh
(1)

with the condition p = 0 on the vapor layer boundary. h(x) can be written h0(1 − εx) with ε = Rθ /h0.

Assuming ε ≪ 1, we expand p in ε, p = p0 + εp1 + O(ε2), and solve the two first orders in Eq. (1)

(see the supplementary material for the whole calculation12). We calculate the pressure force FP and

the shear force FS that are, respectively, normal and tangential to the bottom face of the platelet, as

well as the moment of the pressure force around the y-axis, ŴP. We obtain at first order:

FS = −
∫

S

η

(

∂ux

∂z

)

h

d S = −
3π

4

ηκ�T R3

ρLh3
0

ε, (2a)

FP =
∫

S

pd S =
3π

2

ηκ�T R4

ρLh4
0

, (2b)

ŴP = −
∫

S

xpd S = −
11π

16

ηκ�T R5

ρLh4
0

ε, (2c)

where S is the bottom surface of the platelet (S = {(x, y)|x2 + y2 ≤ R2}). The projection of FS and

FP on the vertical axis balances the weight: FP cos θ − FS sin θ = (M + m)g. Since we have θ ≪ 1
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FIG. 5. (a) Measured angle θ as a function of the added mass m. The solid line represents Eq. (4), its slope is given by

24/(11M)
√

b/R = 12 rad/kg. Each point is an average on five measurements. (b) Measured driving force F as a function of

the added mass m. The solid line corresponds to Eq. (5). Each point is an average on ten measurements.

and FSθ /FP ∼ θ2, this balance leads to FP = (M + m)g, which yields the mean thickness of the

vapor layer,

h0 =
√

bR, (3)

where the distance b is [3ηκ�T/2ρρ0LgH(1 + m/M)]1/2, with ρ0 the dry ice density

(ρ0 = 1560 kg/m3) and H the platelet height. As expected, we find the expression of the film

thickness for an axisymmetric system.7 Using Eq. (3) and assuming the additional mass to sit right

at the edge of the cylinder, the moment balance around the y-axis, ŴP + mgR = 0, leads to

θ =
24

11

m

M

√

b

R
. (4)

A first consequence of Eq. (4) is to show that our hypothesis ε ≪ 1 is equivalent to m ≪ M

(ε = Rθ /h0 ∼ m/M), roughly obeyed in our experiments. Then the expression of b simplifies to

(3ηκ�T/2ρρ0LgH)1/2, which only depends on physical constants and on the platelet height H, with

a typical value of 1 μm.

We finally project FS and FP on the horizontal axis to obtain the propelling force: F = FS

+ θFP. Equations (2a) and (2b) show that both components of F have the same scaling yet opposite

directions. However, it is found that the contribution of the pressure θFP is twice the contribution of

the shear FS (see the supplementary material for more details12). The propelling mechanism in this

system is then different from the one in the ratchet, making ice move in the opposite direction towards

the narrow side of the gap. On the whole, the propelling force can be written: F = Mgθ /2. This very

simple expression mixes the genuine driving force of the motion (the weight of the solid, which

forces a vapor flow below) with its cause (the angle θ , which quantifies the degree of asymmetry of

the system). Together with Eq. (4), we obtain

F =
12

11
mg

√

b

R
. (5)

These findings can be compared to experiments. First, Figure 5(a) shows the measured angle

θ as a function of the added mass m. The platelets are the same as described previously. We take

a picture of a moving platelet and we measure θ directly, after magnifying the pictures (each point

is an average on five measurements). The solid line shows Eq. (4) calculated with the numerical

values of the different parameters. The model is in good agreement with the experiments: the angle

increases linearly with m and Eq. (4) nicely fits the data without any adjustable parameter. Second,

Figure 5(b) shows the force (deduced from the acceleration of the platelet) as a function of the added

mass. The solid line is plotted using Eq. (5). Again, we observe a linear increase (the solid line has a
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FIG. 6. Two platelets of dry ice linked by an off-centered steel rod rotate. Two successive pictures are separated by 200 ms

and the bar shows 2 cm. The angular acceleration deduced form these pictures is 2.0 ± 0.1 rad/s2 (enhanced online). [URL:

http://dx.doi.org/10.1063/1.4807007.5]

slope 1 in this log-log plot) quantitatively agreeing with the experiment. This agreement (established

in the limit m ≪ M) becomes logically less convincing as m exceeds 2 g, i.e., when it approaches M.

This model was developed for a static platelet. However, its velocity v generates other flows

(around, below), which might influence the motion. First, the platelet undergoes friction. Its origin can

be either the shear in the vapor layer η(v/h0)R2 or the inertial friction ρRHv2 from the surrounding

air of density ρ. Both forces balance the propelling force for a velocity of a few meters per second.

In our experiments the velocity of the platelet never exceeds 10 cm/s (Figure 4), so that we can

neglect the friction in our measurement of the propelling force. Second, a well-known feature of the

lubrication theory is that a tilted surface hovering over a horizontal wall creates a Poiseuille-Couette

flow and thus undergoes a pressure force.13 In our case, the direction of propulsion in relation with

the orientation of θ creates a depression: the resulting force FPv is normal to the bottom surface of

the platelet and opposed to FP. In the limit ε ≪ 1, FPv scales as ηvR4θ/h3
0. For v ≈ 10 cm/s, FPv

is on the order of 100 μN, that is, much smaller than FP: FP ≈ Mg ≈ 30 mN. This effect does not

alter the propulsion either.

In comparison with a platelet on a ratchet, the propelling force obtained here is almost one

order of magnitude higher.9 Moreover, the absence of texture in the surface prevents the platelet

to sink and to get stuck: this system is much more efficient to propel Leidenfrost solids. Yet, the

orientation of the force differs between both systems. With the ratchet, it is set by the substrate with

the geometry of the textures, whereas the asymmetric platelet carries this orientation, which makes

it change if the platelet rotates.

To consider the case of rotation, we study a device built such that the two coupled platelets are

forced to move in opposite directions. As shown in Figure 6, the system consists of two cylinders

of dry ice (mass M = 2.5 g) linked by an off-centered steel rod of length l = 4.2 cm and mass

2m = 4.4 g that also acts as an added mass for the platelets. As seen in the figure, a rotation

naturally results from this geometry. In addition, the motion accelerates as it does for the propulsion

of single platelets. The angular acceleration in this example is 2.0 rad/s2. We expect an acceleration

2F(m)/(m + M)l, where the force F is of order 200 μN for an added mass per platelet of 2.2 g, as

seen in Figure 5(b). The resulting acceleration is thus 2.0 rad/s2, as observed experimentally.

The propulsion can also be seen with other solids, like camphor, as presented in Figure 7.

Camphor’s melting point is 179 ◦C, and its boiling point is 204 ◦C. Both temperatures are close, so

that a piece of solid camphor put on a hot plate is surrounded by a small quantity of liquid camphor

and the whole object levitates. Solid and liquid Leidenfrost effects here combine and the resulting

object propels if a small mass is added on one side.

We showed that uneven platelets of dry ice can self-propel on a hot surface, and rotate when

coupled together. The propulsion is due to the pressure exerted by the vapor flow on the bottom of

the platelet. This surface is not parallel to the substrate but gets tilted by an angle θ . The pressure

generates a lateral force Mgθ /2 creating a “continuous ratchet.” This questions the evolution of

the shape of the platelet while it sublimates. Since the thinner the vapor layer, the stronger the

sublimation, the loss of matter is asymmetric below the platelet. Thus, the propelling force should

be altered, which might be observed by following such objects on large distances. It would be also
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FIG. 7. A square platelet of camphor (6.0 g) with a small mass of 1.8 g on a hot plate (400 ◦C). Although the solid is

now surrounded by liquid camphor, the whole object still self-propels. Two pictures are separated by 0.65 s and the scale

represents 1 cm (enhanced online). [URL: http://dx.doi.org/10.1063/1.4807007.6]

worth seeing how the propulsion is modified by the vapor flux: for instance, non-evaporative solids

and liquids can be levitated by air flowing from the substrate with a velocity that does not depend

on the thickness of the air layer.14 Finally, our results can be generalized to any Leidenfrost solid

whose center of mass is not vertically aligned with the center of pressure on the bottom surface.
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