
HAL Id: hal-00996485
https://polytechnique.hal.science/hal-00996485v1

Submitted on 2 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability of a Gaussian pancake vortex in a stratified
fluid

M. Eletta Negretti, Paul Billant

To cite this version:
M. Eletta Negretti, Paul Billant. Stability of a Gaussian pancake vortex in a stratified fluid. Journal
of Fluid Mechanics, 2013, 718, pp.457-480. �10.1017/jfm.2012.624�. �hal-00996485�

https://polytechnique.hal.science/hal-00996485v1
https://hal.archives-ouvertes.fr


J. Fluid Mech. (2013), vol. 718, pp. 457–480. c© Cambridge University Press 2013 457
doi:10.1017/jfm.2012.624

Stability of a Gaussian pancake vortex in a

stratified fluid

M. Eletta Negretti† and Paul Billant

LadHyX, CNRS, Ecole Polytechnique, 91128 Palaiseau CEDEX, France

(Received 22 February 2012; revised 8 November 2012; accepted 12 December 2012;

first published online 8 February 2013)

Vortices in stably stratified fluids generally have a pancake shape with a small vertical
thickness compared with their horizontal size. In order to understand what mechanism
determines their minimum thickness, the linear stability of an axisymmetric pancake
vortex is investigated as a function of its aspect ratio α, the horizontal Froude number
Fh, the Reynolds number Re and the Schmidt number Sc. The vertical vorticity profile
of the base state is chosen to be Gaussian in both radial and vertical directions. The
vortex is unstable when the aspect ratio is below a critical value, which scales with the
Froude number: αc ∼ 1.1Fh for sufficiently large Reynolds numbers. The most unstable
perturbation has an azimuthal wavenumber either m = 0, |m| = 1 or |m| = 2 depending
on the control parameters. We show that the threshold corresponds to the appearance
of gravitationally unstable regions in the vortex core due to the thermal wind balance.
The Richardson criterion for shear instability based on the vertical shear is never
satisfied alone. The dominance of the gravitational instability over the shear instability
is shown to hold for a general class of pancake vortices with angular velocity of the

form Ω̃(r, z) = Ω(r)f (z) provided that r∂Ω/∂r < 3Ω everywhere. Finally, the growth
rate and azimuthal wavenumber selection of the gravitational instability are accounted
well by considering an unstably stratified viscous and diffusive layer in solid body
rotation with a parabolic density gradient.
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1. Introduction

Stably stratified flows are generally organized into layers with a small thickness
compared with their horizontal extent (Riley & Lelong 2000). Such layered structure
can appear spontaneously on a vertically uniform flow through the zigzag instability
(Billant & Chomaz 2000a; Otheguy, Chomaz & Billant 2006; Billant 2010; Billant
et al. 2010). The typical vertical thickness of the layers is then U/N, where U

is the characteristic horizontal velocity and N is the Brunt–Väisälä frequency. The
zigzag instability is a mechanism which imposes an upper bound on the vertical
scale of stratified flows, i.e. if vortices are too tall, they may experience the zigzag
instability and break into pancake vortices with a smaller vertical size. In contrast,
what determines the minimum thickness of the layers and pancake vortices is not
well understood. Riley & DeBruynKops (2003) and Brethouwer et al. (2007) reported
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in simulations of stratified turbulence the presence of shear instabilities which may

appear when the vertical shear is too high, i.e. when the layers are too thin.

Deloncle, Billant & Chomaz (2008) also reported the onset of a shear instability

due to the vertical shear generated by the development of the zigzag instability on

a counterrotating vortex pair. In contrast, Waite & Smolarkiewicz (2008) observed a

gravitational instability on a similar flow whereas Augier & Billant (2011) observed

both shear and gravitational instabilities.

In order to better understand what mechanism determines the minimum thickness

of the layers in stably stratified flows, we investigate here the stability of a single

axisymmetric pancake vortex in a stably stratified fluid as a function of its aspect ratio.

The dynamics of a single pancake vortex in a stratified fluid has been studied

experimentally by Flor & van Heijst (1996). For strong stratification (i.e. low Froude

number), the pancake vortices were observed to be stable and to decay by vertical

diffusion. For weaker stratification, the vortices were unstable and evolved into

multipolar vortices (see also Beckers et al. 2003). The instability was attributed to

a barotropic shear instability since the radial profile of vorticity presented an extremum

and is thus unstable according to the Rayleigh inflection point theorem.

The three-dimensional structure of stable pancake vortices has been investigated

experimentally by Bonnier, Eiff & Bonneton (2000) and Beckers et al. (2001). They

have measured the pinching of the isopycnals which is due to the cyclostrophic and

hydrostatic balances. Beckers et al. (2001) have studied analytically and numerically

the viscous diffusion of a pancake vortex with a Gaussian angular velocity in both

radial and vertical directions. They reported that for some combinations of aspect ratio

and Froude number, the density gradient can be locally positive, i.e. gravitationally

unstable. Beckers et al. (2001) and Godoy-Diana & Chomaz (2003) have also found

that, when momentum and buoyancy do not diffuse at the same rate, the viscous

decay of the vortex induces a secondary three-dimensional circulation that modifies the

velocity decay rate.

Fung (1986) derived three sufficient conditions for stability based on three

Richardson numbers for a general class of rotating flows with the velocity and

density perturbations varying in both the axial and vertical directions. However,

Lin & Pierrehumbert (1987) showed that these three conditions can be satisfied

contemporaneously only for the trivial case of a solid body rotation. Later, Fung

(1992) considered the instability between two superimposed uniformly rotating vortex

columns with different densities and angular velocities. He obtained a stability

condition equivalent to that for two parallel streams of different velocity and densities.

However, the latter configuration is strongly idealized and it is unknown whether

a shear instability can be triggered by the vertical shear present in a pancake vortex.

In order to answer this question, we have investigated numerically the stability of a

pancake vortex with a Gaussian vorticity profile in both radial and vertical directions

which should be stable with respect to the radial shear instability. We shall show

that a shear instability due to the vertical shear cannot occur because a gravitational

instability appears much before when decreasing the aspect ratio.

The paper is organized as follows: in § 2 we define the base state and describe

the numerical method. The numerical results are presented in § 3 and compared

with theoretical and experimental results in § 4. Section 5 generalizes the results to

other velocity profiles while the stability criteria for the centrifugal instability will be

discussed in § 6. Section 7 includes concluding remarks.
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FIGURE 1. (a) Vertical vorticity ωzb and (b) perturbation density ρ ′
b of the base state.

2. Problem formulation

2.1. The base state

We consider as basic flow a pancake vortex with velocity components [0, uθb(r, z), 0]
in cylindrical coordinates (r, θ , z). The azimuthal velocity is chosen to have a
Lamb–Oseen profile in the radial direction and a Gaussian profile in the vertical
direction

uθb = Γ

2π

[
1 − e−r2/R2

r

]
e−z2/Λ2

(2.1)

where R is the characteristic radius, Λ is the characteristic vertical size and Γ is the
circulation at the midplane z = 0. The corresponding vertical vorticity ωzb is Gaussian
in both radial and vertical directions (see figure 1a)

ωzb = Γ

π

e−r2/R2−z2/Λ2
. (2.2)

Thus, the radial profile of vorticity is single-signed and the vortex should be stable
with respect to a ‘radial’ two-dimensional shear instability according to the Rayleigh
inflection point theorem. This differs from the pancake vortex with Gaussian angular
velocity considered by Beckers et al. (2001) and Bonnier et al. (2000). Although
a columnar Lamb–Oseen vortex is stable with respect to the centrifugal instability,
the profile (2.1) is marginally centrifugally unstable as discussed in § 6. The vortex
(2.1) is a steady solution of the incompressible Euler equations with the Boussinesq
approximation. The momentum equations in the radial and vertical directions read

u2
θb

r
− 1

ρ0

∂pb

∂r
= 0, (2.3a)

1

ρ0

∂pb

∂z
+ g

ρ0

ρ ′
b = 0, (2.3b)

where pb is the pressure, g the gravity and the total density ρb has been decomposed
as follows:

ρb = ρ0 + ρ̄(z) + ρ ′
b(x), (2.4)
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where ρ0 is a reference density, ρ̄(z) the mean density profile and ρ ′
b(x) a perturbation

density due to the vortex. By combining (2.3), one obtains the so-called wind thermal
relation

∂

∂z

(
u2

θb

r

)
= − g

ρ0

∂ρ ′
b

∂r
(2.5)

which shows that the vertical gradient of azimuthal velocity implies a density
perturbation ρ ′

b. By integrating (2.5), with the boundary condition ρ ′
b → 0 as r → ∞

one obtains

ρ ′
b(r/R, z/Λ) = ρ0

g

Γ 2

π
2ΛR2

z

Λ
e−2z2/Λ2

[
− (e−r2/R2 − 1)

2

2r2/R2
+ E1(2r2/R2) − E1(r

2/R2)

]
(2.6)

where E1 is the exponential integral function defined as E1(ξ) =
∫ ∞

ξ
e−η/η dη

(Abramowitz & Stegun 1970). As seen in figure 1(b), the density perturbation ρ ′
b is

negative above the midplane z = 0 and positive below. This corresponds to a pinching
of the isopycnal surfaces (ρb = const.) toward the minimum of pressure pb existing at
the vortex centre.

2.2. Numerical method of the three-dimensional stability analysis

In order to study the stability of the base flow, the Navier–Stokes equations under the
Boussinesq approximation are linearized

∂u

∂t
+ ωb × u + ω × ub = −∇

(
p

ρ0

+ u ·ub

)
− g

ρ0

ρez + ν1u, (2.7a)

∇ ·u = 0, (2.7b)

∂ρ

∂t
+ u ·∇ρb + ub ·∇ρ = κ1ρ + N2 ρ0

g
uz, (2.7c)

where u(x, t), ω(x, t), ρ(x, t), p(x, t) are infinitesimal perturbations of the velocity,
vorticity, density and pressure, N =

√
−g/ρ0 dρ̄/dz is the Brunt–Väisälä frequency

assumed constant, ν is the viscosity, κ the diffusivity of the stratifying agent and ez is
the vertical unit vector pointing upward.

The Reynolds number, horizontal and vertical Froude numbers and Schmidt number
are defined as

Re = Γ

2πν
, Fh = Γ

2πNR2
, Fv = Fh

α
, Sc = ν

κ
(2.8)

respectively, where α = Λ/R is the aspect ratio of the pancake vortex.
In (2.7), we have neglected the diffusion of the base state as classically done

in stability analysis. This assumption is valid provided that the growth rate of the
instabilities are large compared with the viscous damping of the base state.

The linearized equations (2.7) are integrated using a pseudospectral method in
Cartesian coordinates (x, y, z) with periodic boundary conditions (Delbende, Chomaz
& Huerre 1998; Deloncle et al. 2008). The velocity, vorticity, density and pressure
perturbations are expressed in Fourier space after application of the three-dimensional
Fourier transform

[û; ω̂; ρ̂; p̂](kx, ky, kz, t) =
∫∫∫

[u; ω; ρ; p](x, y, z, t)e−ik·x dx dy dz (2.9)
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where i =
√

−1, kx, ky, kz are the Cartesian components of the wavenumber k and the
hat denotes the Fourier transform.

In spectral space, equations (2.7) become

∂û

∂t
= P(k)

(
û × ωb + ω̂ × ub − g

ρ0

ρ̂ez

)
− νk2

û (2.10a)

∂ρ̂

∂t
= −ik · (ρ̂bu + ûbρ) + N2 ρ0

g
ûz − κk2ρ̂ (2.10b)

The tensor P(k) with components Pij = δij − kikj/k
2, is the projection on the space of

divergence-free fields to enforce the continuity equation k · û = 0. The time integration
of the nonlinear terms of (2.10) is carried out with the fourth-order Runge–Kutta
scheme while the viscous and diffusive terms are integrated exactly.

The domain size Lx × Ly × Lz is chosen as 6R × 6R × 4R with Nx × Ny × Nz =
128 × 128 × 64 collocation points. The time step is set to δt = 0.005 · (2πR2/Γ ). The
perturbations are initialized by divergence-free white noise. The most unstable mode
emerges after a sufficient integration time

lim
t→∞

[u(x, t), ρ(x, t)] = [ũ(x), ρ̃(x)]eσ t + c.c., (2.11)

where σ is the eigenvalue of the overall dominant eigenmode and c.c. denotes the
complex conjugate. However, since the basic flow is axisymmetric, each azimuthal
mode evolves independently of the other and it is possible to retrieve the dominant
eigenmode for each azimuthal wavenumber m by applying a modal decomposition
(Delbende et al. 1998). First, the velocity in Cartesian coordinates u(x, t) is
interpolated on a grid of cylindrical coordinates (r, θ, z) via a ‘slow’ reverse Fourier
transform

u(r, θ, z, t) = 1

(2π)3

∫∫∫
û(kx, ky, kz, t)ei(kxr cos θ+kyr sin θ+kzz) dkx dky dkz (2.12)

with Nr × Nθ = 64 × 32 points in the radial and azimuthal directions. The velocity in
cylindrical coordinates is then given by v = (vr, vθ , vz) = (ux cos θ+uy sin θ, −ux sin θ+
uy cos θ, uz). Each azimuthal component m is then isolated by means of the azimuthal
Fourier transform

vm(r, z, t) =
∫ 2π

0

v(r, θ, z, t)e−imθ dθ. (2.13)

Owing to the symmetry of the base state with respect to the horizontal midplane
z = 0, the normal modes separate further into two independent classes, symmetric and
antisymmetric, defined as

[vrm, vθm, vzm, ρm](r, z, t) = [vrm, vθm, −vzm, −ρm](r, −z, t), (2.14a)

[vrm, vθm, vzm, ρm](r, z, t) = [−vrm, −vθm, vzm, ρm](r, −z, t), (2.14b)

respectively. The dominant eigenmode and eigenvalue are then retrieved for each
azimuthal wavenumber m and each symmetry as in (2.11), i.e.

lim
t→∞

[vm(r, z, t), ρm(r, z, t)] = [ṽm(r, z), ρ̃m(r, z)]eσ t. (2.15)

Without loss of generality, the azimuthal wavenumber will be assumed to be positive
because of the symmetry σ(m) = σ ∗(−m). The accuracy and the convergence of the
results have been checked by varying the size of the computational box and the
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Lx × Ly × Lz Nx × Ny × Nz δt σr (m = 1)
Symmetric Antisymmetric

4 × 4 × 4 64 × 64 × 64 0.01 0.301033 0.301034
4 × 4 × 8 128×128×256 0.005 0.301037 0.30104
8 × 8 × 4 256×256×128 0.005 0.301039 0.301041
6 × 6 × 4 128 × 128 × 64 0.005 0.301029 0.301042

TABLE 1. The different growth rates σr relative to m = 1 obtained using different
resolutions Nx × Ny × Nz and box sizes Lx × Ly × Lz for both symmetric and antisymmetric
modes for α = 0.85, Re = 500, Fh = 1 and Sc = 1.
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FIGURE 2. Stability characteristics of the pancake vortex for Fh = 1, Re = 500 and Sc = 1.
(a) Non-dimensional growth rate σr/N and (b) frequency σi/Γ/2πR2 as a function of the
aspect ratio α for different azimuthal wavenumbers m.

resolution. As seen in table 1, the growth rate varies by less than 0.1 % in the cases
tested.

3. Numerical results

3.1. Effect of the aspect ratio

Typical results are displayed in figure 2 for Fh = 1, Re = 500 and Sc = 1. The growth
rates σr (figure 2a) are plotted versus the aspect ratio α for the first six azimuthal
wavenumbers m = 0 to m = 5 of the symmetric class. The results relative to the
antisymmetric modes are not presented because they have very close growth rates
(see table 1 for α = 0.85). As seen in figure 2(a), the pancake vortex becomes more
and more unstable when the aspect ratio decreases from α ∼ 1.07 with an increasing
number of unstable azimuthal wavenumbers. The corresponding frequency (figure 2b)
is almost independent of α and is proportional to m demonstrating that each azimuthal
wavenumber rotates at the same phase velocity σi/m.

The growth rates of the azimuthal modes m = 0, 1, 2 are close so that the most
unstable azimuthal mode is either m = 0, 1, 2 depending on the aspect ratio α. When
α 6 0.75, the growth rate monotonically decreases with m. The axisymmetric mode is
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FIGURE 3. Non-dimensional growth rate σr/N for different aspect ratios α (a) and critical
aspect ratio αc (b) as a function of the azimuthal wavenumber m (Fh = 1, Re = 500, Sc = 1).

therefore dominant (figure 2a) but only marginally: the growth rate for m = 1 is very

close to that for m = 0.

When α > 0.75, the two modes m = 1, 2 become more dangerous than m = 0 and

have almost the same growth rate. Although they are undistinguishable in figure 2,

the mode m = 1 is in fact slightly more unstable than m = 2 for 0.75 < α < 0.85

(see figure 3a) and near the threshold α ∼ 1.07. In contrast, higher azimuthal modes

m > 3 are always less unstable with a growth rate decreasing with m. The critical

aspect ratio is plotted in figure 3(b) as a function of m. The modes m = 0, 1, 2

become stable for αc = 0.95, 1.07, 1.03, respectively. The critical aspect ratio then

decreases monotonically for larger m. The perturbation vertical vorticity ωzm(r, z) and

vertical velocity vzm(r, z) for the modes m = 0, 1, 2 for α = 0.85 are displayed in

figures 4 and 5, respectively. We see that the perturbation vertical vorticity is localized

in the upper and lower midplanes and is maximum near z/Λ ≈ ±0.66 for each m.

This is close to the location at which the vertical gradient of the base state velocity

is maximal, namely at z/Λ = ±1/
√

2 = ±0.707. In contrast, the radial size of the

perturbations increases with m: the radius of the perturbation vertical vorticity maxima

(real part) rm increases with m: r0 ≈ 0, r1 ≈ 0.2R, r2 ≈ 0.33R, r3 ≈ 0.36R (the latter

case is not shown). As seen in figure 5, the perturbation vertical velocity reaches

its maximum around z/Λ ≈ 0.9 close to the location z/Λ ∼
√

3/4 = 0.866 where the

vertical gradient of the base state density ∂ρb/∂z is maximum.

In order to have a clearer view of the perturbation structure, the vertical vorticity

isosurfaces of the perturbation for m = 1 and α = 1 are displayed in three dimensions

in figure 6. The modes rotate steadily at frequency σi without change of shape,

i.e. it is given at any time t by ωzm(r, θ, z, t) = π[Re(ωzm(r, z)) cos(mθ + σit + ϕ) −
Im(ωzm(r, z)) sin(mθ + σit + ϕ)], where ϕ is a constant phase.

Since the perturbation is located in two distinct regions in the upper and lower

parts of the base flow, the perturbation in each of these two regions behave almost

independently. This explains why the growth rate of symmetric and antisymmetric

modes are very close as mentioned previously.
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FIGURE 4. Real (a,b,d) and imaginary (c,e) part of the vertical vorticity perturbation
ωzm(r, z)/|ωzm|max for m = 0 (a), m = 1 (b,c) and m = 2 (d,e) (α = 0.85, Re = 500, Fh = 1,
Sc = 1). The dashed lines correspond to the location of maximal azimuthal velocity given

by r/R = 1.1209e−z2/Λ2
. The dotted lines delimit the regions where the total vertical density

gradient of the base state is positive.

3.2. Effect of the horizontal Froude number

The effect of the horizontal Froude number is now investigated. In figure 7, the
growth rate σr (a) and the frequency σi (b) of the azimuthal wavenumber m = 1 are
plotted versus α/Fh, i.e. the inverse of the vertical Froude number 1/Fv, for different
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FIGURE 5. Real (a,b,d) and imaginary (c,e) part of the vertical velocity perturbation
vzm(r, z)/|ωzm|max for m = 0 (a), m = 1 (b,c) and m = 2 (d,e) (α = 0.85, Re = 500, Fh = 1,
Sc = 1). The dashed line corresponds to the location of maximal azimuthal velocity given

by r/R = 1.1209e−z2/Λ2
. The dotted lines delimit the regions where the total vertical density

gradient of the base state is positive.

values of the horizontal Froude number. Like for Fh = 1, Re = 500 (figure 2), the
growth rates of the azimuthal modes m = 0, 2 are very close regardless of the Froude
number Fh and are therefore not shown. We can see that the growth rate σr scaled
by the Brunt–Väisälä frequency N is almost superposed for Fh = 1.5 and Fh = 1
for Re = 500. In contrast, the growth rate curves for Fh = 0.5 and Fh = 0.25 for
Re = 500 are slightly lower and decrease continuously with the Froude number for a
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FIGURE 6. Three-dimensional view of the vertical vorticity perturbation for m = 1, α = 1.0,
Fh = 1, Re = 500 and Sc = 1. The isosurfaces correspond to the values ±45 % of the
maximum vorticity.
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FIGURE 7. Non-dimensional growth rate σr/N (a) and frequency σi/Γ/2πR2 (b) of the mode
m = 1 as a function of α/Fh for different values of the Froude number and the Reynolds
number for Sc = 1: Fh = 1.5; Fh = 1; • Fh = 0.5; ◮ Fh = 0.25 for Re = 500; ⊲ Fh = 0.25;
⋄ Fh = 1.0 for Re = 1000.

given value of α/Fh. However, if the Reynolds number is increased to Re = 1000 for
Fh = 0.25, we see that the scaled growth rate is again close to those for 0.5 6 Fh 6 1.5,
Re = 500. Similarly, the results for Fh = 1 and Re = 1000 are slightly higher than
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FIGURE 8. Effects of the Reynolds number. Non-dimensional growth rate σr/N as a function
of (a) the Reynolds number Re (m = 1, α = 1.0, Fh = 1, Sc = 1) and of (b) the azimuthal
wavenumber m for α = 0.7, Fh = 1, Sc = 1 and three Reynolds numbers Re = 250, 500 and

750. The dotted line in (a) shows the relation σr/N = σinv/N − C/
√
Re with σinv ≈ 0.255 and

C ≈ 4.15.

those for Fh = 1, Re = 500 but the critical aspect ratio is still the same αc ∼ 1.1.
These results suggest that the scaled growth rate depends only on Fh/α provided that
diffusive effects are sufficiently small. Viscous effects will be investigated further in
the next section. Similarly, the frequency σi scaled by the turnover frequency Γ/2πR2

depends almost only on α/Fh (figure 7b).

3.3. Effect of the Reynolds number

Figure 8(a) shows the dependence of the growth rate of the azimuthal wavenumber
m = 1 on the Reynolds number for a fixed aspect ratio and Froude number.
The growth rate increases with Re and follows approximately the relation σr ≈
σinv − CN/

√
Re, with σinv ≈ 0.255 and C ≈ 4.15, as highlighted by the dotted line. This

confirms that the growth rate tends to a constant value σinv in the inviscid limit. The
particular dependence with Re will be explained in § 4.2. The effect of the Reynolds
number on the growth rate of each azimuthal wavenumber is displayed in figure 8(b).
An increase of the Reynolds number increases the growth rate of each azimuthal mode
and thus widens the band of unstable azimuthal wavenumber m.

3.4. Effect of the Schmidt number

Finally, we have investigated another value of the Schmidt number: Sc = 7. This value
which is representative of temperature stratified water remains accessible numerically
with the same numerical resolution as for Sc = 1. As seen in figure 9, the scaled
growth rate σr/N of the most amplified azimuthal wavenumbers m = 0, 1, 2 (Fh = 1,
Re = 500) are slightly larger than for Sc = 1. The value Sc = 700 corresponding to salt
stratified water has not been investigated numerically but it will be discussed on the
basis of theoretical predictions in § 4.2.
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FIGURE 9. Non-dimensional growth rate σr/N as a function of α/Fh for a Schmidt number
Sc = 7 and for the azimuthal wavenumbers m = 0, 1, 2 (Fh = 1, Re = 500). The dashed line
represents the numerical results for Sc = 1 and m = 1 for reference.

4. Interpretation and comparison with theory and experiments

4.1. Instability conditions

In order to determine the nature of the instability, it is interesting to look at the
conditions for the gravitational and shear instabilities in the inviscid limit. The
gravitational instability is expected to occur when the vertical gradient of the total
density is positive somewhere, i.e.

∂ρb

∂z
= ∂ρ ′

b

∂z
− N2 ρ0

g
> 0. (4.1)

Since the vertical gradient of the base state density (2.6), is maximum at r = 0 and
z/Λ = ±

√
3/4, the instability condition becomes

K2

F2
h

α2
− 1 > 0, where K2 = 8 ln(2)e−3/2. (4.2)

Thus, gravitationally unstable regions appear when α < αc ≡ 1.11Fh. This is illustrated
in figure 10(a), where the vertical profile of density for Fh = 1 and α = 0.85 (dashed
line) and α = 1.2 (solid line) are plotted along the vortex axis. It can be seen that
the total density increases in the regions around z/Λ = ±

√
3/4 ∼ 0.87 for α = 0.85 in

contrast to α = 1.2. The gravitationally unstable regions are also indicated by dotted
lines in figures 4 and 5. They correspond well to the locations of the perturbations.

The well-known necessary condition for the shear instability of a parallel inviscid
shear flow is 0 < min(Ri) < 1/4 where Ri is the Richardson number. Even if the basic
flow is here not parallel, we have looked at this condition by computing the local
Richardson number based on the vertical shear

Ri =
− g

ρ0

∂ρb

∂z[
∂uθb

∂z

]2
. (4.3)
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FIGURE 10. (a) Vertical profiles of the density of the base state for Fh = 1 and for α = 0.85
(dashed line) and α = 1.2 (solid line). (b) Minimum of the local Richardson number as a
function of α/Fh.

Using (2.1) and (2.6), it can be written in the convenient form

Ri =

α2

F2
h

+ 2 (ff ′)
′
∫ ∞

r̃

h2(R)

R
dR

h2f ′2 . (4.4)

where h(r̃) = 1/r̃(1 − e−r̃2
) and f (z̃) = e−z̃2

, with r̃ = r/R and z̃ = z/Λ. The prime
denotes derivative with respect to z̃. This shows that the Richardson number depends
only on the vertical Froude number Fv = Fh/α for a given shape of the velocity
profile.

Figure 10(b) shows the minimum value of Ri as a function of α/Fh. We can see
that min(Ri) is larger than 1.6 for α > 1.11Fh and then becomes abruptly negative for
α < 1.11Fh since the maximum of the total density vertical gradient is then positive.
Therefore, the instability condition for a vertical shear instability 0 < min(Ri) < 1/4 is
never satisfied.

Since the threshold for the gravitational instability α/Fh ∼ 1.11 is in very good
agreement with the value found in the numerical stability analysis when viscous
effects are small: α/Fh ∼ 1.1 (cf. figure 2), it is very likely that the dominant
instability of the pancake vortex is a gravitational instability. In order to explain
the properties of the instability, especially the azimuthal wavenumber selection, we
will consider in the next section a uniformly rotating and unstably stratified layer with
a constant or varying density gradient along the vertical.

4.2. Linear stability analysis of an unstably stratified rotating layer

We first consider an unstably stratified viscous fluid, with constant Brunt–Väisälä
frequency Nu (with N2

u = −g/ρ0∂ρb(z)/∂z < 0) and in solid body rotation with a
constant angular velocity Ω . Such basic flow is identical to a fluid layer heated from
below and rotating at a constant rate considered in many studies describing the effect
of rotation on Rayleigh–Bénard convection (Chandrasekhar 1961).
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We rewrite in cylindrical coordinates (r, θ, z) the Boussinesq equation (2.7)
linearized around such base flow and assume normal modes solutions of the form
[ur, uθ , uz, ρ, p] = [ûr, ûθ , ûz, ρ̂, p̂](r) exp(σ t + imθ + ikz) + cc, where k is the vertical
wavenumber. The disturbance equations then read

sûr − 2Ω ûθ = − 1

ρ0

dp̂

dr
+ ν

[
1ûr − ûr

r2
− 2im

r2
ûθ

]
(4.5a)

sûθ + 2Ω ûr = − im

ρ0

p̂

r
+ ν

[
1ûθ − ûθ

r2
+ 2im

r2
ûr

]
(4.5b)

sûz + g
ρ̂

ρ0

= − ik

ρ0

p̂ + ν1ûz (4.5c)

sρ̂ − ρ0

g
N2

u ûz = κ1ρ̂ (4.5d)

dûr

dr
+ ûr

r
+ imûθ

r
+ ikûz = 0 (4.5e)

where s = imΩ+σ and 1 = (1/r)d/dr(rd/dr)−m2/r2−k2. As shown in Chandrasekhar
(1961), these equations can be rewritten in terms of ûz only

(s − ν1)2(s − κ1)1ûz = 4Ω2k2(s − κ1)ûz − N2
u(s − ν1)1hûz (4.6)

where ∆h = (1/r)d/dr(rd/dr) − m2/r2. Therefore, solutions of the form ûz ∝ Jm(qr),
where Jm is the Bessel function of the first kind of order m and q a constant, gives the
dispersion relation

[s + ν(q2 + k2)]2[s + κ(q2 + k2)](q2 + k2)

+ 4Ω2k2[s + κ(q2 + k2)] + N2
u [s + ν(q2 + k2)]q2 = 0. (4.7)

In the particular case ν = κ , this dispersion relation reduces to a second-order
polynomial which gives directly

s = −ν(q2 + k2) ± i

√
4Ω2k2 + N2

u q2

q2 + k2
. (4.8)

In the inviscid and diffusionless limit ν = 0 and for a stably stratified fluid N2
u > 0,

equation (4.8) is the classical dispersion relation of inertia-gravity waves. For a given
value of q, the frequency varies from σi = −mΩ ± 2Ω for large vertical wavenumbers
k to σi = −mΩ ± Nu for k = 0.

However, when the fluid is unstably stratified N2
u < 0, we see that instability will

occur in the range of vertical wavenumber

k2 <
−N2

u q2

4Ω2
. (4.9)

The maximum growth rate σr,max = |Nu| is obtained in the two-dimensional limit k = 0
for any finite value of q. In the case of a viscous fluid within a bounded domain, the
boundary conditions will impose lower bounds on the vertical and radial wavenumbers
k and q whereas viscous and diffusive effects stabilize large wavenumbers. The
selected wavenumbers will depend therefore on the size of the gravitationally unstable
region of the pancake vortex and the Reynolds number.
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As shown in figure 5 for α = 0.85Fh, the vertical velocity of the mode is confined
in the vertical direction, i.e. its vertical size is approximately equal to the height δz

of the gravitationally unstable region which is delimited by dotted lines. Therefore,
the corresponding vertical wavenumber can be estimated to k ≈ π/δz. In contrast,
the mode is concentrated radially and is smaller than the mean radius δr of the
gravitationally unstable region. This feature is observed when α is sufficiently small,
typically α 6 0.9Fh. For larger aspect ratios, the modes tend to be confined both
vertically and radially and even to overshoot in stable regions.

In order to compare the predictions of (4.8) to the numerical observations, we shall
therefore assume that the vertical wavenumber is set to k = π/δz (with free boundary
conditions) but the domain is radially unbounded so that the radial wavenumber q is
free and sets to the most amplified value qmax . Since the total density gradient is not
uniform in the pancake vortex, we assume that the squared Brunt–Väisälä frequency
N2

u is equal to the mean of the squared total Brunt–Väisälä frequency on the axis
of the gravitationally unstable region of the pancake vortex. Similarly, the value of
Ω is taken as the mean value of the angular velocity on the axis of the pancake
vortex in the gravitationally unstable region. The stability problem then reduces to the
well-known case of a layer heated from below between two parallel plates with free
boundary conditions and rotating at constant rate (Chandrasekhar 1961).

We can first note from (4.8) that the most amplified value of q scales like
qmax ∼ ν−1/4 |Nu|1/4 k1/2 when the viscosity ν tends to zero and Nu is large. Using
the fact that δz/Λ depends only on α/Fh, we can deduce that the maximum growth

rate should vary like σmax/N ≈
√

−Nu2/N − C/
√
ReFh for large Reynolds number Re

and small Froude number Fh, where C is a constant which depends on α/Fh only. This
explains the dependence of the growth rate with Re observed in figure 8(a). It shows
also that for a given value of α/Fh, the maximum growth rate σmax/N decreases when
the Froude number decreases as observed in figure 7(a).

The growth rate predicted by (4.8) with the previous estimates and for Re = 500,
Sc = 1 and Fh = 1 is plotted in figure 11(a) with dashed line. The agreement with
the numerical results is satisfactory for α < 0.8Fh in view of all of the simplifying
assumptions used in the theory. As can be seen in figure 11(b), the numerical
frequency scaled by the predicted frequency mΩ is also around unity. The theoretical
growth rate goes to zero for α = 0.87Fh (figure 11a). For this value, the Rayleigh and
Taylor numbers defined as follows

Ra = −N2
uδ

4
z

νκ
, Ta = 4Ω2δ4

z

ν2
, (4.10)

are Ra = 5581 and Ta = 10 674 in agreement with the results of Chandrasekhar (1961).
In contrast, the numerical growth rate for m = 1 goes to zero for α = 1.07Fh for which
Ra = 45 and Ta = 737. Interestingly, Matthews (1988) has considered the stability of a
parabolic density gradient

∂ρb

∂z
= B − 3Az2 (4.11)

where (A, B) are positive constants, which corresponds to a gravitationally unstable
region within two stable infinitely deep layers. Assuming an unbounded fluid, he found
that the critical Rayleigh number for such configuration is much lower Ra = O(100).
This suggests that the previous assumptions of a uniform density gradient and a
bounded fluid along the vertical may be too crude. Thorpe (1994) has computed
the maximum growth rate as a function of the Rayleigh number for the density
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FIGURE 11. (a) Comparison between the theoretical and numerical growth rates as a
function of α/Fh for Fh = 1, Re = 500 and Sc = 1. The solid and dashed lines are
the maximum growth rate predicted for the parabolic density gradient (4.11) and for
a constant density gradient, respectively. The dash-dotted line is the maximum growth
rate obtained for the parabolic density gradient (4.11) without rotation, TaM = 0, by
Thorpe (1994). (b) Numerical frequency scaled by the predicted frequency mΩ as given
in (4.8).

profile (4.11) but only without rotation. We have therefore extended the stability

analysis of Matthews (1988) and Thorpe (1994) to take into account a rotation at

constant angular velocity Ω .

The vertical gradient of total density on the axis of the pancake vortex in the

neighbourhood of the location z = zm ≡ Λ
√

3/4 where it is maximum approximates to

∂ρb

∂z
= −N2ρ0

g

(
1 − C + 6

C

Λ2
(z − zm)2

)
+ O (z − zm)3 (4.12)

where C = 8F2
h ln 2e−3/2/α2. Thus, equation (4.11) will describe well the density

gradient (4.12) near z = zm if we set B = (C − 1)N2ρ0/g and A = 2CN2ρ0/(gΛ2). The

Rayleigh number used by Matthews (1988) and Thorpe (1994) is RaM = gBd4/(ρ0νκ)

where d = (B/A)1/2 is a measure of the height of the unstably stratified region.

Non-dimensionalizing z with d and writing the vertical velocity in the form

uz = W(z)Jm(qr) exp(σ t + imθ), we obtain

(
ScS + Q2 − d2

dz2

) [(
S + Q2 − d2

dz2

)2 (
Q2 − d2

dz2

)
W − TaM

d2W

dz2

]

=
(

S + Q2 − d2

dz2

)
[RaM(1 − 3z2)Q2W] (4.13)

where S = d2s/ν, Q = qd and TaM = 4Ω2d4/ν2 is the Taylor number. In the following,

we take Ω = Γ/(2πR2) exp(−z2
m/Λ2), the angular velocity on the axis of the pancake



Stability of a Gaussian pancake vortex in a stratified fluid 473

vortex at z = zm. Taking the Fourier transform of (4.13) yields
[
(ScS + Q2 + K2)(S + Q2 + K2)(Q2 + K2)

+ TaMK2 ScS + Q2 + K2

S + Q2 + K2
− RaMQ2

]
Ŵ = 3RaMQ2 d2Ŵ

dK2
(4.14)

where

Ŵ(K) =
∫ ∞

−∞
e−iKzW(z) dz. (4.15)

As shown by Matthews (1988), equation (4.14) can be easily solved by a shooting

method with the boundary conditions Ŵ(K) → 0 at large values of K and Ŵ = 1,

dŴ/dK = 0 for K = 0 since W(z) and so Ŵ(K) should be even for the dominant
eigenvalue. The maximum growth rate determined for the set of Rayleigh and Taylor
numbers (RaM, TaM) corresponding to each aspect ratio α for Fh = 1, Sc = 1 and
Re = 500 is shown by a solid line in figure 11(a). The agreement with the numerical
results is very good for α < 0.9Fh and much better than the prediction based on (4.8).
All of the azimuthal wavenumbers are predicted to have the same growth rate provided
that the assumption of a radially unbounded fluid is valid. For α > 0.9Fh, the predicted
growth rate remains in good agreement with the growth rate of the axisymmetric mode
m = 0. In particular, they both vanish around α = 0.95Fh. In contrast, the azimuthal
wavenumbers m = 1, 2 continue to be unstable for larger aspect ratios. The assumption
of a radially unbounded fluid is likely to be no longer valid in this range of α. In the
case of an unstably stratified fluid in an impermeable vertical cylinder, Batchelor &
Nitsche (1993) have found that the azimuthal wavenumbers m = 1 and m = 2 become
also unstable before the mode m = 0 when increasing the Rayleigh number. Thus, the
radial boundary conditions might favour non-axisymmetric modes.

The maximum growth rate in the absence of rotation (i.e. Ω = 0) computed by
Thorpe (1994) is also shown by a dash-dotted line in figure 11(a). As expected, we see
that the rotation is stabilizing.

The growth rates predicted by (4.14) for other values of the horizontal Froude
number: Fh = 1.5, Fh = 0.5, Fh = 0.25 (Re = 500, Sc = 1) and Fh = 0.25, Fh = 1
(Re = 1000, Sc = 1) are compared with the numerical results in figure 12(a). Only the
growth rate of theazimuthal wavenumber m = 0 is shown for simplicity. The prediction
for the Schmidt number Sc = 7 with Fh = 1 and Re = 500 is also tested in figure 12(b).
We can see that the agreement between the theoretical and the numerical growth rate is
always very good except for Fh = 0.25, Re = 500 where a slight departure is observed.
The growth rate predicted for the Schmidt number value Sc = 700 corresponding to
salt stratified water is also plotted in figure 12(b) even if this value has not been
investigated in § 3. The growth rate curves for Sc = 700 and Sc = 7 are in fact very
close.

The most amplified value of q = Q/d, qmax for Fh = 1, Re = 500, Sc = 1 is shown
by a solid line in figure 13(a). It varies between 9 and 12 in the range of α

investigated. The most amplified value of q predicted by (4.8) is similar as shown
by a dashed line (figure 13a). The location of the first zero in the radial direction
is predicted to be r0 = µm/qmax where µm is the first zero of the Bessel function Jm.
For α = 0.85Fh, the most amplified value of the radial wavenumber is qmax = 9.2/R.
Hence, we have r0 ≈ 0.26R for the azimuthal wavenumber m = 0, r0 ≈ 0.4R for m = 1
and r0 ≈ 0.55R for m = 2. As seen in figure 5, this agrees quite well with the radial
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FIGURE 12. Comparison between the theoretical and the numerical growth rates as a
function of α/Fh for m = 0. The different lines correspond to the maximum growth rate
predicted for the parabolic density gradient (4.11) (a) for different Froude numbers Fh = 1.5
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FIGURE 13. (a) Most amplified radial wavenumber qmax as a function of α/Fh for
Fh = 1,Re = 500 and Sc = 1. The solid and dashed lines correspond to the parabolic density
gradient (4.11) and a constant density gradient, respectively. The dash-dotted line corresponds
to the parabolic density gradient (4.11) without rotation TaM = 0 (Thorpe 1994). (b) Growth
rate predicted for the parabolic density gradient (4.11) as a function of m for α = 0.7Fh and
for Re = 250, 500 and 750.

structure of the vertical velocity of the modes obtained in the numerical stability
analysis.

However, this implies that the radius of the first node r0 will become larger
than the radial size δr of the unstable region when the azimuthal wavenumber m

increases. At this point, it is reasonable to assume that q will be then selected to
be approximately q = µm/δr. Figure 13(b) shows the theoretical growth rate as a
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function of the azimuthal wavenumber with δr = 0.6 for α = 0.7Fh and the three
Reynolds number Re = [250, 500, 750]. The growth rates predicted for the azimuthal
wavenumbers m = 0, 1 are in good agreement with the numerical results for all of the
Reynolds numbers (figure 8b). Nevertheless, the growth rate of the azimuthal modes
m > 3 decreases with m much slowly than in the numerics (see figure 8b).

In order to be more quantitative and improve the theory, one would need to take
also into account the non-uniformity of the density gradient in the radial direction.
Accordingly, it would be also necessary to take into account the variation of the
angular velocity Ω along the vertical. However, such analysis seems much more
complicated and not significantly simpler than considering the stability of the full
pancake vortex.

4.3. Comparison with experimental results

We can try to compare the predicted stability threshold with the previous
experiments of Flor & van Heijst (1996) and Beckers et al. (2001). In these two
studies, the velocity profile of the pancake vortex fits well to the profile: uθb =
Ωmaxrexp−r2/R2

exp−z2/Λ2
. For this Gaussian angular velocity profile, gravitationally

unstable regions appear when α < αc = 0.67Fh, where Fh = Ωmax/N. The radius of
the pancake vortices in the experiments of Flor & van Heijst (1996) is around 4 cm

while their thickness is approximately Λ ∼ 3
√

2 cm giving an aspect ratio around
unity. They reported that they were unstable if F > 0.1 with a Froude number
defined as F = Vmax/(NRmax) where Vmax is the maximum azimuthal velocity and
Rmax the corresponding radius. The relation with the present definition for the Froude
number is F = 0.61Fh so that the threshold F > 0.1 corresponds to Fh > 0.16. This
critical Froude number is therefore much smaller than the threshold Fh > 1.5 for the
gravitational instability for α ≈ 1, but the instability reported by Flor & van Heijst
(1996) is of different nature: it is a radial shear instability due to the inflection point
present in the radial vorticity profile. Beckers et al. (2001) have also measured both
the radial and vertical velocity profiles of one pancake vortex and they estimated that

the Froude number is F = 0.3 and the aspect ratio α = 0.3
√

2. Their definition of the
Froude number is related to that used herein by F = 2Fh ∗ √

πα. Therefore, we have
α/Fh = 2.1 which is well above the stability threshold αc/Fh = 0.67.

5. Generalization to arbitrary velocity profiles

The results presented so far have been obtained for the specific case of a
Lamb–Oseen vortex with a Gaussian distribution in the vertical direction. For this
case, a gravitational unstable region appear when decreasing the aspect ratio, whereas
the necessary condition for a vertical shear instability 0 < min(Ri) < 1/4 is never
satisfied. The aim of this section is to determine to what extent this result depends on
the vortex profile. To this end, we consider general velocity profiles of the form

ũθb = h(r̃)f (z̃) (5.1)

where r̃ = r/R, z̃ = z/Λ and ũθb = uθb/Γ/2πR. For this general velocity profile, the
Richardson number reads

Ri =

α2

F2
h

− 2 (ff ′)
′
IG

f ′2h2
, (5.2)
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where IG =
∫ ∞

r̃
h2(R)/R dR and the prime denotes differentiation with respect to the

variable z̃. The necessary condition for the shear instability 0 < min(Ri) < 1/4 will be
satisfied if the vertical gradient of total density is everywhere negative, i.e.

α2

F2
h

> 2 max[(ff ′)
′
IG] (5.3)

and if

α2

F2
h

< 2 (ff ′)
′
(z̃s)IG(r̃s) + 1

4
h2(r̃s)f

′2(z̃s) (5.4)

where r̃ = r̃s, z̃ = z̃s is the point where the Richardson number is minimum. Combining
(5.3) and (5.4) shows that we must have

2 max[(ff ′)
′
IG] < 2 (ff ′)

′
(z̃s)IG(r̃s) + 1

4
h2(r̃s)f

′2(z̃s). (5.5)

Since IG is monotonically decreasing with r̃, it is maximum at r̃ = 0. Let
us denote z̃m the vertical level where f ′ is maximum. Since f ′′(z̃m) = 0, we
have f ′2(z̃s) 6 f ′2(z̃m) = f ′2(z̃m) + f (z̃m)f ′′(z̃m) 6 max[(ff ′)′]. Evidently, we have also
(ff ′)′

(z̃s) 6 max[(ff ′)′]. Therefore, a necessary condition ensuring that (5.5) can be
fulfilled is

IG(0) < IG(r̃s) + 1

8
h2(r̃s). (5.6)

This condition is interesting since it involves only the radial profile h(r̃) of azimuthal
velocity. Since h(0) = 0 for smooth vortices, equation (5.6) requires that the function
F(r̃) = IG(r̃) + (1/8)h2(r̃) has a maximum value larger than F(0). This first requires
that the derivative F′(r̃) = −h2/r̃ + hh′/4 is positive for some finite radius r̃

(primes denote now differentiation with respect to r). In terms of angular velocity
Ω(r̃) = h(r̃)/r̃, the latter condition reads

F′(r̃) = Ω r̃

4
[−3Ω + r̃Ω ′] > 0, (5.7)

or, equivalently,

F′(r̃) = Ω r̃

4
[−5Ω + ζ ] > 0, (5.8)

where ζ = r̃Ω ′ + 2Ω is the vertical vorticity. We can see easily that the condition
(5.7) is never satisfied for classical vortices since the angular velocity is generally
decreasing monotonically with r̃, i.e. Ω ′ < 0. In fact, (5.7)–(5.8) are very restrictive
since (5.8) shows that it is necessary to have some radius where the vertical vorticity
is five times larger than the angular velocity.

This condition is stringent because the vertical shear of azimuthal velocity implies
an important anomaly of density through the thermal wind relation (2.5). When
decreasing the aspect ratio, the vertical gradient of total density becomes then
positive in the vortex core before that the vertical shear is sufficiently strong for the
Kelvin–Helmholtz instability to develop. Since this effect is intimately related to the
balance (2.1) between the radial gradient of pressure and the centrifugal acceleration,
we may expect that (5.7) is satisfied for flows where curvature effects are smaller
than for classical vortices. For example, for a hollow vortex with the radial profile

h(r̃) = r̃e− (r̃−Rc)2
, the condition (5.7) is satisfied when the characteristic radius Rc is

large: Rc >
√

6. The condition (5.7) is only a necessary condition and in practice, the
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condition (5.5) can be satisfied only when Rc > 2.95 for the vertical profile f (z̃) = e−z̃2
.

We note that for such a large Rc, this vortex profile could be approximated, locally, as
a jet since the curvature is small.

The conditions (5.6) and (5.7) apply only to azimuthal velocity profiles that are
separable in the vertical and radial directions. For general velocity profiles of the
form ũθb = f (r̃, z̃), we did not succeed in deriving a general necessary condition. The
conditions for the shear and gravitational instabilities have thus to be computed for
each vortex profile. For example, in the case of the vertical vorticity profile

ωzb(r̃, z̃) = 2[1 − tanh(r̃2 + z̃2)], (5.9)

the threshold for the gravitational instability is αc = 1.24Fh while the Richardson
criterion (4.3) is never satisfied: min(Ri) is larger than 1.1 for α > 1.24Fh and then
becomes abruptly negative for α < 1.24Fh. Therefore, the same conclusion as for the
Lamb–Oseen vortex applies to this particular profile.

6. Criterion for the centrifugal instability

In a stratified, inviscid and incompressible fluid, the Rayleigh criterion for the
centrifugal instability is modified to (Solberg 1933; Elliassen & Kleinschmidt 1957)

Φ = 1

r3

∂ (ruθb)
2

∂r

∣∣∣∣
ρb

< 0 (6.1)

somewhere in the flow. The only difference with the Rayleigh criterion in
homogeneous fluids is that the radial derivative should be taken along isopycnal
surfaces. This criterion can be easily derived heuristically by considering the variation
of total energy resulting from the exchange of two fluid particles. Ooyama (1966) has
shown rigourously that (6.1) is a necessary and sufficient condition for the instability
of axisymmetric disturbances. Note that such inertial instability is generally called
‘symmetric instability’ in the meteorological literature.

The quantity Φ can also be expressed in terms of the potential vorticity Π = −→
ω ·

−→∇ρ

(Hoskins 1974). Indeed, we have

Φ = 1

r3

∂

∂r
(ruθb)

2

∣∣∣∣
z

− 1

r3

∂

∂z
(ruθb)

2

∣∣∣∣
z

∂ρb

∂r
∂ρb

∂z

= 2

r
uθb

Π

∂ρb

∂z

. (6.2)

The latter relation shows that the instability condition (6.1) is equivalent to Π > 0 for
stably stratified fluids ∂ρb/∂z 6 0 if uθb > 0 as in (2.1). The contours of Φ for the
velocity profile (2.1) and density profile (2.6) are shown in figure 14 for α = 1.12.
This aspect ratio is just above the limit for instability α = 1.112. We see that Φ is
slightly negative (grey regions in figure 14) in the outer regions rmin > 1.5R because
the potential vorticity of the basic vortex (2.1) and (2.6) is not zero but slightly
positive outside the vortex core. However, the values of Φ are very small so that it is
expected to be only marginally unstable and probably explain why such instability has
not been observed.

7. Conclusions

We have investigated the stability of a pancake vortex with a Gaussian vorticity
profile in a stratified fluid as a function of its aspect ratio α, the horizontal Froude
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FIGURE 14. Contours of Φ/Φmax given by (6.2) in the (r, z)-plane for the profile (2.1) and
α = 1.12 which implies a stable stratification everywhere. In the white regions Φ > 0 while in
the grey regions Φ is slightly negative. The contour interval is 0.5.

number Fh, the Reynolds number Re and the Schmidt number Sc. The vorticity of
such vortex is single-signed suggesting that it should never be unstable to a ‘radial’
two-dimensional shear instability. When decreasing the aspect ratio, we have shown
that the first and dominant instability is a gravitational instability related to the
density anomaly due to the thermal wind balance. The predicted critical aspect ratio
αc = 1.11Fh for the gravitational instability is in very good agreement with the critical
value obtained in the numerical stability analysis αc ∼ 1.1Fh for sufficiently large
Reynolds number.

In order to explain the properties of the gravitational instability, we have extended
the stability analysis of Matthews (1988) and Thorpe (1994) of a viscous diffusive
fluid with a parabolic vertical density gradient to include a rotation at constant angular
velocity. Such flow resembles the unstably stratified region embedded within the
pancake vortex. The comparison between the theoretical and numerical results reveal a
good agreement. Both the numerical results and the theoretical predictions show that
decreasing the aspect ratio destabilizes a larger number of azimuthal wavenumbers m,
but the modes m = 0, 1, 2 remain dominant. A similar behaviour is observed when
increasing the Reynolds number: the band of unstable azimuthal wavenumber m is
widened and the growth rate of each azimuthal mode increases.

Finally, the dominance of the gravitational instability over the vertical shear
instability has been shown to hold for a general class of pancake vortices with angular

velocity of the form Ω̃(r, z) = Ω(r)f (z) provided that r∂Ω/∂r < 3Ω everywhere. This
condition does not involve the vertical profile of angular velocity f (z). It shows that
the vertical shear instability should never occur on classical vortices since Ω generally
decreases monotonically with the radius. However, hollow pancake vortices in which
curvature effects are weaker than for vortices might be unstable to a shear instability
instead of the gravitational instability if they are sufficiently hollow and if the vertical
shear is sufficiently strong.

Even if the basic flow investigated here is very simple, we may envision some
general consequences for stratified turbulence. The present study suggests that the



Stability of a Gaussian pancake vortex in a stratified fluid 479

gravitational instability should play a role as important as the shear instability in the
dynamic of small vertical length scales. However, in contrast to the shear instability
that generates horizontal billows of the order of the buoyancy length scale (Waite
2011; Augier & Billant 2011), the gravitational instability destabilizes a wide range
of horizontal length scales whose small-scale cut-off is controlled by diffusive effects.
Therefore, it may transfer some energy directly to dissipative scales. Hence, it would
be interesting to further investigate its role and its effect in the energy cascade in
stratified turbulence.
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