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We study the compression of viscous filaments at constant velocity. If slender enough, the filament

bends, a viscous analogue of Euler elastic buckling. We measure the characteristic time of this viscous

buckling and discuss the link with the elastic critical compression. We show that the analogy only holds in

the limit of large capillary numbers. Otherwise capillarity has a stabilizing effect, which suppresses

buckling.
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Since Euler’s elastica [1], elastic buckling has been

widely studied and has become a classical field in solid

mechanics [2]; beyond a critical compression, a solid rod

bends, as the energy of flexure becomes smaller than the

cost of compression. Besides the theoretical similarity

underlined by Stokes and Rayleigh [3,4], there is evidence

that liquid rods can behave like solid ones if viscous

enough [5]. For example, such filaments in the field of

gravity adopt the shape of solid catenaries [6–8], while

they coil as ropes when hitting a substrate [9,10]. Similarly,

viscous jets or sheets can sometimes fold [11–21], and this

effect is suspected to be the cause of irregularities in large

glass plates made from molten glass [22] and responsible

for folded geological structures [15,23]. Here, we wonder

whether liquid rods also buckle when compressed and

discuss the criteria for observing this phenomenon.

By stretching a drop of viscosity � and surface tension

�, we first create a vertical filament of length L and

diameter D. The high viscosity prevents the thread from

undergoing Rayleigh instability and breaking into several

droplets [24]. Then, the lower part of the stretching device

is pushed back towards the upper part at a constant velocity

U. The experiment is recorded from the side, and we

display in Fig. 1 two image sequences showing the com-

pression of vertical threads of initial length L ¼ 8 mm,

diameterD ¼ 0:6 mm, and made of silicon oil of viscosity

� ¼ 500 Pa � s (i.e., 5� 105 times the viscosity of water).

The behavior of the filament is very different, according

to the compression velocity U. For U ¼ 200 �m=s
[Fig. 1(a)], the liquid cylinder simply becomes shorter

and thicker, a consequence of its liquid nature. The same

filament compressed at U ¼ 1 mm=s [Fig. 1(b)] starts to
bend after one second: the liquid thread buckles as a solid

rod. The Reynolds number �UL=� (where � is the liquid

density) is of order 10�5 in this experiment. Because of the

existence of free surfaces, the Stokes flow loses time

reversibility [25]: compression is not simply the reverse

of stretching but generates buckling. However, contrasting

with the example of honey coiling, gravity plays no role

here, as deduced from the up-down symmetry of the fila-

ment in Fig. 1. This low gravity regime is achieved when

the Laplace pressure 2�=D exceeds the hydrostatic pres-

sure �gL=2. This condition is satisfied for LD< 4a2,

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

�=�g
p

is the capillary length (1.5 mm for

silicon oil), i.e., for short or thin filaments, like in all the

experiments reported here.

We first focus on what happens at high compression

velocity [Fig. 1(b)]. When the filament buckles, we mea-

sure the time evolution of the off-axis deflection � of the

centerline of the filament, defined in Figs. 1 and 4. Figure 2

shows the results for filaments of different lengths. Two

regimes are observed. At short time, the thread remains

axisymmetric (� ¼ 0), and it thickens; after some delay

(t > �), � increases with t. The deflection then varies as the

FIG. 1. Image sequences of a viscous filament (� ¼ 500 Pa:s,
� ¼ 20 mN=m) compressed at a constant velocity U. The initial

length of the thread is L ¼ 8 mm, and its initial diameter

D ¼ 0:6 mm. Since the diameter is not homogeneous along

the filament, we chose to denote D the minimal diameter,

measured at the middle of the thread. (a) U ¼ 200 �m=s, which
corresponds to Ca ¼ �U=� � 5; the interval �t between two

images is 4 s; (b) U ¼ 1 mm=s and Ca � 25; �t ¼ 0:8 s. The

filament bends after some delay, and we measure its off-axis

deflection � as a function of time.
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square root of time (solid lines). This is a geometrical

consequence of the conservation of filament length after �,
which imposes �2 � LUðt� �Þ for t � L=U.

The time � [extracted by extrapolating the square root

behavior of �ðtÞ down to � ¼ 0] can be seen as a character-

istic time of viscous buckling. Figure 2 indicates that �
decreases with L, and Fig. 3 shows that it increases with the
initial diameter D of the thread: slender bodies tend to

buckle earlier. Figure 3 also shows that � decreases with

the compression velocity U.

Before trying to understand viscous buckling, let us first

remind ourselves of the case of an elastic rod of Young

modulus E, compressed by a distance x, which slightly

deviates from its axis [Fig. 4(a)]. The compressive force

F� ED2x=L tends to increase the deflection with a torque

F�. When deflected by a quantity �, the rod is bent with a

curvature �� �=L2 (for � � L). The bending stiffness

scales as ED4 so that the torque resisting bending is

ED4�=L2. The two torques can be compared, and buckling

will be favored if x > D2=L, that is, if the compressive force

F is higher than Euler’s threshold Fc � ED4=L2 [1,2].

For a filament of viscosity � compressed at a velocityU,

the compressive viscous force is ð�U=LÞD2; here, the

length scale associated with the velocity gradient is L
because the flow is extensional due to the presence of

free surfaces. The resulting torque is ð�U=LÞD2�. We

must also evaluate the nature of the torque opposing bend-

ing. For a filament bent by a curvature �, the outer and

inner parts are longer and shorter by a length DL�
[Fig. 4(b)]. If the curvature changes, the rate of stretching

(or compression) is D _�, which implies a viscous stress

�D _�, hence, a viscous torque M� �D4 _�. This expres-

sion is similar to the elastic torque ED4� resisting bending

in a solid. This is a consequence of the similarity of viscous

liquid and elastic solid constitutive equations [3,4].

Therefore, an analogy can be made between viscous and

elastic effects in which � _� corresponds to E�. In our

situation, we have �� �=L2, and the torque balance can

be written

�D2
U

L
�� �D4

_�

L2
: (1)

This equation defines a characteristic time

�0 ¼
D2

LU
: (2)

We plot in Fig. 5 the experimental buckling time � as a

function of �0. The whole collection of data collapses on a

single line of slope 20: �0 is indeed the characteristic time

for buckling. Since buckling can only be observed if � is

shorter than the experiment duration L=U, this leads to a

first criterion for buckling: D=L < 1=
ffiffiffiffiffiffi

20
p

� 0:2; only

slender enough filaments are likely to buckle. It appears

that the elastic buckling threshold x * D2=L also holds for

viscous filaments (apart from the numerical factor); in the

latter case, we have x ¼ Ut, which yields, once introduced

FIG. 2 (color online). Deflection � as a function of time t. The
data have been obtained for � ¼ 103 Pa � s, D ¼ 0:4 mm,

U ¼ 5 mm=s, and two initial lengths: L ¼ 11 mm (solid dots)

and L ¼ 5 mm (open dots). The solid lines correspond to

� /
ffiffiffiffiffiffiffiffiffiffiffi

t� �
p

.

FIG. 3. Buckling time � as a function of the diameter D
for U ¼ 3 mm=s (�), U ¼ 5 mm=s (solid squares), and

U ¼ 7 mm=s (open squares). The filament viscosity is

� ¼ 103 Pa � s, and its length L ¼ 11 mm. The dotted lines

are guides for the eye.

FIG. 4. (a) Under compression, a slender body (of length L and

diameter D) can bend and deviate from its axis. The deflection �
induces a curvature �� �=L2. (b) Sketch of a portion of

filament (of length L and diameter D) bent with a curvature �.
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in the elastic criterion, t > �0. One might actually wonder

whether the buckling phenomenon observed in our experi-

ments could result from the elasticity of the polymer

chains. However, the compression rate U=L�0:02–1 s�1

is always smaller than the critical shear rate T�1 �
3–50 s�1 for shear thinning of the silicon oils, which

confirms the dominant role of viscosity, as also observed

with a purely viscous liquid such as honey (see

Supplemental Material [26]).

Equation (1) predicts that the filament is intrinsically

unstable [27], with an exponential growth for �. However,
the fully developed exponential regime cannot be seen in

the experiments because stretching soon dominates bend-

ing: Eq. (1) is valid only if the stretching rate � _�=L2 is

smaller than D _��D _�=L2, i.e., for � <D. If �0 denotes

the initial deflection, � ¼ D is reached after a time

�� �0 lnðD=�0Þ. Taking the scale of thermal fluctuations

for �0 (�
ffiffiffiffiffiffiffiffiffiffiffiffi

kT=�
p

� 1 nm) and D� 1 mm, we find

� � 14�0. Later on, for � >D, � is set by the finite length

of the filament and varies as the square root of time, as seen

earlier.

This elasticity-viscosity analogy holds in the limit of

dominant viscous effects. Surface tension, which was ne-

glected in the derivation of Eq. (1), has a stabilizing effect

on buckling [28,29]: an axisymmetric shape has less free

surface than a buckled shape. This effect can be expressed

as a stretching capillary force �D driving the liquid to-

wards the ends of the filament. Surface tension will be

negligible when �D is smaller than the compressive vis-

cous force ð�U=LÞD2, i.e., for

D

L

�U

�
> 1: (3)

Logically, this new criterion depends on the capillary

number Ca ¼ �U=�. It implies that buckling should dis-

appear at small velocities, as indeed observed in Fig. 1(a).

Therefore two conditions have to be fulfilled to observe

buckling: (i) the filament must be slender enough [Eq. (2)

and below, � � D=L < 0:2]; (ii) surface tension has to be

negligible [Eq. (3)]. These two criteria can be summarized

in the (�, Ca) phase diagram in Fig. 6(a), in which the

hatched area is the region of buckling expected from these

criteria. However, as long as there is no deflection, the ratio

� in an experiment increases at fixed capillary number,

following the dotted line in the diagram. If Ca is high

enough [gray region in Fig. 6(a)], one will eventually enter

the region for buckling. Consequently, buckling should be

observed for slender enough filaments (� < �c � 10�1)

and at quick enough compressions, that is, Ca * Cac �
��1
c � 10, in excellent agreement with the experimental

FIG. 5. Experimental time � as a function of �0. The open dots
correspond to L ¼ 5 mm, the solid dots to L ¼ 11 mm.D varies

between 0.1 and 1 mm and U between 3 and 7 mm=s. The
silicon oil viscosity is � ¼ 103 Pa � s. The straight line shows

� ¼ 20�0.

FIG. 6. (a) Phase diagram for viscous buckling. The hatched

area is the region where buckling is expected, following the two

criteria � < �c and Ca� > 1. In an experiment, � increases at

fixed Ca, following the dotted line. As this line enters the

hatched region, buckling will occur. Therefore, the observable

buckling region is the gray rectangle (� < �c, Ca> 1=�c).
(b) Experimental phase diagram: each point corresponds to an

experiment, and we report if there is buckling (solid symbols) or

not (empty symbols). Our criterion for buckling is � >D at the

end of the experiment (t� L=U). Symbols correspond to differ-

ent oil viscosities: (5) � ¼ 102 Pa � s, (�) � ¼ 3� 102 Pa � s,
(h) � ¼ 5� 102 Pa � s, (	) � ¼ 103 Pa � s. Experiments done

with viscous honey give similar results (see Supplemental

Material [26]).
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phase diagram in Fig. 6(b). In the (�, Ca) graph, it is clearly
observed that the buckling region is the top-left part of

the diagram, with �c � 10�1 and Cac � 10. For the ex-

periments of Fig. 1 (� ¼ 500 Pa � s and � � 20 mN=m),

this corresponds to a minimum buckling velocity

Uc ¼ 0:4 mm=s. Note, finally, that this picture holds if

inertia is negligible. Taking U ¼ Uc ¼ 10�=� and a

Reynolds number smaller than 1, this is expected for

� * 1 Pa � s, a condition always fulfilled in this study.

As a conclusion, experiments and models confirm

the strength of the analogy between elastic and viscous

buckling: this phenomenon is observed when compressing

quick enough slender viscous filaments. This simple ex-

periment also provides some insight on the physics of other

viscous buckling phenomena, such as the coiling of a

viscous jet, a more complex situation since gravity breaks

the up-down symmetry of the jet; for thin jets (when

surface tension is not negligible), the minimum jet height

for buckling is proportional to its diameter, as expected

from criterion (i), except for low injection velocities [cri-

terion (ii)], for which the jet height (and thus the impor-

tance of gravity) has to be increased [11]. It would be

interesting in future work to consider the buckling of

filaments when LD * a2 and compare it to the coiling of

thick jets, for which viscous-dominated or gravity-

dominated buckling criteria are expected [10].
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