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2LadHyX, École Polytechnique, 91128 Palaiseau CEDEX, France
3LIMSI-CNRS, UPR 3251, BP 133, 91403 Orsay CEDEX, France

(Received 23 November 2011; revised 4 July 2012; accepted 14 September 2012;

first published online 23 October 2012)

The flow field around a solid particle moving in a shear flow along a porous slab

is obtained by solving the coupled Stokes–Darcy problem with the Beavers and

Joseph slip boundary condition on the slab interfaces. The solution involves the

Green’s function of this coupled problem, which is given here. It is shown that the

classical boundary integral method using this Green’s function is inappropriate because

of supplementary contributions due to the slip on the slab interfaces. An ‘indirect

boundary integral method’ is therefore proposed, in which the unknown density on

the particle surface is not the actual stress, but yet allows calculation of the force

and torque on the particle. Various results are provided for the normalized force and

torque, namely friction factors, on the particle. The cases of a sphere and an ellipsoid

are considered. It is shown that the relationships between friction coefficients (torque

due to rotation and force due to translation) that are classical for a no-slip plane do

not apply here. This difference is exhibited. Finally, results for the velocity of a freely

moving particle in a linear and a quadratic shear flow are presented, for both a sphere

and an ellipsoid.

Key words: boundary integral methods, low-Reynolds-number flows, porous media

1. Introduction

Modelling the motion of particles in a flow along a porous membrane has various

practical applications. In cross-flow microfiltration (see Belfort, Davis & Zydney

1994), suspended particles are retained by microporous membranes. The flow along

the membrane is applied so as to diminish membrane clogging. In the asymmetric

field-flow fractionation method in analytical chemistry (see Wahlund & Giddings

1987), a transverse flow across a porous wall of a channel moves particles across

the channel, so that they reach streamlines with different velocities and are thereby

separated. In biology, cells entrained in a flow along a biological membrane may

exchange chemicals across the membrane (see e.g. Khakpour & Vafai 2008).
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More generally, we consider here a porous plane slab, the thickness of which
is arbitrary, from a thin membrane up to a semi-infinite porous medium. The
present paper is concerned with the model of a solid particle entrained in a shear
flow along the porous slab. Typical particle dimensions, for example, for cross-flow
microfiltration, are 0.01–100 µm and typical pore sizes are 0.1–10 µm. Here we treat
situations where the particle size is larger than the pore size, so that particles are
trapped at the solid wall when the fluid is sucked across it.

Owing to the small size of particles suspended in water or in a fluid of similar
viscosity, the Reynolds number relative to a particle is usually low, so that the Stokes
equations of fluid motion apply. Here, Darcy’s equations are used to model the flow
in the porous medium with permeability K > 0 adjacent to the fluid domain. As for
values of the parameters, for Darcy’s model to be valid the slab thickness e should

be much larger than the pore size, which is of the order of
√

K. Also, the particle

size a should be much larger than the pore size, a ≫
√

K. The selected ranges of these

and additional parameters will be specified later on. Note that if e/
√

K were either
of order unity or smaller, Darcy’s model would be insufficient and should be replaced
by Brinkman’s model, which better describes the fluid flow in pores. That model falls
outside of the scope of the present article.

Continuity conditions for the flow normal velocity and pressure apply across
the boundary between the fluid domain and the porous medium. As for the fluid
velocity along the boundary, various models have been proposed. Classically, a no-slip
condition is used on the fluid side, at scales that are large compared with the pore size.
On the basis of their experiments, Beavers & Joseph (1967) proposed to account for a
slip velocity that is proportional to the shear rate at the scale of a pore:

∂us

∂n
= σ√

K
(us − ud). (1.1)

Here ∂/∂n is the derivative in the direction normal to the interface (where the n axis
points into the fluid domain), and us and ud are respectively the tangential component
of the fluid velocity in the fluid flow and porous medium. The above slip depends on a
dimensionless coefficient σ > 0 (1/σ may be called a slip coefficient) that is of order
unity, typically in the range [0, 10]. Richardson (1971), Taylor (1971) and Beavers,
Sparrow & Masha (1974) have shown that σ strongly depends on the geometry of the
transition region between the fluid and porous medium. Since σ is of order unity, (1.1)

then shows that the typical slip length b =
√

K/σ is of the order of
√

K, that is, of
the order of the pore size. The condition (1.1) was later formalized by Saffman (1971).
However, he considered the case of a low permeability, keeping only the us term on
the fluid side in (1.1) since ud then is smaller. Other types of boundary conditions
have been proposed; for example, Ochoa-Tapia & Whitaker (1995a,b) consider a jump
in the shear rate at the interface. This condition was later discussed in Chandesris
& Jamet (2007) and Valdés-Parada, Goyeau & Ochoa-tapia (2007). Without entering
the ongoing discussion about various possible conditions, the so-called Beavers and
Joseph boundary condition (1.1), to be denoted hereafter as BJ, will be adopted
here.

There have been various solutions for the problem of a particle near a porous slab
in creeping flow. Goren (1979) provided an analytical solution for the motion of a
sphere normal to a very thin porous membrane. He assumed the no-slip tangential
condition on the porous medium interface. The departure of a sphere from contact
with the membrane was treated by Nir (1981). Then, Sherwood (1988) solved the case
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of a sphere moving towards a permeable half-space, and Michalopoulou, Burganos
& Payatakes (1992) considered a solid sphere moving towards a permeable spherical
obstacle. Note that Payatakes & Dassios (1987) and Burganos et al. (1992) considered
the opposite case of a permeable sphere moving towards a solid wall. Apart from these
analytical solutions using bispherical coordinates (and tangent sphere coordinates for
the contact situation), there have been numerical solutions in the case when the no-slip
condition applies on the porous medium interface. Elasmi & Feuillebois (2003) used
the boundary integral method together with the Green’s function that they calculated
(see Elasmi & Feuillebois 2001) to treat the case of a sphere moving towards a
porous slab of finite thickness. The pressure was assumed to be constant on the
other side of the slab. The method of fundamental solution was applied in Debbech,
Elasmi & Feuillebois (2010) to treat the case of a sphere moving towards a thin
porous membrane, also using the Green’s function obtained by Elasmi & Feuillebois
(2001).

This paper considers the motion of a solid and arbitrarily shaped particle entrained
in a shear flow along a porous slab (there is also a transverse flow through the
slab). By linearity of the Stokes and Darcy equations, this general problem may
be considered as the sum of elementary ones. The tangential boundary condition
on both interfaces of the slab is the slip condition (1.1). As opposed to the case
treated in Elasmi & Feuillebois (2003), there is no assumption concerning the flow
on the other side of the slab, but more generally a condition at infinity in that fluid
domain.

The first idea is to use a boundary integral method (BIM), which appears to be
appropriate for such problems. For that purpose, an appropriate Green’s function is
derived. However, it is shown below that the classical BIM fails to represent the slip
boundary condition on the porous interface. Therefore, an indirect boundary integral
method (IBIM) is proposed instead.

The outline of the paper is as follows. Section 2 presents the problem at hand,
together with the notation and basic material. It is then shown in § 3 why the classical
BIM raises a peculiar problem when using the slip boundary condition on a porous
slab. The proposed novel IBIM avoids this difficulty. It eventually amounts to solving
a Fredholm integral equation. The procedure to solve the integral equation numerically
in the general case of a particle at any distance from the porous slab is presented
in § 4. Results are displayed and discussed in § 5. Finally, conclusions are given
in § 6.

2. Governing problems

This section introduces the governing equations for the basic problems associated
with the motion of a solid particle near a solid slab.

2.1. Prescribed motion of a solid particle in a quiescent fluid

Let us consider, as sketched in figure 1, a motionless porous slab S with thickness e

and parallel plane boundaries Σl and Σu immersed in a Newtonian fluid with
viscosity µ and density ρ.

In a Cartesian coordinate system (x1, x2, x3) with origin O attached to the slab, the
boundaries Σl and Σu are represented by x3 = −e and x3 = 0, respectively. A solid
particle P with centre of mass O′ and smooth boundary S is immersed near O in the
upper (x3 > 0) fluid domain D . Let the position of O′ be on the x3 axis and let d be
the gap between the particle and Σu. In this subsection, we consider a particle moving
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FIGURE 1. A solid particle P with length scale a experiencing a prescribed rigid-body
motion (U,Ω) in a quiescent Newtonian fluid with viscosity µ above a porous slab S with
permeability K > 0.

in a quiescent fluid as a rigid body with translational velocity U (the velocity of O′)
and rotational velocity Ω relative to the slab. Such a motion induces flow fields in the
domain D , in the porous slab S and also in the lower fluid domain D ′ represented
by x3 6 −e. Let the fluid velocity and pressure in domains D , D ′ and S be denoted
by (u, p), (u′, p′) and (u′′, p′′), respectively. Let the particle typical length scale be a

(for a spherical particle, a will be its radius) and let the typical velocity scale on the
particle surface be V . Assuming the Reynolds number to be low, i.e. Re = ρVa/µ≪ 1,
the Stokes equations apply in the fluid domains:

µ∇2u = ∇p, ∇ ·u = 0 in D, (2.1a)

µ∇2u′ = ∇p′, ∇ ·u′ = 0 in D ′. (2.1b)

The flow in the porous slab S is modelled by the Darcy equations

u′′ = −K

µ
∇p′′, ∇ ·u′′ = 0 in S , (2.2)

where K > 0 is the permeability of the porous medium. Equations (2.1) and (2.2)
are supplemented by several boundary conditions. At the porous slab boundaries,
continuity conditions apply for the pressure and the normal component of the velocity:

p′ = p′′, (u′ − u′′) · e3 = 0 on Σl, (2.3a)

p = p′′, (u − u′′) · e3 = 0 on Σu, (2.3b)

where e3 is the unit normal vector in the x3 direction. In the tangential direction, the
BJ boundary condition (1.1) is assumed to apply on both boundaries:

∂u′

∂x3

· ej = − σ√
K
(u′ − u′′) · ej (for j = 1, 2) on Σl, (2.4a)

∂u

∂x3

· ej =
σ√
K
(u − u′′) · ej (for j = 1, 2) on Σu, (2.4b)

where ej is the unit normal vector in direction j = 1, 2. The boundary conditions (2.4)
then allow for a slip of the fluid on the porous slab boundaries.
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In this subsection, we consider that the fluid is at rest far from the moving particle,
and thus the far-field behaviour is

(u,u′,u′′)→ (0, 0, 0), (p, p′, p′′)→ (0, 0, 0) as |x| → ∞, (2.5)

where x is a vector pointing from O to a point in the flow field. Finally, the no-slip
boundary condition on the particle surface is, setting x′ = x − OO′,

u = U + Ω × x′ on S. (2.6)

The flow field (u, p) with stress tensor σ exerts a force Fh on the particle and a torque
Γh about its centre of mass O′ given by

Fh =
∫

S

σ ·n dS, Γh =
∫

S

x′ × σ ·n dS, (2.7)

where n is the unit vector normal to S and pointing into the fluid. For a
prescribed particle P (i.e. prescribed shape and location) and rigid-body motion
(U,Ω), the coupled flow fields (u, p), (u′, p′) and (u′′, p′′) solutions of (2.1)–(2.6)

and the vectors Fh and Γh depend upon the lengths e,
√

K and the dimensionless
parameter σ .

We end this subsection with some classical material and notation. By linearity
of the force and torque functionals, the force and torque (2.7) are obtained in the
form

Fh = −µ[A ·U + B ·Ω ], Γh = −µ[C ·U + D ·Ω ], (2.8)

where A, B, C and D are second-rank tensors. It is then equivalent to our problem
and practically simpler to search, by linearity, for the sum of six independent flow
fields in D , three for translation (u(i)t , p(i)t ) and three for rotation (u(i)r , p(i)r ), for
i = 1, 2, 3, with the following boundary conditions on the solid particle:

u(i)t = ei and u(i)r = ei × x′ (for i = 1, 2, 3) on S (2.9)

and related flow fields in S and D ′, solutions of (2.1)–(2.5). Denoting the associated
stress tensors by σ

(i)
t and σ

(i)
r , the Cartesian components of the tensors A, B, C and D

introduced in (2.8) therefore obey:

Aji = − 1

µ

∫

S

[σ (i)
t ·n] · ej dS, Bji = − 1

µ

∫

S

[σ (i)
r ·n] · ej dS, (2.10a)

Cji = − 1

µ

∫

S

[x′ × σ
(i)
t ·n] · ej dS, Dji = − 1

µ

∫

S

[x′ × σ
(i)
r ·n] · ej dS. (2.10b)

For K = 0, the problem reduces to a fluid motion along a no-slip wall Σu (as

σ/
√

K → ∞) and the Lorentz reciprocity theorem provides the classical result that
B and C are one another’s transpose. Whenever K > 0, this property breaks down as
detailed below in § 2.3.

2.2. Migration of a solid particle immersed in a prescribed ambient flow field and/or a
gravity field

Consider now the case of a solid particle either held fixed in an ambient flow field
or freely suspended in a flow field and/or a gravity field. These circumstances are
illustrated in figure 2.

We consider a class of elementary ambient flow fields (u∞, p∞) in D (with
associated flow fields (u′

∞, p′
∞) in D ′ and (u′′

∞, p′′
∞) in S ) providing a good
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FIGURE 2. A solid particle suspended in the ambient flow field (u∞, p∞) and/or uniform
gravity field g. (a) Case (u∞, p∞) = (0, 0). (b) Case g = 0, γ2 = 0 (see (2.13)) and γ1 > 0.
There is no flow in the lower domain (x3 < −e) and in the slab. (c) Ambient velocity profiles
for g = 0, γ1 = 0 and γ2 > 0 (see (2.13a)). Here, flows also occur in the porous slab and in the
lower fluid domain.

approximation of a Navier–Stokes flow field near the porous slab when in
microfiltration. With this goal in mind, we take in D the following ambient flow
field in which the velocity varies as a second-degree polynomial in the x3 coordinate:

u∞ = (γ0 + γ1x3 + γ2x2
3)e1 + Ae3, p∞ = 2µγ2x1. (2.11)

These equations represent a pressure-driven flow parallel to the slab plus a uniform
flow normal to it. The detailed associated flow fields (u′

∞, p′
∞) and (u′′

∞, p′′
∞) are

obtained using (2.1)–(2.4). The γ0 term in (2.11) allows for a uniform slip along the
slab, whereas γ1 and γ2 allow respectively for linear and quadratic shear flows parallel
to it. Finally, the normal flow velocity Ae3 in (2.11) is a permeation flow across the
slab. In the absence of parallel flow, one obtains u∞ = Ae3 in D, S and D ′. In this
case, the flow field with a fixed particle is obtained from the one due to a particle
moving with velocity U = −Ae3 in a quiescent fluid. It is therefore tractable using the
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results of § 2.1. It is then sufficient to restrict our attention in this subsection to the
ambient unidirectional flow field:

u∞ = (γ0 + γ1x3 + γ2x2
3)e1, p∞ = 2µγ2x1. (2.12)

Enforcing (2.1)–(2.4) actually requires γ0 to depend linearly upon γ1 and γ2. Curtailing
elementary manipulations, the ambient flow fields in each domain then read:

u∞ = γ1[x3 +
√

K/σ ]e1 + γ2[x2
3 − 2K]e1, p∞ = 2µγ2x1 for x3 > 0, (2.13a)

u′
∞ = γ ′

1[x3 + e −
√

K/σ ]e1 + γ2[(x3 + e)2 −2K]e1,

p′
∞ = 2µγ2x1 for x3 6 −e, (2.13b)

u′′
∞ = −2γ2Ke1, p′′

∞ = 2µγ2x1 for − e 6 x3 6 0. (2.13c)

Observe that the additional coefficient γ ′
1 in (2.13b) is not related to γ1. Indeed, for

γ2 = 0, the pressure and velocity in the porous slab vanish and the flows in the upper
and lower domains D and D ′ then uncouple. For the filtration problem where a flow
field is imposed in D , the shear rate γ ′

1 in D ′ is undefined and thus irrelevant. It may
as well be taken as zero, as illustrated in figure 2(b). Note that, because of the pressure
gradient in D ′, formally the velocity is growing for x3 → −∞. Practically, only the
velocity in the region close to the slab is of interest in D ′ and it is expected that the
velocity along the slab is low.

When the solid particle P is held fixed in the undisturbed flow field (u∞, p∞),
the disturbed flow fields may be expressed as (u∞ + u, p∞ + p) in D , (u′

∞ +
u′, p′

∞ + p′) in D ′ and (u′′
∞ + u′′, p′′

∞ + p′′) in S . The disturbance flows (u, p),
(u′, p′) and (u′′, p′′) vanish far from the particle and should by linearity satisfy
(2.1)–(2.5). Finally, the no-slip condition on the motionless solid particle requires
that

u = −u∞ on S. (2.14)

Solving (2.1)–(2.5) in conjunction with (2.14) provides the flow field (u, p), its stress
tensor σ and the surface stress f = σ · n exerted on the particle. The undisturbed flow
field (u∞, p∞) in domain D exerts zero force and torque on the particle. Accordingly,
the particle experiences in the disturbed flow (u∞ + u, p∞ + p) a force Fe and torque
Γe about O′ given by

Fe =
∫

S

f dS, Γe =
∫

S

x′ × f dS. (2.15)

Superimposing a uniform gravity field g solely adds to each ambient pressure field
the hydrostatic term ρ g · x, where ρ is the fluid mass density. When immersed in the
ambient flow field (u∞, p∞) and gravity field g, a solid particle with centre of mass O′,
volume V and uniform density ρs in rigid-body motion (U,Ω) then experiences a net
force F and net torque Γ about O′ given by

F = Fe + Fh + (ρs − ρ)V g, (2.16a)

Γ = Γe + Γh. (2.16b)

Depending upon the application, any other physical force and torque (e.g. magnetic
force and torque when in a magnetic field) may simply be added on the right-hand
side of (2.16a) and (2.16b), respectively.
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For a freely suspended particle with negligible inertia, the conditions F = Γ = 0

provide the linear system

µ(A ·U + B ·Ω)= Fe + (ρs − ρ)V g, (2.17a)

µ(C ·U + D ·Ω)= Γe, (2.17b)

which is to be solved for the unknown rigid-body migration (U,Ω).

2.3. Summary and basic remarks

As shown in §§ 2.1 and 2.2, it is sufficient to solve the problem (2.1)–(2.5), on one
side with (2.9) for the six auxiliary flow fields (u(i)t , p(i)t ) and (u(i)r , p(i)r ) (i = 1, 2, 3),
and on the other side with (2.14) for two specific ambient flows (u1

∞, p1
∞) and

(u2
∞, p2

∞) given by (2.13a) with (γ1, γ2)= (1, 0) and (0, 1), respectively.
Using the reciprocal identity for two Stokes flows that are vanishing far from the

particle in the upper fluid domain D yields for the second-rank tensors B and C the
relationship

Bji − Cij =
1

µ

∫

Σu

[u(j)t · σ
(i)
r − u(i)r · σ

(j)
t ] · e3 dS. (2.18)

A similar relationship for the flow disturbance (u, p) governed by (2.1)–(2.5) and
(2.14), as introduced in § 2.2, yields the expression of the force (with a summation
over indices i in (2.19)) as

Fe =
{

−
∫

S

u∞ · f (i)t dS +
∫

Σu

[u · σ
(i)
t − u(i)t · σ ] · e3

}
· ei. (2.19)

An expression for the torque Γe is obtained by replacing the subscript t with r in
the right-hand side of (2.19). In the standard case of a solid no-slip plane Σu (case
K = 0), the integrals over Σu ((2.18) and (2.19)) vanish and the expressions simplify.
For K > 0 there is a priori no reason for this property to be true any more, because of
the quite different boundary conditions (2.3b) and (2.4b) on the upper boundary Σu of
the porous slab. Indeed, the numerical results presented later in figure 5 clearly show
that Bji 6= Cij for an example case. Moreover, evaluating Fe (or Γe) using (2.19) would
unfortunately require the determination of the velocities u, u(i)t and u(i)r and associated
stresses (σ ·n), (σ (i)

t ·n) and (σ (i)
r ·n) on the entire unbounded surface Σu.

It thus appears highly preferable to look for a different formulation that solely
involves integrals over the particle surface S, like in the original expressions (2.15).
This challenging issue is treated in § 3.

3. A proposed indirect boundary integral formulation

Recall that the problem, as presented in § 2, consists of the Stokes flow field (u, p)

in the upper fluid domain D with associated Stokes flow field (u′, p′) in the lower
fluid domain D ′ and the Darcy flow field (u′′, p′′) in the porous slab S . These coupled
flows should satisfy (2.1)–(2.5) with, depending on the addressed problem, either
boundary condition (2.9) or (2.14).

The idea is to use a boundary integral formulation on the basis of the Green’s tensor
of the problem. It will be first shown in § 3.1 that the classical boundary integral
method (BIM) is inappropriate. The formulation of an indirect boundary integral
method (IBIM) will then be presented. Details of the Green’s tensor will be given
in § 3.2.
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3.1. Green’s function and the indirect formulation

Henceforth, we use the usual tensor summation. The essential ingredient for the
boundary integral formulation is the Green’s function, say V (k)(x, y) and P(k)(x, y)
for the fluid velocity and pressure at point x in the x3 > 0 domain, due to a unit
point force f ek in the k direction that is applied at point y in the y3 > 0 domain. By
definition, the velocity and pressure are solutions of

∇ ·V (k)(x, y)= 0, µ∇2V (k)(x, y)− ∇P(k)(x, y)+ f δ(x − y) ek = 0 for x3 > 0, (3.1)

where δ is the three-dimensional Dirac delta function. Equations (3.1) are coupled
with the associated Darcy equations (2.2) in the porous slab S and the Stokes
equations (2.1b) in the lower fluid domain D ′, with relevant boundary conditions
between domains (2.3) and (2.4) and conditions at infinity (2.5).

The solution was calculated analytically by Khabthani (2004). The fluid velocity
component j was obtained in the form

V (k)(x, y) · ej =
f

8πµ
Gjk(x, y)= f

8πµ
[G∞

jk (x, y)+ Rjk(x, y)], (3.2)

where the first part (f /8πµ)G∞
jk is the classical free-space Green’s tensor, or stokeslet,

with the Oseen tensor

G∞
jk (x, y)= δjk

|x − y| + [(x − y) · ej][(x − y) · ek]
|x − y|3

, (3.3)

where δjk is the Kronecker delta. The second term Rjk(x, y) in (3.2) stands for images
of G∞

jk (x, y) in the porous slab. Unlike G∞
jk , the tensor Rjk is smooth in the entire

x3 > 0 domain. Its expression in domain D is given below in § 3.2. Some details
of the derivation and the results in the whole space are given in appendix B. One
should note (see (2.18)) that here Gjk(x, y) 6= Gkj(y, x), i.e that the widely encountered
symmetry property of the usual Green’s tensors (see Pozrikidis 1992, chap. 4) does not
hold in the present work. The associated pressure of the Green’s function, P(k)(x, y), is
obtained as

P(k)(x, y)(x, y)= f

8π
Hk(x, y)= f

8π
[H∞

k (x, y)+ Qk(x, y)], (3.4)

where (f /8πµ)H∞
k (x, y) is the pressure associated with (f /8πµ)G∞

jk , where

H∞
k (x, y)= 2(xk − yk)

|x − y|3
. (3.5)

The second term Qk(x, y) in (3.4) is associated with the images in the porous slab.
This quantity, also obtained in Khabthani (2004), may be deduced from the material
displayed in appendix B.

A basic consequence of the non-symmetry of Gjk is that, when applying the classical
approach to obtain a boundary integral formulation, the result for the perturbation fluid
velocity u(x) is the following integral representation:

uk(x)= − 1

8πµ

∫

S

σij(y)njGik(y, x) dS(y)+ Ck(x,Σu) at x ∈ D, (3.6)

where σ (y) is the stress tensor (with Cartesian component σij) associated with the
unknown flow field at y on the particle surface S, and n is the normal unit vector on
S pointing into the fluid domain D . The BJ condition implies that there is a left-over
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term Ck(x,Σu) on the upper side Σu of the porous membrane. This term is given for
x ∈ D by

Ck(x,Σu)= − 1

8πµ

∫

Σu

{Gik(y, x) σij(y)− ui(y) Tikj(y, x)}nj(y) dS(y), (3.7)

where the stress tensor associated with the Green’s function V (k) has Cartesian
component Tikj/(8π). In the case of the no-slip condition on Σu, this term was found
to vanish by Elasmi & Feuillebois (2003), but this is no longer the case here. This
left-over integral on Σu introduces complications in the application of the classical
boundary integral method.

The main idea of the proposed integral formulation is then to express the unknown
fluid velocity u(x) in terms of a single layer on the particle boundary. In other words,
we write

u(x)= − 1

8πµ

∫

S

G(x, y) · d(y) dS for x in D, (3.8)

where d is an unknown surface density of forces. Setting H = Hkek, the fluid pressure
is obtained from the associated integral representation as

p(x)= − 1

8π

∫

S

H(x, y) · d(y) dS for x in D . (3.9)

Note that the fluid velocity and pressure in S and D ′ may similarly be expressed as
integrals on the particle boundary S, using the appropriate formulae for the Green’s
function (G,H) in those regions (see appendix B). Such expressions will automatically
satisfy the boundary conditions between media D, S and D ′ (for instance, the slip
velocity on the porous slab boundaries may then be calculated).

Since G
∞ and G are weakly singular as x → y, the expression (3.8) still holds for x

located on the particle surface S. On this surface, the fluid velocity takes a prescribed
value, say ud, expressing either boundary condition (2.9) or (2.14). In the limit where
x goes onto the sphere surface, (3.8) provides a Fredholm boundary integral equation
of the first kind to be solved for the density d:

− 1

8πµ

∫

S

G(x, y) · d(y) dS = ud(x) for x on S. (3.10)

It should be emphasized that the proposed formulation (3.8)–(3.10) is not just a ‘blind’
application of the classical integral formulation in unbounded space. This deserves a
few comments.

(a) It solely involves an integral on the particle boundary S, i.e. not on the unbounded
surface Σu. But it rests on the expression of the Green’s tensor, which involves the
whole flow field, including the boundary conditions on those surfaces.

(b) For a given flow field (u(x), p(x)) in D , the surface density d(y) on S is uniquely
determined, up to p0n, where p0 is a constant and n is a unit vector normal to
S at point y. This classical indeterminacy arises, like in BIM, since the pressure
in incompressible flow is defined up to a constant p0. The demonstration of this
uniqueness (within p0n) is analogous to that in Elasmi & Feuillebois (2003) (see
§ 4.3 there).

(c) Unlike in the classical formulation, the density d has no physical meaning. For
instance, it is not the surface stress σ · n exerted on S by the flow field. For this
reason, as announced above, the approach (3.8)–(3.10) is called here indirect.
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After numerically solving (3.10) for d , the fluid velocity u in D may be obtained, if
needed, from (3.8).

Like in the free-space case, ∇G(x, y) and H(x, y) exhibit strongly singular
behaviour of the order of |x − y|−2 on the particle surface S as x → y. This property
prevents one from using (3.8) and (3.9) to calculate the force and torque on the
particle by integration of the stress and its moment on S. Another possible and
efficient way is to extract the singular part of the Green’s function by writing

uk = u∞
k + vk, pk = p∞

k + qk, (3.11)

in which the singular part is the unbounded flow Green’s function (u∞
k , p∞

k ) and the
(vk, qk) flow is due to its images in S . Only the singular part contributes to the force
F and torque Γ on the particle. Exploiting Pozrikidis (1992) for this singular part, we
obtain

F =
∫

S

d dS, Γ =
∫

S

(x′ × d) dS. (3.12)

That is, the density d (retained up to a constant multiple of n), even though it is not
the local stress f = σ ·n, provides directly the required force and torque on the particle.
Of course, determining other quantities related to f such as the stresslet tensor would
require f = σ · n to be obtained on the surface S. As explained in appendix A, it is
possible to achieve this task from the knowledge of d by (numerically) inverting on S

another boundary integral equation.

3.2. Determination of the Green’s tensor

As presented above, the proposed procedure rests on the determination of the Green’s
tensor Gjk(x, y). Mimicking the treatment of Blake (1971) and Elasmi & Feuillebois
(2001), a stokeslet image with strength −ek is introduced at the symmetric point of y
with respect to Σu, that is, y′ = y − 2y3 e3. The Green’s tensor is then searched as

Gjk(x, y)= G∞
jk (x, y)− G∞

jk (x, y
′)+ wjk(x, y). (3.13)

The unknown supplementary image wjk(x, y) was derived by Khabthani (2004) with
the use of a two-dimensional Fourier transform on R′

1, R′
2, with R′ = x − y′. Some

details, as well as results for the pressure Hk(x, y) in D (recall (3.4)) and for the
velocity and pressure in S and D ′ (which will not be used in the present calculations),
are provided in appendix B.

In giving the final result for the fluid velocity, it is useful to present the form
of the inverse Fourier transform in the domain R′

3 > 0 for a function F(ξ) that is
axisymmetric around the third coordinate R′

3 as 〈ξF(ξ)〉 with the transform

〈g〉(ρ,R′
3)=

∫ ∞

0

J0(ρξ)e
−R′

3
ξg(ξ) dξ, (3.14)

where ρ =
√

R
′2
1 + R

′2
2 and J0 denotes the zeroth-order Bessel function. The result is

then written as

wjk(x, y)=
[
δ3j − x3

∂

∂R′
j

]{
Jkl

∂〈f1〉
∂R′

l

+ δ3k

(
∂〈f2〉
∂R′

3

+ 〈f3〉
)}

+
[

2σ
√

K
∂

∂R′
3

− 1

]{
Jkl

∂2〈f4〉
∂R′

j∂R′
l

+ δ3k

(
∂2〈f5〉
∂R′

3∂R′
j

+ ∂〈f6〉
∂R′

j

)}
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+
{
δ3kδjlσy3 + 2

√
K(δ3lJkj − δ3jJkl)

+
[
2Kσδ3kδ3l − y3

√
K(Jkl + δ3kδ3l)

] ∂

∂R′
j

}
∂〈f7〉
∂R′

l

, (3.15)

with the symbol Jkl = δk1δ1l + δk2δ2l − δk3δ3l and the transforms (3.14) of the functions
fq(ξ) (q = 1, . . . , 7), which also depend on the slab thickness e, the permeability K

and the dimensionless coefficient σ . These functions are presented in appendix B (see
(B 32), (B 33), (B 42) and (B 43)).

In the case K = 0, the slab becomes impermeable and there is also no slip on it

from (2.4) when furthermore σ/
√

K → ∞. The no-slip condition u = 0 then applies
on Σu. Recall that the Green’s function was obtained for that case by Blake (1971).

His result is recovered for K → 0 and σ/
√

K → ∞. Indeed, the definitions (B 42) and
(B 43) show that f1 → −2y3 and f7 → −2/σ and the other functions vanish. The result
(3.15) then becomes

wjk(x, y)= −2y3Jkl

[
δ3j − x3

∂

∂R′
j

]
∂φ

∂R′
l

− 2δ3ky3

∂φ

∂R′
j

, (3.16)

with the function (see Gradshteyn & Ryzhik 1965)

φ =
∫ ∞

0

J0(ρξ)e
−R′

3
ξ dξ = 1

R′ , R′ = |R′| = (ρ2 + R
′2
3 )

1/2
. (3.17)

The limit (3.16) agrees with the result derived by Blake (1971). Henceforth, we
discard the case K = 0, which has been widely treated elsewhere.

4. Numerical method for any particle to wall distance

This section briefly presents the implemented numerical strategy to numerically
invert the boundary integral equation (3.10).

Recall that the Green’s tensor is given by (3.13) in which the stokeslet and its
image are obtained from (3.3) and the supplementary image is given by (3.15) with
the inverse transform (3.14) of the functions given in (B 42) and (B 43). The integral
in the inverse transform (3.14) and its derivatives with respect to the components of R′

have to be calculated numerically. The formulae used in this calculation are given in
appendix C.

The boundary integral equation (3.10) is discretized using, on the particle surface S,
an N-node mesh constructed with Ne isoparametric 6-node curved triangular boundary
elements ∆e. The unknown density d on each isoparametric element ∆e is thus
expressed as a quadratic interpolation based on the values it takes at the nodes of ∆e.
As a result, the discretized density is a 3N unknown vector whose components are the
values of the Cartesian components di = d · ei at the nodal points. For any nodal point
x, the contribution of each element ∆e to the integral on the left-hand side of (3.10) is
then evaluated by distinguishing two alternative cases: either x is not or x is one of the
nodal points of ∆e.

(a) If x is not one of the nodal points of ∆e, then each Cartesian component Gjk(x, y)
is regular and the contribution of ∆e is computed by using a standard Gaussian
quadrature whose order, however, depends upon the location of x and is dictated
by the so-called severity parameter proposed and numerically tested in Rezayat,
Shippy & Rizzo (1986).
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(b) If x is one of the nodal points of ∆e, then, practically, x may be part of either two
or six ∆e elements. Each component Gjk(x, y) exhibits on ∆e a weakly singular
behaviour originating from the G∞

jk (x, y) term in the (3.2) decomposition (recall
that Rij(x, y) is regular as x → y). This singularity is adequately removed by using
polar coordinates on ∆e when treating the G∞

jk (x, y) term, whereas the regular
contribution Rij(x, y) is still treated as in (a).

For further details regarding this key treatment of the integral in (3.10), the reader
is directed to standard textbooks (see Brebbia, Telles & Wrobel 1984; Bonnet 1995)
and also to Sellier (2010). The discretized counterpart of (3.10) then becomes a linear
system A ·X = B, with the 3N-dimensional unknown discretized density vector X and
a 3N × 3N square, dense, non-symmetric so-called influence matrix A. Such a system
is finally solved by Gaussian elimination.

5. Numerical results and discussion

This section presents numerical results for a spherical or non-spherical particle
(recall figure 1) with uniform density ρs, length scale a and centre of volume O′.
We set l = OO′

· e3 and denote by d the particle–slab gap. The porous slab has

thickness e and pores with size
√

K smaller than a and d. Finally, the slip

length b =
√

K/σ is smaller than e. For convenience, we introduce the following
dimensionless permeability K∗, slab thickness e∗ and slab slip length λ such that

K∗ = K

a2
≪ min

(
1,

d2

a2

)
, e∗ = e

a
, d∗ = d

a
, λ=

√
K∗

σ
< e∗. (5.1)

5.1. Case of a spherical particle

5.1.1. Normalized quantities and convergence
The sphere radius is a and thus d∗ = l/a − 1. Here we confine our attention to

the calculation of the hydrodynamic force Fh and torque Γh (about O′) exerted on
the sphere when it moves at velocities U and Ω with g = u∞ = 0 and also to the
sphere motion when submitted to the gravity field g and/or to the external flow (2.13a)
defined by (γ1, γ2). For d ≫ a it is well known that

Fh = −6πµaU, Γh = −8πµa3
Ω , (5.2)

and that the sphere settles at the velocity U s = 2a2(ρs − ρ)g/(9µ) in the gravity field g.
Moreover, the Faxen relationships (see Happel & Brenner 1991) show that, when
distant and submitted to the external flow (2.13a), the freely suspended sphere moves
with the following translational and rotational velocities:

U =
[
γ1

(
l +

√
K

σ

)
+ γ2

(
l2 + a2

3
− 2K

)]
e1, Ω =

[γ1

2
+ γ2l

]
e2. (5.3)

For a sphere located near the porous slab, symmetries then easily allow us to show
that

Fh = −6πµa[(f11U1 + af12Ω2)e1 + f33U3e3], (5.4)

Γh = −8πµa2[c21U1e2 + a c22Ω2e2], (5.5)

U = 2

9

a2

µ
(ρS − ρ)[us

1g1e1 + us
3g3e3], Ω = 2

9

a

µ
(ρs − ρ)ωs

2g1e2 if u∞ = 0, (5.6)
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K∗ d∗ N f11 c21 f33

10−4

10/9−1
74 2.1649 0.0767 9.1501
242 2.1750 0.0810 9.4666

1058 2.1732 0.0789 9.5035

1
74 1.3755 0.0046 2.1049
242 1.3796 0.0050 2.1131

1058 1.3800 0.0049 2.1141

10−2

10/9−1
74 1.8771 0.0801 4.4368
242 1.8859 0.0813 4.4727

1058 1.8869 0.0810 4.4739

1
74 1.3508 0.0051 1.9818
242 1.3548 0.0055 1.9890

1058 1.3552 0.0054 1.9899

TABLE 1. Computed friction coefficients f11, c21 and f33 versus the number N of nodal
points on the sphere surface for e∗ = 1, σ = 1, and for two values of the sphere–slab
normalized gap d∗ = l/a − 1 and of the normalized permeability K∗.

U =
[
γ1

(
l +

√
K

σ

)
ul

1 + γ2

(
l2 + a2

3
− 2K

)
u

q

1

]
e1,

Ω =
(γ1

2
ωl

2 + γ2lω
q

2

)
e2 if g = 0, (5.7)

where Ui, Ωi, gi denote the i component of U, Ω , g, respectively. The components

U2, Ω1 in (5.4), (5.5) and g2 in (5.6) were not considered for simplicity, since results

are analogous. The quantities f11, c21, c22, f12, f33 in (5.4) and (5.5) are normalized

friction coefficients, and the normalized velocities us
1, ω

s
2, us

3, ul
1, ω

l
2, u

q

1, ω
q

2 in

(5.6) and (5.7) may be interpreted as mobilities. These normalized quantities are here

computed by using an N-node mesh on the sphere surface. For K∗ = 0 (case of a

no-slip wall) it was checked that the present computations retrieve the results obtained

in Sellier (2005), which are in full agreement with those of Hsu & Ganatos (1994).

It was found that taking N = 242 is sufficient to ascertain a relative accuracy of

order 10−3 for all normalized quantities (except for c12, for which the accuracy is of

the order of 10−2 for small K∗ and small d∗) when e∗ is in the range [0.5, 10] and K∗

in the range [10−4, 10−2]. As illustrated in table 1 for f11, c21, f33 in the case e∗ = 1,

N = 242 is sufficient to obtain a good accuracy both for a sphere located very close to

the slab (d∗ = 10/9 − 1) and at some distance from the slab (d∗ = 1).

Our numerical results also show that each normalized quantity turns out to be nearly

insensitive to the porous slab normalized thickness e∗ for given values of σ and K∗.

This behaviour is illustrated in table 2 for the coefficients f11, c21 and f33. Table 2

also shows that, by contrast, these coefficients f11, c21 and f33 are very dependent upon

(σ,K∗) and the sphere–slab normalized gap d∗. The normalized slip length λ=
√

K∗/σ
is indicated in the table. By comparing values of the friction coefficients obtained for

the same λ and different K∗, it is clear that both the slip and porosity of the porous

slab play a significant role.
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K∗ = 10−4 K∗ = 10−2

σ d∗ = l

a
− 1 λ e∗ = 0.5 e∗ = 1 e∗ = 10 λ e∗ = 0.5 e∗ = 1 e∗ = 10

f11

0.1

10/9 − 1

0.1

1.9351 1.9353 1.9354

1

* * 1.3309

1.0000 1.3581 1.3581 1.3581 * * 1.2328

9.0000 1.0586 1.0586 1.0586 * * 1.0538

1

10/9 − 1

0.01

2.1747 2.1750 2.1750

0.1

1.8771 1.8859 1.8887

1.0000 1.3796 1.3796 1.3796 1.3531 1.3548 1.3556

9.0000 1.0591 1.0591 1.0591 1.0585 1.0585 1.0586

10

10/9 − 1

0.001

2.2103 2.2106 2.2107

0.01

2.0817 2.0924 2.0956

1.0000 1.3819 1.382 1.382 1.3738 1.3756 1.3764

9.0000 1.0592 1.0592 1.0592 1.059 1.0591 1.0591

c21

0.1

10/9 − 1

0.1

0.0321 0.0319 0.0319

1

* * −0.0621

1.0000 0.0037 0.0037 0.0037 * * −0.0094

9.0000 0.0000 0.0000 0.0000 * * −0.0000

1

10/9 − 1

0.01

0.0812 0.0810 0.0809

0.1

0.0864 0.0813 0.0798

1.0000 0.0050 0.0050 0.0050 0.0061 0.0055 0.0051

9.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10

10/9 − 1

0.001

0.0870 0.0868 0.0867

0.01

0.1664 0.1608 0.1591

1.0000 0.0051 0.0050 0.0050 0.0079 0.0072 0.0069

9.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

f33

0.1

10/9 − 1

0.1

7.1748 7.1912 7.1963

1

* * 3.8288

1.0000 2.0364 2.0367 2.0369 * * 1.7802

9.0000 1.1245 1.1245 1.1245 * * 1.1156

1

10/9 − 1

0.01

9.4325 9.4666 9.4764

0.1

4.1366 4.4727 4.6263

1.0000 2.1128 2.1131 2.1133 1.9647 1.9890 2.0031

9.0000 1.1257 1.1257 1.1257 1.1237 1.1241 1.1244

10

10/9 − 1

0.001

9.9676 10.007 10.018

0.01

4.4019 4.8057 4.9916

1.0000 2.1223 2.1227 2.1229 2.0247 2.0529 2.0689

9.0000 1.1258 1.1258 1.1259 1.1248 1.1253 1.1256

TABLE 2. Sensitivity, for different sphere locations d∗ = l/a − 1, of the friction coefficients f11, c21 and f33 to the parameters σ , e∗ and
K∗ when using 242 nodal points on the sphere boundary. Stars indicate values of (K∗, σ ) such that λ > e∗, i.e. values not complying with

conditions (5.1). The normalized slip length λ=
√

K∗/σ is also indicated in the table.
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FIGURE 3. Friction coefficient f33 versus d∗ > 10/9 − 1 for a weakly permeable slab with
K∗ = 10−4 (dashed curves) and a slightly permeable slab with K∗ = 10−2 (solid curves). For
comparison, results obtained by Michalopoulou et al. (1992) for K∗ = 10−2 and λ = 0.1 are
indicated with • symbols and those of Brenner (1961) and Maude (1961) by ⋆ symbols. The
porous slab thickness is e∗ = 1.

The largest variation with e∗ occurs for f33 at K∗ = 10−2 and at short gaps d∗, which
is the most stringent configuration of lubrication. Note that at K∗ = 10−2, when e∗

varies from 1 to 0.5, then e∗/
√

K∗ = e/
√

K varies from 10 to 5, which physically
means that the number of pores across the slab is reduced from about 10 to 5.
Obviously, Darcy’s model would be inappropriate if there were only a few pores
across the slab. As announced in the introduction, Brinkman’s model would be a better
model to describe the flow behaviour in such a medium.

We thus restrict our numerical investigation to the domain e∗/
√

K∗ > 10. In this
domain, the low variation with the slab thickness makes it possible to further restrict
our investigation to the case e∗ = 1.

5.1.2. Friction coefficients
The coefficient f33 for a sphere translating normal to the permeable porous slab

with thickness e∗ = 1, normalized permeability K∗ and slip length λ is plotted in
figure 3.

As for a solid boundary, f33 monotonically decreases as d∗ increases (i.e. as the
sphere moves away from the slab) for any prescribed setting (K∗, λ). Not surprisingly
(recall (2.2) and (2.3b)), for a weakly permeable slab (K∗ = 10−4) and λ = 0.01, the
value of f33 is close to the one predicted for a solid impermeable and no-slip plane
wall by Brenner (1961) and Maude (1961) using the bipolar coordinates method. Still
for K∗ = 10−4, note that f33 is quite sensitive (especially for a sphere close to the
slab) to the slip length λ. For a given triplet (K∗, λ, d∗), the coefficient f33 drops as
K∗ increases (as illustrated by the curves associated with (K∗, λ) = (10−4, 10−2) and
(K∗, λ) = (10−2, 10−2)) because more fluid is allowed to flow across the porous slab
as K∗ increases. Note that, as expected, for K∗ = 10−2 the coefficient f33 decreases
as the slip length λ increases, since the shear rate of the flow taking place in the
slab–sphere gap is smaller when λ is bigger and thus the lubrication force is then
smaller. Using the bipolar coordinates method, Michalopoulou et al. (1992) considered
the axisymmetric translation of a solid sphere towards another motionless and porous
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FIGURE 4. (a) Force friction coefficient f11 and (b) torque friction coefficient c22 versus d∗

for K∗ = 10−4 (dashed lines; for λ = 0.1, 0.02, 0.01, 0.01/3, 0.001) or K∗ = 10−2 (solid
lines; for λ = 0.2, 0.1, 0.1/3). Both f11 and c22 increase when λ decreases (use this property
to retrieve the value of λ associated with each curve). Also plotted for comparison are the
results obtained for a slipping and impermeable boundary by Davis, Kezirian & Brenner
(1994) using the bipolar coordinates method (� for λ = 0.1, and ♦ for λ = 0.01) and by Luo
& Pozrikidis (2008) using the boundary integral equations technique (� for λ = 0.1), and
the results obtained for a solid wall and a no-slip particle by Luo & Pozrikidis (2008) (⋆ for
λ= 0) and by Chaoui & Feuillebois (2003) (•).

sphere, the translational velocity being aligned with the line of centres. We thus
compare in figure 3 our results against the predictions of Michalopoulou et al. (1992)
for a small solid sphere approaching a very large porous sphere. Since our results are
weakly sensitive to the slab thickness e∗ (see previous remarks), good agreement is
obtained.

The force and torque exerted on a sphere translating or rotating parallel with the
slab are characterized by the coefficients (f11, c21) or (f12, c22), respectively (recall
(5.4) and (5.5)). The coefficients f11 and c22, plotted in figure 4, have comparable
magnitudes. Note that, as for a solid boundary, f11 is weaker than f33 for any prescribed
value of (d∗,K∗, λ). This means that it is easier to move (translate or rotate) the
sphere parallel with the slab than normal to it. For the weak permeability K∗ = 10−4,
the porous slab behaves as an impermeable boundary of solid nature if λ . 0.01
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FIGURE 5. (a) Force friction coefficient f12 and (b) torque friction coefficient c21. As in
figure 4, dashed or solid curves are employed for K∗ = 10−4 or K∗ = 10−2, respectively, and
the curves hierarchy versus λ is the same as in figure 4. In addition, comparisons with Davis
et al. (1994) (� for λ = 0.1, and ♦ for λ = 0.01), Luo & Pozrikidis (2008) (� for λ = 0.1,
and ⋆ for λ= 0) and Chaoui & Feuillebois (2003) (•) are given.

(see the comparisons with Chaoui & Feuillebois (2003) and Luo & Pozrikidis (2008)
for λ = 0) or of slipping nature for λ large enough (see the comparisons with Davis
et al. (1994) and Luo & Pozrikidis (2008) for λ = 0.1). The coefficients f12 and c21,
displayed in figure 5, exhibit the same behaviours versus (d∗,K∗, λ) as the coefficients
f11 and c22 but are of weaker magnitudes. Note that, under our definitions (5.4), (5.5)
and (2.10), it turns out that here B12 = 6πa2f12 and C21 = 8πa2c21. As noted at the
end of § 2.1, as d∗ becomes large whatever K∗, or as K∗ → 0 whatever d∗, one
expects (using the reciprocity identity) the difference 3f12 − 4c21 to vanish. However, in
general 3f12 6= 4c21. These predictions fully agree with the behaviour of the computed
quantity 4c21/3f12 − 1 plotted in figure 6 for K∗ = 10−4 and K∗ = 10−2. As revealed
by figure 6(b) for K∗ = 10−2, the difference 3f12 − 4c21 is not negligible at least in the
range d∗ 6 1.

5.1.3. Settling velocities

Here we present results for a settling sphere when e∗ = 1 and K∗ = 10−2. The
normalized translational velocities us

1 and us
3 (note that, under our definitions (5.4)

and (5.6), it turns out that us
3 = 1/f33) and angular velocity ωs

2 are plotted in figure 7.
Both quantities us

1 and us
3 increase with the slip length and decrease as the sphere

approaches the slab. Not surprisingly, the sphere translates faster parallel with the slab
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FIGURE 6. Quantity 4c21/3f12 − 1 versus the normalized particle–slab gap d∗ for (a) the
weak permeability K∗ = 10−4 and (b) the permeability K∗ = 10−2.

than normal to it (us
1 > us

3). By contrast, the angular velocity ωs
2 is seen to decrease as

λ increases for any sphere location and to increase as the sphere approaches the slab.
For λ> 1/3 the sphere experiences a very weak rotation because the slab then permits
the fluid to flow parallel with e1 at a very low friction cost.

5.1.4. External shear flows
When freely suspended in either a linear or a quadratic ambient shear flow, the

sphere migrates at translational and angular velocities with normalized components
as defined by (5.7), (ul

1, ω
l
2) and (u

q

1, ω
q

2), respectively. These velocities are plotted
in figures 8 and 9. As the sphere approaches the slab, both ul

1 and ωl
2 decrease.

For a given sphere location d∗, these velocities increase with K∗ for prescribed λ;
whereas, for a given permeability K∗, note that, as λ increases, then ul

1 increases,
but ωl

2 may either increase (for K∗ = 10−4) or decrease (for K∗ = 10−2). For a low
permeability, the results versus λ are in good agreement with those for an impermeable
slip wall obtained by bispherical coordinates in Loussaief (2008) and by BIM in
Luo & Pozrikidis (2008). For the quadratic shear flow, u

q

1 and ω
q

2 exhibit the same
behaviour as ul

1 and ωl
2, except that, for large enough d∗, ω

q

2 admits a minimum value
when λ is small enough and K∗ large (see the curve for K∗ = 10−2 and λ= 0.1/3).

5.2. Case of a non-spherical particle

For a sphere, the considered problems involved, by symmetries, 12 relevant
normalized quantities defined by (5.4)–(5.7). Now, the non-spherical particles
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FIGURE 7. (a) Settling translational mobilities us
3 = 1/f33 and us

1 and (b) angular mobility ωs
2

for e∗ = 1 and K∗ = 10−2 versus d∗. In panel (a) the solid and dashed lines represent us
3 and

us
1, respectively.

often encountered in applications require a much larger number of parameters
because of their shape and orientation. As previously mentioned, the proposed
approach makes it possible to compute these quantities for arbitrarily shaped
particles.

This key ability is illustrated here by dealing with an ellipsoidal particle like the
one sketched in figure 10. The ellipsoid is described by its centre O′, semi-axes
a1, a2, a3 and orientation defined by the angle α. In the example cases presented
below, we consider a1 = 1.2a, a2 = a2/a1, a3 = a and α = π/4. For conciseness, we
restrict our attention to rigid-body motions (U,Ω) such that U ·e2 = 0 and Ω ∧ e2 = 0.
In such circumstances, and adopting the scaling employed in (5.4)–(5.7) for a sphere
with the same volume (i.e with radius a), we introduce normalized quantities such
that

Fh = −6πµa{[f11U1 + f13U3] e1 + af12Ω2 e1 + [f33U3 + f31U1] e3 + af32Ω2 e3}, (5.8)

Γh = −8πµa2{[c21U1 + c23U3] e2 + ac22Ω2 e2}, (5.9)

U = 2

9

a2

µ
(ρS − ρ){[us

11e1 + us
31e3](g · e1)+ [us

13e1 + us
33e3](g · e3)} if u∞ = 0, (5.10)

Ω = 2

9

a

µ
(ρs − ρ)[ωs

21(g · e1)+ ωs
23(g · e3)]e2 if u∞ = 0, (5.11)
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FIGURE 8. Mobilities (a) ul
1 and (b) ωl

2 versus d∗. The solid and dashed lines represent

K∗ = 10−2 and K∗ = 10−4, respectively. Values of the slip length λ for K∗ = 10−2 are shown.
Values of λ for K∗ = 10−4 are λ = 0.01/3, 0.01, 0.02, 0.1 (from bottom to top). The
results of Chaoui & Feuillebois (2003) (⋆) for a solid impermeable no-slip wall and those of
Loussaief (2008) (�) and Luo & Pozrikidis (2008) (•) for an impermeable slipping wall with
slip length λ= 0.1 are shown for comparison.

U =
[
γ1

(
l +

√
K

σ

)]
[ul

1e1 + ul
3e3]

+ γ2

(
l2 + a2

3
− 2K

)
[uq

1e1 + u
q

3e3] if g = 0, (5.12)

Ω =
(γ1

2
ωl

2 + γ2lω
q

2

)
e2 if g = 0. (5.13)

Hence, we arrive at nine additional quantities: f31, f13, f32, c23, us
31, us

13, ωs
23, ul

3 and
u

q

3 (note that ωs
2 introduced in (5.6) for a sphere is renamed here ωs

21 for consistency
of notation with the new term ωs

23). These new quantities vanish for a sphere. For
arbitrarily shaped particles, they obey the relationships f13 = f31 and 4c23 = 3f32 when
K∗ = 0 or for a distant porous slab; however, in general, f13 6= f31, 4c23 6= 3f32 and
4c21 6= 3f12. For the selected ellipsoid, all the coefficients arising in (5.8)–(5.13) depend
upon K∗, e∗ and d∗ = l/a − 1, with l = OO′

· e3. Like in the case of a sphere, it was
found that taking N = 242 nodal points on the boundary is sufficient to provide a
good precision on the dimensionless coefficients. This is illustrated in table 3 for the
example case e∗ = 1, K∗ = 10−2 and λ= 1/3.
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d∗ N f31 f13 f32 c23 102 × us
31 102 × us

13 102 × ωs
23 102 × ul

3 102 × u
q

3

1
74 0.4122 0.4132 0.4128 0.3220 −1.7173 −1.7224 0.3246 0.2061 0.4934
242 0.4105 0.4112 0.4141 0.3123 −1.6994 −1.7032 0.3143 0.2072 0.4948

1058 0.4107 0.4115 0.4146 0.3126 −1.6990 −1.7029 0.3146 0.2075 0.4950

0.25
74 0.6664 0.6799 1.9258 1.5162 −1.2903 −1.3378 0.7643 1.0892 2.4887
242 0.6636 0.6786 1.9454 1.4786 −1.2683 −1.3184 0.7397 1.0960 2.4985

1058 0.6640 0.6785 1.9504 1.4808 −1.2674 −1.3169 0.7403 1.0991 2.5035

TABLE 3. Convergence of the normalized quantities appropriate for an ellipsoid with the number N of collocation points on its surface, in
the example case e∗ = 1, K∗ = 10−2, λ= 1/3 and for two locations of the ellipsoid.
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FIGURE 9. Mobilities (a) u
q

1 and (b) ω
q

2 versus d∗, with solid or dashed lines for K∗ = 10−2

or K∗ = 10−4, respectively. For K∗ = 10−4, values of the slip length are λ= 0.01/3, 0.01, 0.02
and 0.1 (from bottom to top). Analytical results obtained by Pasol, Sellier & Feuillebois
(2006) (⋆) for an impermeable no-slip wall are compared with our results when the slip length
λ= 0.01/3 and K∗ = 10−4.

 
 

e

l

a3

FIGURE 10. A solid ellipsoidal particle with centre O′ and semi-axes a1, a2 (normal to the
plane of the figure) and a3 is freely suspended in a linear ambient shear flow with velocity u∞
along a porous slab S . Its orientation with respect to Σu is given by the angle α.

As observed in figure 11, the coefficients f11, f33, c21 and f12 exhibit the same trends
as for a spherical particle (see figures 3–5). The new friction coefficients f31, f13, c23
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FIGURE 11. Normalized friction coefficients f11, f33, c21 and f12 versus d∗ for λ = 1/30
(dashed lines), λ = 1/3 (solid lines) and (e∗,K∗) = (1, 10−2): (a) f11 (⊲) and f33 (H); (b) c21

(•) and 4c21/3 − f12 (△).

and f32, plotted in figure 12, increase as the ellipsoid approaches the porous slab and

decrease as λ increases for a given ellipsoid location. In the gravity field g = ge1,

the ellipsoid rotates parallel with e2 and mainly translates in the direction of the

applied gravity. Indeed, the mobility us
13 is small and slowly increases as the ellipsoid

approaches the slab (as depicted in figure 13a). Note that, whereas us
11 increases

with λ, the opposite behaviour is observed for us
31. A similar remark holds for us

33 and

us
13. The angular mobility ωs

21 (for g ∧ e1 = 0) decreases as λ increases and becomes

very weak for λ & 1/3, whereas the mobility ωs
23 (for g ∧ e3 = 0) depends weakly

upon λ. This difference is linked to the flow field u near the porous slab with two

cases:

(i) when g is parallel with the slab, the tangential velocity on the slab is not

negligible and is ‘triggered’ by the slip length λ;

(ii) when g is normal to the slab, the tangential velocity is weak and the flow near the

slab is nearly insensitive to λ and is driven by the permeability K∗ (which clearly

controls the velocity component u · e3).

Finally, we plot in figure 14 the mobilities u
q

1, u
q

3 and ω
q

2. It turns out that u
q

3 is

small when compared with u
q

1. In addition, the mobility u
q

3 increases as the ellipsoid

approaches the slab and also decreases as λ increases (in contrast to the mobility u
q

1).
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FIGURE 12. Normalized friction coefficients f31, f13, c23 and f32 versus d∗ for λ = 1/30
(dashed lines), λ= 1/3 (solid lines) and (e∗,K∗)= (1, 10−2): (a) f31 (•) and 10(f31 − f13) (△);
(b) c23 (•) and 10(4c23/3 − f32) (△).

6. Conclusion

The coupled Stokes–Darcy problem with Beavers and Joseph slip boundary
condition on the slab interfaces is solved here by a novel ‘indirect boundary
integral method’ (IBIM), using the appropriate Green’s tensor. The expression of
this Green’s tensor in the fluid domain is displayed here (complementary terms
that are not directly used in the IBIM are also provided in appendix B). The
unknown is a density d on the particle surface, defined up to p0n, where p0 is a
constant. This density is not the stress on the surface, yet provides the force and
torque on the particle by simple quadratures. This approach appears to be simpler
than the classical BIM, which would involve complicated terms on the porous slab
surface.

The resulting integral equation for d is solved numerically by meshing the particle
surface with isoparametric 6-node curved triangular boundary elements. The IBIM
is applied here to the cases of a spherical and an ellipsoidal particle. The particle
is either moving in a fluid at rest or settling in a gravity field, or entrained in a
shear flow. A linear and a quadratic shear flow are considered. Various results for
the friction factors and for the particle velocity are obtained. Relationships between
friction coefficient (torque due to rotation and force due to translation), which are
classical for a no-slip plane, do not apply here. The difference appears clearly in
figure 6 for a sphere and in figure 11 for the ellipsoid.
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The proposed IBIM also offers a way to obtain various formulae for an arbitrarily
shaped particle entrained in a flow field near a porous slab. For example, asymptotic
solutions of the integral equation for large particle–wall distance could provide
asymptotic expansions for the force and torque. A study of this issue is currently
in progress.

Obviously, the fluid velocity and pressure fields could also be subsequently
calculated by (3.8) and (3.9), respectively, once d is known. The coupling of
suspension motion with thermal or chemical advection or similar problems could
then be considered.

An ultimate goal would be to use the IBIM in applications involving a number of
particles, in view of applications in microfiltration, separation techniques in analytical
chemistry and various situations that are relevant in biology.

Appendix A. How to obtain the stress f = σ · n from the auxiliary surface

density of forces d

Assuming that d has been obtained by inverting (3.10), we show in this appendix
how to obtain the surface stress f = σ · n. Using for the derived Green’s tensor G and
associated pressure vector H the decompositions (3.2) and (3.4), respectively,

G(x, y)= G
∞(x, y)+ R(x, y), H(x, y)= 2(x − y)

|x − y|3
+ Q(x, y), (A 1)
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the velocity field u and pressure field p (given by (3.8) and (3.9)) are obtained as

u = v∞ + v and p = q∞ + q, with the following integral representations in the fluid

domain:

v∞(x)= − 1

8πµ

∫

S

G
∞(x, y) · d(y) dS, q∞(x)= − 1

4π

∫

S

(x − y)

|x − y|3
· d(y) dS, (A 2)

v(x)= − 1

8πµ

∫

S

R(x, y) · d(y) dS, q(x)= − 1

8π

∫

S

Q(x, y) · d(y) dS. (A 3)

The Stokes flow (v∞, q∞) is produced by distributing free-space stokeslet with density

d on the particle S where it exerts the stress f∞. The Stokes flow (v, q) is highly

regular in the limit when x tends to the surface S, so that the stress f − f∞ there

is obtained from simple differentiation of v and use of (A 3) for the pressure. More

precisely, elementary manipulations using (A 3) show that

[f − f∞](x)= 1

8π

{∫

S

[
δijPk(x, y)− ∂Rjk(x, y))

∂xi

− ∂Rik(x, y)

∂xj

]
dk(y) dS

}
n(x) · ejei,

(A 4)

where the summation over repeated indices is used. The required stress f∞ produced

by the Stokes flow (v∞, q∞) obeys on S the following boundary integral equation (see
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FIGURE 15. Stokeslet located at the pole y near a porous slab with h = y · e3 > 0. The
symmetric point to (so-called image of) y with respect to the upper porous slab boundary Σu

is denoted by y′.

Pozrikidis 1992; Sellier 2010):

− 1

8πµ

∫

S

G
∞(x, y) · f∞(y) dS

= v∞(x)+ 3

4π

∫

S

[v∞(y)− v∞(x)] · (y − x)(y − x) ·n(y)(y − x)

|y − x|5
dS for x on S.

(A 5)

Accordingly, one obtains f = f − f∞ + f∞ by using (A 4) for f − f∞ and solving (A 5)
for f∞, in conjunction with the integral representation (A 2) to compute v∞ also on S.

Appendix B. Derivation of the Green’s tensor

In this appendix, we derive the expression of the Green’s tensor (V (k)(x, y),
P(k)(x, y)), at a point x located in either D, S or D ′, due to a unit point force
f ek located at y in D (see figure 15).

B.1. Governing equations

The governing equations for x in the fluid domain D are the Stokes equations with an
added point force singularity at y represented as a Dirac δ function with

∇ ·V (k)(x, y)= 0, µ∇2V (k)(x, y)− ∇P(k)(x, y)= −f δ(x − y)ek. (B 1)

For x in the porous slab S , Darcy’s equations hold:

V (k) = −K

µ
∇P(k), ∇ ·V (k) = 0. (B 2)

Finally, for x in the fluid domain D ′, one requires that

∇ ·V (k)(x, y)= 0, µ∇2V (k)(x, y)− ∇P(k)(x, y)= 0. (B 3)

The boundary conditions coupling these domains are

P(k)(Σ+
u )= P(k)(Σ−

u ), P(k)(Σ+
l )= P(k)(Σ−

l ), (B 4)

[V (k)
· e3](Σ+

u )= [V (k)
· e3](Σ−

u ), [V (k)
· e3](Σ+

l )= [V (k)
· e3](Σ−

l ), (B 5)



Motion of a solid particle in a shear flow along a porous slab 299
[
∂V (k)

∂x3

· eβ

]
(Σ+

u )= σ√
K

[V (k)(Σ+
u )− V (k)(Σ−

u )] · eβ, (β = 1, 2), (B 6)

[
∂V (k)

∂x3

· eβ

]
(Σ−

l )= − σ√
K

[V (k)(Σ−
l )− V (k)(Σ+

l )] · eβ, (β = 1, 2), (B 7)

where Σ−
u , Σ+

l , respectively, denote the sides of Σu, Σl facing S , and Σ+
u , Σ−

l those
facing the fluid regions D , D ′. Finally, one adds the far-field behaviour

(V (k),P(k))→ (0, 0) as |x| → ∞. (B 8)

For a prescribed value of k = 1, 2, 3, one has to solve (B 1)–(B 3) with boundary
conditions (B 4)–(B 8).

B.2. Analytical solutions in Fourier space

As depicted in figure 15, we set R = x − y and R′ = x − y′, where y′ is the symmetric
point of y with respect to Σu. Moreover, R = |R|, R′ = |R′|, Rj = R · ej and R′

j = R′
· ej,

so that R3 = x3 − y3 and R′
3 = x3 + y3. In solving the problem (B 1)–(B 8) we use the

following two-dimensional Fourier transform:

ĝ(λ1, λ2; R′
3)= 1

2π

∫ ∞

−∞

∫ ∞

−∞
g(R′

1,R′
2,R′

3)e
i(λ1R′

1
+λ2R′

2
) dR′

1 dR′
2. (B 9)

Extending the approach of Blake (1971) and Elasmi & Feuillebois (2001), we write
the solution in the liquid domain D as the sum of a stokeslet with intensity f ek

located at y, its image stokeslet with intensity −f ek located at y′ (the previously
defined symmetric point of y with respect to Σu) and a supplementary regular Stokes

flow field with velocity W
(k)
j ej and pressure s(k). In other words, one adopts in D the

decompositions

V
(k)
j = V (k)

· ej =
f

8πµ

{
δjk

(
1

R
− 1

R′

)
+ RjRk

R3
−

R′
jR

′
k

R′3

}
+ W

(k)
j , (B 10)

P(k) = f

4π

(
Rk

R3
− R′

k

R′3

)
+ s(k). (B 11)

Taking the Fourier transform of the second equation in (B 1), using (B 8) and solving,
the Fourier transforms of the supplementary flow pressure and velocity are found to be

ŝ(k) = 2µB(k)e−(R′
3
−h)ξ , (B 12)

Ŵ
(k)
j =

[
B
(k)
j + B(k)

(
iλα

ξ
δαj + δ3j

)
(R′

3 − h)

]
e−(R′

3
−h)ξ , (B 13)

with the definitions h = y3, ξ =
√
λ2

1 + λ2
2 and B

(k)
j = Ŵ

(k)
j (Σ

+
u ) for j = 1, 2, 3. In

addition, the first (continuity) equation (B 1) provides the relationship

B(k) = iλαB(k)α + ξB
(k)
3 , α = 1, 2. (B 14)

Here k = 1, 2, 3 is given and one looks at four complex quantities B(k) and

B
(k)
j (j = 1, 2, 3), which also depend on the solution in the porous medium S and

liquid domain D ′ through the coupled boundary conditions (B 4)–(B 7).
The pressure in the porous slab S being harmonic, its Fourier transform reads

P̂(k) = P̂(k)(Σ−
u )

sinh[(R′
3 − h + e)ξ ]

sinh(ξe)
− P̂(k)(Σ+

l )
sinh[(R′

3 − h)ξ ]
sinh(ξe)

. (B 15)
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By virtue of (B 2), one immediately obtains in the porous slab

V̂
(k)
β = iλβ

K

µ
P̂(k) for β = 1, 2, (B 16)

V̂
(k)
3 = −ξ K

µ

{
P̂(k)(Σ−

u )
cosh[(R′

3 − h + e)ξ ]
sinh(ξe)

− P̂(k)(Σ+
l )

cosh[(R′
3 − h)ξ ]

sinh(ξe)

}
. (B 17)

In the fluid domain D ′, like in D , we take the Fourier transform of the homogeneous
Stokes equations (B 3), use (B 8) and solve the resulting equation, which depends
on R′

3, to obtain there

P̂(k) = 2µA(k)e(R
′
3
−h+e)ξ , (B 18)

V̂
(k)
j =

[
A
(k)
j − A(k)

(
iλα

ξ
δαj − δ3j

)
(R′

3 − h + e)

]
e(R

′
3
−h+e)ξ , (B 19)

with, exploiting the first equation (B 3),

A
(k)
j = V̂

(k)
j (Σ

−
0 ) (j = 1, 2, 3), (B 20)

A(k) = iλαA(k)α − ξA
(k)
3 (α = 1, 2). (B 21)

In summary, we end up with eight unknown quantities P̂(k)(Σ−
u ), P̂(k)(Σ+

l ), B
(k)
j and

A
(k)
j (j = 1, 2, 3) to be found from the eight coupled boundary conditions (B 4)–(B 7).
The boundary conditions (B 4), (B 5) and (B 7) on the lower interface Σl first yield

the relationships

2µA(k) = P̂(k)(Σ+
l ), A

(k)
3 = −ξ K

µ

[
P̂(k)(Σ−

u )

sinh(ξe)
− P̂(k)(Σ+

l )

tanh(ξe)

]
, (B 22)

(
ξ + σ√

K

)
A
(k)
β = iλβ

ξ
A(k) + iλβ

σ
√

K

µ
P̂(k)(Σ+

l ) for β = 1, 2. (B 23)

Using the decomposition (B 11) and (B 12), the continuity of pressure (B 4) across the
interface Σu gives

P̂(k)(Σ−
u )= 2(δ3kξψ0 + µB(k)), (B 24)

in which, setting R0 = {R2
1 + R2

2 + h2}1/2
, we define the function ψ0 as

ψ0 = − f

4π

e−hξ

ξ
= ϕ̂0, ϕ0 = − f

4πR0

. (B 25)

Recalling the decomposition (B 10), one also obtains

V
(k)
j (Σ

+
u )= − fh

4πµ
(δjαδ3k + δj3δαk)

Rα

R3
0

+ W
(k)
j (Σ

+
u ), j = 1, 2, 3, (B 26)

∂V
(k)
β

∂R′
3

(Σ+
u )= fh

4πµ

(
δβk

R3
0

+ 3RβRαδαk

R5
0

)
+ ∂W

(k)
j

∂R′
3

(Σ+
u ), β = 1, 2, (B 27)

where there is a summation over indices α = 1, 2 in (B 26) and (B 27). Hence, by
virtue of (B 13), one arrives at

V̂
(k)
j (Σ

+
u )= ihλβ[δjβδ3k + δj3δβk]ψ0/µ+ B

(k)
j , (B 28)

∂V̂
(k)
β

∂R′
3

(Σ+
u )= [λαλβδαkh − 2ξδβk]

ψ0

µ
+ iλβ

ξ
B(k) − ξB

(k)
β , β = 1, 2. (B 29)
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Employing (B 28) and (B 17) the first boundary condition (B 5) then becomes

B
(k)
3 = − ihλβδβkψ0

µ
− ξK

µ sinh(ξe)
[cosh(eξ)P̂(k)(Σ−

u )− P̂(k)(Σ+
l )]. (B 30)

Finally, by virtue of (B 16), (B 28) and (B 29) the last boundary conditions (B 6) yield

[
ξ + σ√

K

]
B
(k)
β = iλβ

{
B(k)

ξ
+ σ

√
K

µ
P(k)(Σ−

u )

}

+
[
λαλβhδαk − 2ξδβk − ih

σ√
K
λβδ3k

]
ψ0

µ
for β = 1, 2. (B 31)

For given lengths e, permeability K > 0 and dimensionless slip coefficient σ > 0, we
further introduce the quantities

η =
√

K√
Kξ + σ

, θ = 1 + 2σ
√

Kξ, τ = 2Kξ

tanh(eξ)
, τ ′ = 2Kξ

sinh(eξ)
, (B 32)

γ = 2
√

Kξ − h/
√

K, Λ= [1 + ξ(τ + θη)]−1, S = (ξΛτ ′)
2
. (B 33)

Exploiting (B 21)–(B 23) makes it possible to obtain a link between P̂(k)(Σ−
u ) and

P̂(k)(Σ+
l ). Curtailing the details, one obtains

P̂(k)(Σ+
l )= ξΛτ ′P̂(k)(Σ−

u ). (B 34)

Now, inserting (B 24) in (B 31) gives

B
(k)
β = iλβ

ξ
ηθB(k) + η[ihλβδ3kσγ − 2δβkξ + λαλβδαk]

ψ0

µ
for β = 1, 2. (B 35)

Invoking (B 24), (B 34) and (B 35) makes it possible to rewrite (B 30) as

B
(k)
3 =

(
S

ξΛ
− τ

)
B(k) −

[
δ3kξ

(
τ − S

ξΛ

)
+ ihλβδβk

]
ψ0

µ
. (B 36)

Appealing to (B 14) and taking account of (B 35) and (B 36) then provides the key
result:

B(k) = −ξ
[

iλβδβk[h + η(2 − hξ)]Λ+ δ3kξΛ(τ + σγ η)− δ3kS

1 − S

]
ψ0

µ
. (B 37)

The above result (B 37) permits us to obtain, in terms of the known function ψ0, the

quantities B
(k)
j for j = 1, 2, 3 by employing (B 35) and (B 36), the coefficients P̂(k)(Σ+

l )

and P̂(k)(Σ−
u ) by combining (B 34) with (B 30), and finally the quantities A

(k)
j and A

(k)
j

from (B 22) and (B 23).

B.3. Solution in the liquid domain above the porous slab

Let us illustrate the way to proceed by determining the regular pressure s(k) occurring
in the decomposition (B 11) and having (two-dimensional) Fourier transform ŝ(k) given
by (B 12). Using (B 25) and (B 37) then provides

ŝ(k) = −2ξ

[
iλβδβk[h + η(2 − hξ)]Λ+ δ3kξΛ(τ + σγ η)− δ3kS

1 − S

]
ψ, (B 38)
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where the function ψ is defined as

ψ = − f

4π

e−R′
3
ξ

ξ
= ψ̂ ′, ψ ′ = − f

4πR′ . (B 39)

In taking the inverse Fourier transform, it is useful to note that the function
g(R′

1,R′
2,R′

3) having a two-dimensional Fourier transform ĝ (defined by (B 9)) given by
(with a summation over indices β = 1, 2 in (B 40))

ĝ(λ1, λ2; R′
3)= −(δj3ξ + iλβδβj)

f (ξ)

ξ
e−R′

3
ξ , ξ =

√
λ2

1 + λ2
2, (B 40)

is, denoting by J0 the zeroth-order Bessel function and setting ρ =
√

R
′2
1 + R

′2
2 ,

g(R′
1,R′

2,R′
3)=

(
δj3

∂

∂R′
3

+ δβj

∂

∂R′
j

)
〈f 〉, 〈f 〉 =

∫ ∞

0

f (ξ)J0(ρξ)e
−R′

3
ξ dξ. (B 41)

In expressing the results obtained for the regular pressure s(k) and velocity W
(k)
j

introduced by (B 10) and (B 11), it is worth defining the symbol Jkl = δk1δ1l + δk2δ2l −
δk3δ3l and the following functions:

f1 = 2Λ

1 − S
[(ηξ − 1)h − 2η], f2 = − 2Λ

1 − S
[2η(1 + σ

√
Kξ)+ τ ], f3 = − 2S

1 − S
,

(B 42)

f4 = 2Λη

1 − S
[(ξh − 2)η − h], f5 = ηf2, f6 = ηf3, f7 = − 2√

Kξ + σ
. (B 43)

Then, one obtains

s(k) = − f

4π

∂

∂R′
3

[
Jkl

∂〈f1〉
∂R′

l

+ δ3k

∂〈f2〉
∂R′

3

+ δ3k〈f3〉
]
, (B 44)

and in a similar fashion W
(k)
j = wjk/(8π) with wjk given by (3.15).

B.4. Solution in the porous medium S

The Fourier transform P̂(k) of the pressure in the porous medium is obtained by
combining (B 15), (B 24), (B 34) and (B 37). It reads

P̂(k) = 2

[
−ξ(iλαδαk − ξδ3k)+ δ3k

ξ

h

]
[h + (2 − ξh)η]sinh[ξ(R′

3 − h + e)]
sinh(ξe)

Λψ0

1 − S

− 2ξΛτ ′
[
−ξ(iλαδαk − ξδ3k)+ δ3k

ξ

h

]
[h + (2 − ξh)η]sinh[ξ(R′

3 − h)]
sinh(ξe)

Λψ0

1 − S

− 4δ3k

(
ξη

h

)
sinh[ξ(R′

3 − h + e)]
sinh(ξe)

Λψ0

1 − S

+ 4ξΛτ ′δ3k

(
ξη

h

)
sinh[ξ(R′

3 − h)]
sinh(ξe)

Λψ0

1 − S
. (B 45)

In expressing the resulting pressure P(k) in the porous medium, it is useful to introduce
the so-called Hankel transform of order zero of a function g, denoted by H0(g) and
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defined as

H0(g)=
∫ ∞

0

J0(ρξ)ξg(ξ) dξ. (B 46)

Then one arrives at

P(k) = 1

2K

[(
Jkl

∂

∂R′
l

+ δ3k

h

)
(Υ3 − Υ2)+

(
∂

∂R′
k

+ δ3k

h

)
(Υ1 − Υ4)

]

− 2

K
δ3k(Υ5 − Υ6), (B 47)

with the functions Υi(ρ,R′
3) (i = 1, . . . , 6) defined as

Υ1(ρ,R′
3)= H0

(
(2 − ξh)η + h

1 + ξ(τ + ηθ)

τ ′ψ1

1 − S

)
, (B 48)

Υ2(ρ,R′
3)= H0

(
(2 − ξh)η + h

1 + ξ(τ + ηθ)

τ ′ψ2

1 − S

)
, (B 49)

Υ3(ρ,R′
3)= H0

(
(2 − ξh)η + h

ξ

Sψ3

1 − S

)
, (B 50)

Υ4(ρ,R′
3)= H0

(
(2 − ξh)η + h

ξ

Sψ4

1 − S

)
, (B 51)

Υ5(ρ,R′
3)= H0

(
η sinh[ξ(R′

3 − h + e)]
h[1 + ξ(τ + ηθ)]

τ ′ψ0

1 − S

)
, (B 52)

Υ6(ρ,R′
3)= H0

(
η sinh[ξ(R′

3 − h)]
hξ

Sψ0

1 − S

)
, (B 53)

where ψ0 has been introduced by (B 25) and

ψ1 = ψ0eξ(R
′
3
−h+e), ψ2 = ψ0e−ξ(R′

3
−h+e), ψ3 = ψ0e−ξ(R′

3
−h), ψ4 = ψ0eξ(R

′
3
−h). (B 54)

Of course, the velocity V (k) in the porous medium is then immediately deduced from
(B 47) by appealing to Darcy’s law, i.e. to the first equation in (B 2).

B.5. Solution in the liquid domain D ′

From (B 22), (B 34) and (B 24) it is clear that

A(k) = ξΛτ ′
(
δ3kξ

ψ0

µ
+ B(k)

)
. (B 55)

Combining (B 23) with (B 22) then also provides

A
(k)
3 = −τ ′(1 − ξΛτ)

(
δ3kξ

ψ0

µ
+ B(k)

)
, (B 56)

A
(k)
β = iλβΛτ

′ηθ

(
δ3kξ

ψ

µ
+ B(k)

)
for β = 1, 2. (B 57)
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Upon introducing the additional functions

F1(ρ,R′
3)= H0

(
(2 − ξh)η + h

ξτ ′
Sψ1

1 − S

)
, F2(ρ,R′

3)= H0

(
η

ξτ ′
Sψ1

1 − S

)
, (B 58)

F3(ρ,R′
3)= H0

(
(2 − ξh)η + h

ξτ ′
Sηψ1

1 − S

)
, F4(ρ,R′

3)= H0

(
η2

ξτ ′
Sψ1

1 − S

)
, (B 59)

it is then established that the pressure and the velocity components V
(k)
j = V (k)

· ej

below the porous slab are

µV
(k)
j = W

3
j

[
∂F1

∂R′
k

+ δ3k

((
1

h
− ∂

∂R′
3

)
(F1 − 2F2)+ hσ√

K

∂F2

∂R′
3

)]

+ (e − h)
∂

∂R′
j

[
∂F1

∂R′
k

+ δ3k

((
1

h
− ∂

∂R′
3

)
(F1 − 2F2)+ hσ√

K

∂F2

∂R′
3

)]

−
(

1 + 2σ
√

K
∂

∂R′
3

)
∂

∂R′
j

[
∂F3

∂R′
k

+ δ3k

((
1

h
− ∂

∂R′
3

)
(F3 − 2F4)+ hσ√

K

∂F4

∂R′
3

)]
,

(B 60)

P(k) = 2
∂

∂R′
3

[
∂F1

∂R′
k

+ δ3k

((
1

h
− ∂

∂R′
3

)
(F1 − 2F2)+ hσ√

K

∂F2

∂R′
3

)]
, (B 61)

where the following condensed notation is employed:

W
3
j = R′

3

∂

∂R′
j

− δj3. (B 62)

Appendix C. Formulae for the numerical calculation of the Green’s tensor

and its derivatives

The integral in the inverse transform (3.14) has to be calculated numerically. As for

the derivatives of the inverse transform (3.14) with respect to the components of R′,
we use the classical formulae:

dJ0(t)

dt
= −J1(t),

dJ1(t)

dt
= J0(t)− J1(t)

t
, (C 1)

for t > 0, where J1 is the Bessel function of order one. We then obtain for ρ > 0:

∂〈g〉
∂R′

3

= −〈ξg〉, ∂〈g〉
∂R′

α

= −R′
α

ρ

∫ ∞

0

ξJ1(ρξ)g(ξ)e
−R′

3
ξ dξ for α = 1, 2, (C 2a)

∂2〈g〉
∂R′

α∂R′
β

= −δαβ
ρ

∫ ∞

0

ξJ1(ρξ)g(ξ)e
−R′

3
ξ dξ +

R′
αR′

β

ρ2

∫ ∞

0

ξ 2

×
[

2
J1(ρξ)

ρξ
− J0(ρξ)

]
g(ξ)e−R′

3
ξ dξ for α = 1, 2, β = 1, 2. (C 2b)

As stated above, the relationship (C 2b) holds for ρ > 0. However, for x 6= y we have

R′
3 > 0 but may have ρ = 0. Exploiting the asymptotics for t ≪ 1, i.e.

J0(t)= 1 − t2/4 + O(t3), J1(t)= t/2 − t3/16 + O(t5), (C 3)
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the limit values of the derivatives in (C 2) then become

∂〈g〉
∂R′

α

= 0,
∂2〈g〉
∂R′

α∂R′
β

= −δαβ
2

∫ ∞

0

ξ 2g(ξ)e−R′
3
ξ dξ for ρ = 0. (C 4)

In summary, it is remarked that any integral to be evaluated takes the form

I (〈g〉)=
∫ ∞

0

F (ρξ)g(ξ)e−R′
3
ξ dξ for R′

3 = x3 + y3 > 0. (C 5)

By the change of variable ξ = −log t, this integral is transformed to one on a finite
interval:

I (〈g〉)=
∫ 1

0

F (−ρ log t)g(−log t)tR′
3
−1 dt. (C 6)

This is more easily calculated numerically by iteratively splitting the domain [0, 1],
using Gauss–Legendre quadrature in each sub-domain (note that Gauss–Laguerre is
not appropriate to calculate directly the integral in (C 5) since R′

3 may be small) and
stopping the iterative scheme as soon as a sufficient, say of order 10−16, accuracy is
reached. As verification, whenever possible, comparisons have been made up to order
O(10−16) with results obtained using the Maple computer algebra software.
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