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We investigate the spectral properties of the turbulence generated during the nonlinear

evolution of a Lamb–Chaplygin dipole in a stratified fluid for a high Reynolds number

Re = 28 000 and a wide range of horizontal Froude number Fh ∈ [0.0225 0.135] and

buoyancy Reynolds number R = ReFh
2 ∈ [14 510]. The numerical simulations use

a weak hyperviscosity and are therefore almost direct numerical simulations (DNS).

After the nonlinear development of the zigzag instability, both shear and gravitational

instabilities develop and lead to a transition to small scales. A spectral analysis shows

that this transition is dominated by two kinds of transfer: first, the shear instability

induces a direct non-local transfer toward horizontal wavelengths of the order of

the buoyancy scale Lb = U/N, where U is the characteristic horizontal velocity of

the dipole and N the Brunt–Väisälä frequency; second, the destabilization of the

Kelvin–Helmholtz billows and the gravitational instability lead to small-scale weakly

stratified turbulence. The horizontal spectrum of kinetic energy exhibits a εK
2/3k

−5/3
h

power law (where kh is the horizontal wavenumber and εK is the dissipation rate

of kinetic energy) from kb = 2π/Lb to the dissipative scales, with an energy deficit

between the integral scale and kb and an excess around kb. The vertical spectrum of

kinetic energy can be expressed as E(kz) = CNN2k−3
z + CεK

2/3k−5/3
z where CN and C

are two constants of order unity and kz is the vertical wavenumber. It is therefore

very steep near the buoyancy scale with an N2k−3
z shape and approaches the εK

2/3k−5/3
z

spectrum for kz > ko, ko being the Ozmidov wavenumber, which is the cross-over

between the two scaling laws. A decomposition of the vertical spectra depending on

the horizontal wavenumber value shows that the N2k−3
z spectrum is associated with

large horizontal scales |kh| < kb and the εK
2/3k−5/3

z spectrum with the scales |kh| > kb.

Key words: instability, stratified flows, transition to turbulence

1. Introduction

Our understanding of the dynamics of strongly stratified flows has taken a major

step forward with the realization of the importance of the anisotropy and of the

‘buoyancy’ scaling law which states that the vertical length scale of a structure should

scale as the buoyancy length scale Lb = U/N, where U is the typical velocity of
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the structure and N is the Brunt–Väisälä frequency. This scaling law is valid in the

inviscid limit when the horizontal Froude number Fh = U/(NLh) (where Lh is the

typical horizontal length scale) is small and implies that the potential energy is of

the same order as the kinetic energy. Theoretically, it comes from the invariance of

the Boussinesq–Euler equations under the hydrostatic approximation with respect to

variation of the stratification (Billant & Chomaz 2001).

From the turbulence point of view, this scaling law leads to the hypothesis of a

direct energy cascade (Lindborg 2002, 2006). Such a cascade and the importance of

the buoyancy length scale in strongly stratified turbulence has been observed in many

numerical studies (Godeferd & Staquet 2003; Laval, McWilliams & Dubrulle 2003;

Riley & de Bruyn Kops 2003; Waite & Bartello 2004; Hebert & de Bruyn Kops 2006;

Lindborg 2006; Brethouwer et al. 2007; Lindborg & Brethouwer 2007).

When the horizontal Froude number is small and the buoyancy Reynolds number

R = ReFh
2 is very large (where Re is the usual Reynolds number, Re = ULh/ν,

with ν the viscosity), there exists a universal regime of strongly stratified turbulence

associated with a horizontal kinetic energy spectrum of the form C1εK
2/3k

−5/3
h , where

kh is the horizontal wavenumber and εK is the dissipation rate of kinetic energy, and

with C1 = 0.5 a universal constant (Lindborg 2006; Brethouwer et al. 2007).

This k
−5/3
h horizontal energy spectrum for strongly stratified turbulence is followed

by a weakly stratified cascade at small scales (Brethouwer et al. 2007). The strongly

stratified inertial range has been predicted to exhibit vertical spectra of the form N2k−3
z ,

where kz is the vertical wavenumber. On the contrary, the weakly stratified cascade is

nearly isotropic and thus associated with a εK
2/3k−5/3

z vertical spectrum. The transition

between the two regimes happens at the Ozmidov length scale lo =
√

εK/N3 (Lumley

1964; Ozmidov 1965), for which the horizontal Froude number Fh(lo) = u(lo)/(Nlo) is

of order unity, where u(lo) = εK
1/3l−1/3

o is the characteristic velocity associated with the

length scale lo.

However, numerous numerical simulations of stratified turbulence report mixing

events due to the shear instability (Laval et al. 2003; Riley & de Bruyn Kops

2003; Hebert & de Bruyn Kops 2006; Brethouwer et al. 2007; Waite 2011). As

shown by Riley & de Bruyn Kops (2003), the inverse of the buoyancy Reynolds

number is an estimate of the minimum value of the Richardson number that can

be reached when vertical diffusion balances horizontal transport. Thus, the condition

R > 1 can be interpreted as a condition for the development of the shear instability

in stratified turbulence. In addition, the Richardson number is related to the vertical

Froude number Ri ∼ (NLv/U)2 ∼ 1/Fv
2 so that overturnings might develop at vertical

length scales Lv of the order of the buoyancy length scale Lb, i.e. at scales larger than

the Ozmidov length scale lo.

The evolution of a counter-rotating vortex pair in a stratified fluid has been

extensively studied, in particular because it is one of the simplest flows on which

the zigzag instability develops and from which the buoyancy length scale naturally

emerges as the vertical length (Billant & Chomaz 2000a,b,c; Otheguy, Chomaz &

Billant 2006; Billant 2010; Billant et al. 2010). Recently, Deloncle, Billant & Chomaz

(2008), Waite & Smolarkiewicz (2008) and Augier & Billant (2011) have investigated

the nonlinear development of the zigzag instability. They have shown that both the

shear and gravitational instabilities appear at high buoyancy Reynolds number when

the zigzag instability has a finite amplitude leading to a transition to turbulence.

This simple flow is of interest to unfold the nonlinear processes and instabilities
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since they occur successively in time, whereas in stratified turbulence they all operate
simultaneously.

In this paper, we continue the numerical study of the transition to turbulence in this
particular case of a dipole. In contrast to previous studies, we focus on the spectral
properties and transfers. In § 2, we describe the initial conditions and the numerical
methods. The evolution of the spectra for a moderate horizontal Froude number is
described in detail in § 3. The effect of the horizontal Froude number is studied in § 4
and that of the Reynolds number in § 5. A spectral analysis of the nonlinear transfers
is presented in § 6. Finally, conclusions are offered in the last section.

2. Methods

The governing equations are the incompressible Navier–Stokes equations under the
Boussinesq approximation with hyperviscosity:

∂tu + u ·∇u = − 1

ρ0

∇p − gρ ′

ρ0

ez + (ν∇2 + ν4∇8)u, (2.1)

∂tρ
′ + u ·∇ρ ′ = N2uz + (κ∇2 + ν4∇8)ρ ′, (2.2)

where u = (ux, uy, uz) is the non-divergent velocity (∇ · u = 0) in Cartesian coordinates
(x, y, z) with z the vertical coordinate, p is the pressure, ez is the vertical unit
vector, g is the acceleration due to gravity, ρ ′(x, y, z, t) is the perturbation density
relative to the sum of a constant reference density ρ0 and a linear density profile
ρ̄(z), N =

√
−(g/ρ0)(dρ̄/dz) is the constant Brunt–Väisälä frequency, ν the kinematic

viscosity, κ the mass diffusivity and ν4 is a constant hyperviscosity coefficient added
for numerical purpose (see below).

The methods are similar to those employed in Augier & Billant (2011). The
numerical simulations are initialized by a Lamb–Chaplygin columnar dipole weakly
perturbed by the dominant mode of the zigzag instability (for the analytic expression
of the initial state, see Augier & Billant 2011). Equations (2.1)–(2.2) are solved by
means of a pseudo-spectral method with periodic boundary conditions (see Deloncle
et al. 2008 for details). Time advancement is carried out with the classical fourth-order
Runge–Kutta scheme for the nonlinear term and exact integration for the viscous and
diffusive terms. Most of the aliasing is removed by truncating 9/10 of the modes
along each direction.

The Reynolds number Re and the horizontal Froude number Fh are based on the
initial conditions: Re = UR/ν, Fh = U/(NR), where U and R are respectively the
velocity of translation and the radius of the Lamb–Chaplygin dipole. The Schmidt
number Sc = ν/κ is set to unity in all runs. For simplicity and without loss of
generality, R and R/U are taken respectively as length and time units. The density
perturbations are non-dimensionalized by R dρ̄/dz. The vertical length of the numerical
box Lz is taken equal to the vertical wavelength of the dominant mode of the
zigzag instability λzz/R ≃ 10Fh (Billant & Chomaz 2000c). Throughout the paper, the
buoyancy length scale will be set to this length scale Lb = λzz = 10U/N.

Most of the simulations are performed for the same Reynolds number: Re = 28 000.
In contrast, the Froude number is varied from Fh = 0.0225 (strong stratification) to
Fh = 0.135 (moderate stratification). Thus a large range of buoyancy Reynolds number
is covered going from 14 to 510, i.e. always well above the threshold for the shear and
gravitational instabilities Rc ≃ 4.1 for the Lamb–Chaplygin dipole (Augier & Billant
2011). The parameters of the runs are summarized in table 1.



Transition to turbulence from a dipole in stratified fluid 89

Run Fh
Re

1000
R Lz Nh

2 × Nz 1/Re4 max
t

(

εν4(t)

ε(t)

)

max
t

(εK(t)) kmaxη

R1S 0.0225 28 14 0.225 3842 × 24 1.8×10−18 0.63 0.088 0.26

R1M 0.0225 28 14 0.225 7682 × 48 9.3×10−21 0.40 0.082 0.52

R1L 0.0225 28 14 0.225 10242 × 64 1.1×10−21 0.31 0.082 0.69

R2S 0.045 28 57 0.45 3842 × 48 1.8×10−18 0.71 0.075 0.27

R2M 0.045 28 57 0.45 7682 × 96 9.3×10−21 0.50 0.088 0.51

R2L 0.045 28 57 0.45 10242 × 128 1.1×10−21 0.38 0.087 0.68

R3S 0.09 28 227 0.9 3842 × 96 1.8×10−18 0.73 0.066 0.27

R3T1 0.09 7 57 0.9 7682 × 192 0 0 0.062 1.58

R3T2 0.09 14 113 0.9 7682 × 192 8.9×10−21 0.23 0.066 0.92

R3M 0.09 28 227 0.9 7682 × 192 9.3×10−21 0.49 0.070 0.54

R3L 0.09 28 227 0.9 10242 × 256 1.1×10−21 0.36 0.069 0.72

R3T3 0.09 28 227 0.9 12802 × 320 1.7×10−22 0.25 0.069 0.91

R4S 0.135 28 510 1.35 3842 × 144 1.8×10−18 0.73 0.063 0.28

R4M 0.135 28 510 1.35 7682 × 288 9.3×10−21 0.49 0.063 0.56

R4L 0.135 28 510 1.35 10242 × 384 1.1×10−21 0.36 0.062 0.74

TABLE 1. Overview of the physical and numerical parameters of the simulations. For all
simulations Lh = 4. The number of nodes in the x-, y- and z-direction are denoted Nx, Ny

and Nz, respectively, with Nx = Ny = Nh. We recall that the length and time units are R
and R/U, respectively; εν4

(t), ε(t) and εK(t) denote the hyperviscous dissipation, the total

dissipation and the dissipation of kinetic energy, respectively; η = [ν3/ max(εK(t))]1/4
is the

Kolmogorov length scale and kmax the maximum wavenumber.

In order to achieve such a high Reynolds number, our methods differ from those
employed in Augier & Billant (2011) in four main points. First, we use an adaptable
time step procedure which maximizes the time step over a Courant–Friedrichs–Lewy
condition (Lundbladh et al. 1999; Augier 2011).

Second, the horizontal size of the box is Lh = 4 instead of Lh = 10. We have
verified that the development of the zigzag, shear and gravitational instabilities are not
significantly affected by this stronger lateral confinement due to the periodic boundary
conditions. As shown in the Appendix, the shape of the horizontal kinetic energy
spectra is almost independent of the horizontal size of the box. This indicates that the
dynamics and the size of the turbulent structures generated by the different instabilities
do not depend on the horizontal size of the box. Only the spectra at the largest scales
vary and the late evolution differs when the pancake dipoles issued from the zigzag
instability have travelled more than the horizontal size of the box and the amplitude of
the zigzag instability is larger than the box size.

Third, in order to reduce the computational cost, the resolution in the x- and
y-directions is increased during the run so as to adapt to the smallest scales of the flow.
We start with a horizontal resolution Nx × Ny = 384 × 384. When the zigzag instability
becomes nonlinear (t = 3), the resolution is increased to 768 × 768, and when the
secondary instabilities develop (t = 3.7), it is set to 1024 × 1024. The runs for these
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three different resolutions are labelled S, M and L respectively (table 1). For each

horizontal resolution, the number of numerical points in the vertical direction, Nz, is

chosen so as to have a nearly isotropic mesh Nz ≃ (Lz/Lh)Nx.

Fourth, to ensure the numerical stability, we have added to the classical dissipation

an isotropic hyperviscosity (see (2.1)–(2.2)). The value of the hyperviscosity 1/Re4 =
ν4/(UR7) is decreased when the resolution is increased such that only the modes

with the highest wavenumbers significantly contribute to the hyperviscous dissipation.

More precisely, in order to choose the hyperviscosity coefficient ν4, we have first

performed a series of direct numerical simulation (DNS) in order to determine

the required viscosity νDNS as a function of the maximum wavenumber kmax . The

results have then been fitted with a law derived from the Kolmogorov length scale

νDNS(kmax) = ǫ̌1/3k −4/3
max , where the sole parameter ǫ̌ is obtained from the fit. The

hyperviscosity coefficient has then been determined by requiring that the sum of the

normal and hyper- dissipations is equal to the dissipation for an equivalent DNS

extrapolated from the previous law ν (αkmax)
2 +ν4 (αkmax)

8 = νDNS(kmax)kmax
2, where α

is a parameter set to 0.85 such that the peak in the dissipation spectra is resolved. For

each resolution, the hyperdissipation rate εν4
(t) is observed to suddenly increase at a

particular time when the highest wavenumber modes start to be filled. The resolution

is increased before this time, i.e. before the hyperviscosity affects the flow (except for

the highest resolution).

The lack of resolution can be quantified by the temporal maximum (which is at

the maximum of dissipation) of the ratio εν4
(t)/ε(t), where ε(t) is the total energy

dissipation rate. This quantity would tend to 0 if the smallest resolved scales were

much smaller than the Kolmogorov length scale η. In table 1, the value of this

parameter is reported for each run (note that all simulations are continued long after

the maximum of dissipation). It is around 0.3–0.4 for the simulations with Nh = 1024.

Table 1 also indicates the product kmaxη, where kmax is the maximum wavenumber

and the Kolmogorov length scale is defined as η = [ν3/ max(εK(t))]1/4
since the

turbulence invades nearly the whole numerical domain during the period of maximum

dissipation. This quantity varies between 0.3 and 0.9, thus being close to unity as

required in DNS (de Bruyn Kops & Riley 1998; Brethouwer et al. 2007).

In order to investigate the effect of the hyperviscosity, we have carried out

three additional simulations for Fh = 0.09: simulations R3T1 and R3T2 with the

same resolution Nh
2 × Nz = 7682 × 192 as simulation R3M but a different Reynolds

number, Re = 7000 and Re = 14 000 respectively, and simulation R3T3 with a larger

resolution Nh
2 × Nz = 12802 × 320 than simulation R3L but the same Reynolds number

Re = 28 000. The simulation R3T1 is a DNS with ν4 = 0 and kmaxη = 1.58 and

simulations R3T2 and R3T3 are very close to DNS with kmaxη ≃ 0.9. Some results

obtained from these simulations are presented and discussed in § 5.

A careful comparison of runs R3L and R3T3 corresponding to the same set of

parameters but to two slightly different resolutions does not show any differences in

physical and spectral space apart from the width of the dissipative range. Indeed, the

maximum of the ratio εν4
(t)/ε(t) has decreased from 0.36 to 0.25. Even though the

two resolutions are not very different, this suggests that, when the resolution is large

enough, the non-dissipative part of the flow starts to be independent of the resolution

and of the associated hyperviscosity suggesting that it would also be the same if a

DNS were carried out. Because we do not seek to study the detailed structure of the

dissipative range provided that both the buoyancy and the Ozmidov scales are well

resolved, such hyperviscosity allows us to decrease the width of the dissipation range
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and achieve higher Reynolds number values, i.e. increase the width of the inertial

range for a given computational cost.

3. Global description of a simulation with Fh = 0.09

As already described by Deloncle et al. (2008), Waite & Smolarkiewicz (2008)

and Augier & Billant (2011), the zigzag instability develops linearly at the beginning

of the simulation and bends the dipole. By t = 3.3, the amplitude of the bending

deformations is large but no secondary instability is active yet (Augier & Billant 2011).

Thus, we begin our description of the flow at t = 3.3.

Figure 1(a,d,g,j) presents the time evolution of the density field for Fh = 0.09 in a

horizontal cross-section at the level at which the shear instability appears, z = 0.66Lz.

At t = 3.8, small-scale wiggles can be seen (figure 1d). They are associated with the

roll-up of Kelvin–Helmholtz (KH) billows with an horizontal axis as described by

Deloncle et al. (2008) and Augier & Billant (2011). At time t = 4.2 (figure 1g), the

destabilization of the KH billows start to generate disordered small scales. Eventually,

just after the maximum of dissipation, i.e. at t = 4.9, these small scales invade a large

portion of the domain (figure 1j).

To analyse the properties of these small scales, we first use the poloidal–toroidal

decomposition (Cambon 2001), also known as the Craya–Herring decomposition

(Craya 1958; Herring 1974), which is simply expressed in Fourier space as û = ûp + ût

for each wavenumber, where ûp = −eθ × (eθ × û) and ût = (eθ ·û)eθ with û the velocity

in Fourier space, eθ the unit vector parallel to ez × k, where ez is the vertical unit

vector and k the wave vector. In the limit of small vertical Froude number, the poloidal

velocity ûp is associated with gravity waves and the toroidal velocity ût with potential

vorticity modes. It has to be stressed that this interpretation is not legitimate here

since the vertical Froude number reaches a value of order unity. Indeed, the zigzag,

KH and Rayleigh–Taylor instabilities induce an increase of the poloidal kinetic energy

ÊKp(k) = |ûp|2 /2 and of the potential energy ÊP(k) = |ρ̂ ′|2 /(2Fh
2), even though there

are no waves (see e.g. Staquet & Riley 1989). Nevertheless, the toroidal–poloidal

decomposition is used here only as a convenient formal decomposition to detect

the occurrence of vertical velocity without overinterpreting its meaning in term

of waves and vortices. Since the poloidal velocity does not correspond to vertical

vorticity, its representation allows us to follow in Fourier space both the development

of the nonlinear zigzag instability with the strongly deformed dipole and the

Kelvin–Helmholtz instability.

From the energy in a Fourier mode ÊKp(k), we define a two-dimensional poloidal

energy spectral density

EKp(κh, kz) = 1

δκhδkz

∑

k∈δΩ[κh,±kz]

ÊKp(k), (3.1)

where δkz = 2π/Lz, δκh = 2π/Lh and δΩ[κh,±kz] is a volume made up of two annuli of

thickness δkz in the vertical, located in the two planes ±kz and defined horizontally by

the relation κh
2 6 kx

2 + ky
2 < (κh + δκh)

2. Figure 1(b,e,h,k) shows for the same instants

as figure 1(a,d,g,j) the poloidal kinetic energy density EKp(κh, kz). Both vertical and

horizontal wavenumbers are scaled by kb = 2π/Lb = 2π/Lz, which corresponds to the

lowest non-zero vertical wavenumber and to the most amplified wavenumber of the

zigzag instability. At t = 3.3, the poloidal kinetic energy is concentrated at kz = kb
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FIGURE 1. (Colour online) Description of the flow at four different characteristic times:
t = 3.3 (a–c), t = 3.8 (d–f ), t = 4.2 (g–i) and t = 4.9 (j–l) for Fh = 0.09. (a,d,g,j) Horizontal
cross-sections of the density field at the level at which the shear instability begins to
develop z = 0.66Lz; (b,e,h,k) the spectrum of poloidal energy EKp(κh, kz) and (c,f,i,l) the
total nonlinear energy transfer T(κh, kz).

and κh ≃ 0 to k0, where k0 is the leading horizontal wavenumber of the two-

dimensional base flow (marked in figure 1b). This feature is associated with the zigzag

instability that has a finite amplitude. The energy is spread out at higher vertical

wavenumbers than kb as a result of the nonlinear development of the zigzag instability.
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Figure 1(c,f,i,l) shows the two-dimensional spectral density of total nonlinear energy

transfers defined by the relation

T(κh, kz) = 1

δκhδkz

∑

k∈δΩ[κh,±kz]

T̂(k), (3.2)

where T̂(k) = −Re{û∗(k) ·P⊥[û ·∇u](k)+ F−2
h ρ̂ ′∗(k) ̂(u ·∇ρ ′)(k)}, Re denoting the real

part, the star the complex conjugate and P⊥ the projection operator on the space

perpendicular to k (Lindborg 2006; Waite 2011). The factor F−2
h in front of the second

term comes from the non-dimensionalization of the density perturbations (see § 2). In

all the light regions, the transfer is negative meaning that these modes are losing

energy to the wavenumbers in the dark regions. At t = 3.3 (figure 1c), the loss is

maximum for the two-dimensional mode kz = 0, κh = k0 and the gain is maximum at

kz = kb, κh ≃ 0–k0. This indicates that the zigzag instability is the leading mechanism

extracting energy from the two-dimensional base flow at that time. The black region

extends vertically nearly up to kz ∼ 6kb and κh ≃ kb. This confirms that the nonlinear

development of the zigzag instability before the secondary instability is transferring

energy to vertical harmonic modes of the initial preferred vertical wavenumber kb, i.e.

to small vertical scales but not to horizontal scales smaller than the buoyancy length

scale. Figure 1(c) also shows transfer toward the modes kz = kb and κh = 0 which are

the so-called ‘shear modes’ reported by Smith & Waleffe (2002).

At t = 3.8, the energy transfer (figure 1f ) exhibits a new peak close to kz ≃ kb and

κh ≃ 2kb (just below the diagonal isotropic line κh = kz), due to the appearance of

the KH instability, which starts when the local Richardson number is small enough

Ri . 1/4 (Deloncle et al. 2008). The wavenumber selected by the KH instability scales

like the shear thickness, which is proportional to the buoyancy length Lb when Ri is

close to the critical value for instability. Therefore, the horizontal wavenumber selected

by the secondary KH instability scales like kb. The poloidal kinetic energy (figure 1e)

presents at that time a secondary peak around κh ≃ 2kb just below the ‘isotropic’

diagonal (κh = kz). At t = 4.2, the appearance of small scales due to the destabilization

of the KH billows (figure 1g), corresponds to positive transfers (figure 1i) toward

high horizontal wavenumbers and a loss of energy at low horizontal wavenumbers.

The poloidal kinetic energy spectrum exhibits a more isotropic shape with energy

distributed nearly uniformly along the semicircular lines kz
2 + κh

2 = const (figure 1h).

At t = 4.9 (figure 1l), there are eventually transfers toward very small scales and

all the scales corresponding to the earlier development of the KH billows are now

losing energy (bright region). It can be noticed that during this whole process, the

modes kz ≃ kb to 3kb and κh ≃ k0 are still gaining energy indicating that the primary

zigzag instability remains active despite the development of the secondary shear and

gravitational instabilities.

In figure 2, we have plotted several horizontal (black curves) and vertical

(light curves) instantaneous compensated one-dimensional spectra EK(kh)ε
−2/3
K kh

5/3

and EK(kz)ε
−2/3
K kz

5/3, respectively, for the time 3.8 6 t 6 5.2 corresponding to the

development and the destabilization of the KH billows. The inset plot also shows the

spectra for t 6 3.8, i.e. prior to the development of the shear instability. The sloping

straight lines indicate the k−3 power law and the horizontal lines display the Cε
2/3
K k−5/3

law, with C = 0.5. Here εK is the maximum kinetic energy dissipation rate and the

horizontal one-dimensional spectra are computed in the same way as in Lindborg
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FIGURE 2. (Colour online) Time evolution of the horizontal and vertical compensated one-
dimensional spectra for Fh = 0.09 and Re = 28 000. In the main plot, the spectra are shown
for t = 3.8–5.2 with a time increment equal to 0.2. The inset plot shows the spectra for
t = 0.2–3.8 with a time increment of 0.4. The thick curves correspond to the time for which
the dissipation is maximum. The sloping straight lines indicate the k−3

z power law and the

horizontal lines the Cε
2/3
K k−5/3 law, with C = 0.5.

(2006) as the mean value of the kx and the ky spectra,

EK(kh) = 1

2δkh









∑

kh6|kx|<kh+δkh
ky,kz

ÊK(k) +
∑

kh6|ky|<kh+δkh
kx,kz

ÊK(k)









, (3.3)

where δkh = 2π/Lh and ÊK(k) = |û|2 /2. Note the difference between the horizontal
wavenumber kh and the modulus of the horizontal wave vector κh. The use of the
symbol kh indicates that the spectral quantities considered are the average of the one-
dimensional spectra in the x- and y-directions, meaning that the volumes of integration
in the Fourier space are parallelepipeds as indicated by the summation in (3.3). These
spectra are very similar to spectra obtained with one-dimensional measurements as
for example in Nastrom & Gage (1985). Moreover, they can be directly compared
with vertical one-dimensional spectra, functions of the vertical wavenumber kz. In
contrast, the use of the symbol κh indicates that the spectral quantities considered
are two-dimensional spectra, integrated isotropically on the horizontal, the volume of
integration being annuli as indicated by the summation in (3.1). The two-dimensional
spectra are fully adapted for the Craya–Herring decomposition (for a more precise
discussion on the differences between one- and two-dimensional spectra, see Lindborg
& Brethouwer 2007).

In the inset plot, we see that during the early evolution of the zigzag instability, the
horizontal spectrum does not vary. Only after t > 3.2 does the energy at horizontal
wavenumbers larger than the buoyancy wavenumber kb start increasing. In sharp
contrast, the level of the vertical spectra increases nearly linearly in time in this
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FIGURE 3. (Colour online) Horizontal two-dimensional (a) and vertical one-dimensional (b)
compensated spectra of toroidal, poloidal and potential energy for Fh = 0.09 and Re = 28 000
at t = 4.6. Black, light and dashed curves correspond respectively to toroidal, poloidal and
potential energies.

logarithmic representation since the energy in the first mode grows exponentially
owing to the development of the zigzag instability. For the penultimate time of the
inset, t = 3.4, the slope of the vertical spectra approaches k−3

z even though only the
zigzag instability has developed at that time. This indicates that this characteristic
slope is mainly due to the vertical deformations of the dipole induced by the zigzag
instability.

Starting at t = 3.4, we can see a peak in the horizontal spectra around kh/kb = 2
and its harmonics at kh/kb = 4 and 8. This is due to the appearance of the secondary
KH instability. We observe a dip in the horizontal spectra between the small horizontal
wavenumber k0, corresponding to the initial dipole, and kh/kb = 2. This is consistent
with the observation of figure 1 where a direct transfer from the [κh, kz] ≃ [k0, kb]
modes to the [κh, kz] ≃ [2kb, kb] modes due to the KH instability was demonstrated.
Beyond t = 4.4, energy eventually cascades toward the small horizontal scales with

a slope close to k
−5/3
h over approximately one decade. Remarkably, the horizontal

spectra nearly perfectly collapse onto the CεK
2/3k

−5/3
h law line, with C = 0.5, as

observed in forced strongly stratified turbulence (Lindborg 2006; Brethouwer et al.

2007). However, the particular value of this constant is not meaningful here since
it depends on the horizontal size of the computational domain compared to the
dipole size. This is because the turbulence is concentrated around the vortices and
is not homogeneous along the horizontal directions. Therefore, the observed agreement
with the theory of strongly stratified turbulence is fortuitous. Quite remarkably, small
vertical scales develop at the same time as the horizontal scales and, after t = 4.4, the
vertical spectra exhibit a break in the slope around kz/kb = 8 where the slope goes
from k−3

z to nearly k−5/3
z . The k−5/3

z power law begins when the vertical spectrum k−3
z

approaches the horizontal one, indicating a return to isotropy.
In figure 3, instantaneous toroidal (black line), poloidal (light line) and potential

(dashed line), horizontal two-dimensional (figure 3a) and vertical one-dimensional
(figure 3b) spectra are presented for t = 4.6 which corresponds to the time at which
the dissipation is maximum. The large horizontal scales are dominated by the toroidal
component while the peak at horizontal scales κh = 2kb is largely dominated by the
poloidal and the potential components. At smaller horizontal scales, the toroidal and
poloidal spectra approach each other. In figure 3(b), we see that the large vertical
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FIGURE 4. (Colour online) Horizontal (continuous curves) and vertical (dashed) kinetic

energy compensated one-dimensional spectra EK(ki)ε̃
−2/3
K ki

5/3 as a function of the
dimensionless wavenumber ki/kb for four runs with different values of the Froude number
Fh = 0.0025, 0.045, 0.09 and 0.135 but the same Reynolds number Re = 28 000. Each curve
is the average over time interval 1t = 0.3 near the maximum of the dissipation. The sloping

straight line indicates the k−3
z power law and the horizontal line the Cε̃

2/3
K k−5/3 law, with

C = 0.5.

scales are also dominated by the toroidal spectra, which confirms that the slope close
to k−3

z in figure 2 is due to the nonlinear vertical deformations of the dipole generated
by the zigzag instability.

4. Variation of Fh and R

Figure 4 presents horizontal (continuous curves) and vertical (dashed curves)

compensated kinetic spectra EK(kh)ε̃
2/3

K kh
5/3 and EK(kz)ε̃

2/3
K kz

5/3 obtained from
simulations with different values of Fh but the same Reynolds number Re = 28 000.
The spectra have been time-averaged over 1t = 0.3 around the time where the total
dissipation is maximum. In order to rescale quantities, we use the maximum kinetic
dissipation rate for Fh = 0.09: ε̃K = 0.069. As seen in table 1, εK varies only weakly
with Fh. This is because εK can be considered as the energy injection rate, which is
independent of Fh since the initial state is identical for all simulations. In any case,
the plot would have been very similar if each curve were scaled by its maximum
dissipation rate εK .

All the vertical spectra begin at the same dimensionless wavenumber kz/kb = 1
because the vertical size of the numerical box is adjusted to the dominant wavelength
of the zigzag instability. While Re is the same for all runs, the dissipative ranges
extend to larger values of kh/kb when Fh is increased because kb decreases. For the
same reason, the horizontal spectra also move to the right when Fh increases since the
lowest horizontal wavenumber is the same for all the simulations. For all the Froude
numbers, the spectra are depleted in energy between the small horizontal wavenumbers
and kh = kb. Remarkably, for higher wavenumbers kh & 2kb all the runs except for

Fh = 0.0225 present a flat compensated horizontal spectrum (corresponding to a k
−5/3
h
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FIGURE 5. (Colour online) Vertical spectra already presented in figure 4 but plotted in (a) as

EK(kz)N
−2kz

3 versus kz/kb and in (b) as EK(kz)ε̃
−2/3
K kz

5/3 versus kz/ko. In (a), the thick straight
line indicates the k−5/3

z power law. In (b), the thin straight line indicates the k−3
z power law and

the dashed line represents the theoretical expression (4.1).

power law) collapsing at a value approximately equal to 0.5. For Fh = 0.0225 (black
continuous thin line), the constant is lower, probably because of the too low value of
the buoyancy Reynolds number (R = 14).

The vertical spectra are very steep near kz = kb and show a tendency to follow a k−3
z

slope. They flatten when approaching the horizontal spectra at large wavenumbers and
their slope tends to k−5/3

z except for the highest stratification Fh = 0.0025, where the
two curves approach each other only in the dissipation range (i.e. the Ozmidov scale is
of the order of the Kolmogorov scale).

Figure 5(a) presents the same vertical spectra but now compensated by N2k−3
z ,

i.e. EK(kz)N
−2kz

3. All the curves collapse to EK(kz)N
−2kz

3 = CN ≃ 0.1 for kz = kb

corresponding to the dominant mode of the zigzag instability. However, the curves
depart rapidly from this constant when kz increases, more so when Fh is large. This is
because the transition to the k−5/3

z power law occurs at a lower vertical wavenumber
when Fh increases.

Spectra scaling like N2k−3
z are widely observed in nature (see e.g. Garrett &

Munk 1979; Gregg 1987) and many authors (e.g. Lumley 1964; Holloway 1983;
Dewan 1997; Brethouwer et al. 2007; Riley & Lindborg 2008) have predicted with
dimensional analysis based on different theories that this spectrum should be followed

by an ε
2/3
K k−5/3

z spectrum at small scales. Following Lumley (1964), we model the total
spectrum as the sum of a strongly stratified spectrum and an inertial spectrum, i.e. as

EK(kz) = CNN2k−3
z + Cε

2/3
K k−5/3

z = ((kz/ko)
−4/3 +1)Cε

2/3
K k−5/3

z , (4.1)

where C is a constant of order unity and ko = 2π/lo with lo = 2π (C/CN)3/4 (εK/N3)
1/2

the Ozmidov length scale. In figure 5(b), the compensated vertical spectra

EK(kz)ε̃
−2/3
K kz

5/3 are plotted as a function of kz/ko. Except for the Froude number
Fh = 0.0225, all the curves collapse over a large range of vertical wavenumbers
and in particular near the wavenumber of transition between the k−3

z and the k−5/3
z

power laws. This indicates that the change of slope occurs at the Ozmidov length
scale as predicted for strongly stratified turbulence (Brethouwer et al. 2007). We can
see that the spectrum (4.1) with CN = 0.08 and C = 0.56 (dashed line) describes
remarkably well the observed spectra, except of course near the dissipative range. It
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FIGURE 6. (Colour online) Decomposition of the vertical compensated spectra for Fh = 0.09
(a) and for all Froude numbers (b) shown in figure 4. In (a), the black thin curve corresponds
to the vertical spectrum E[K,κh6kb](kz) computed with modes for which κh 6 kb and the dashed
curve to the spectrum E[K,κh>kb](kz) computed with modes for which κh > kb. The dotted lines

indicate the Ozmidov wavenumber kz = ko. The dotted dashed lines show the k−3
z power law.

In (b), the solid curves correspond to the spectra E[K,κh6kb](kz) and the dashed curves to the
spectra E[K,κh>kb](kz).

has to be pointed out that the constant C = 0.56 associated with small-scale turbulence

is smaller than the classical Kolmogorov constant for the one-dimensional kinetic

energy spectrum of homogeneous isotropic turbulence CK ≃ 1 (Monin & Yaglom 1975;

Sreenivasan 1995; Gotoh, Fukayama & Nakano 2002). However, the precise value

of the constant C is not meaningful here and depends on the horizontal size of

the numerical box because the turbulence does not invade the whole computational

domain.

Figure 6(a) presents a decomposition of the vertical compensated spectra

EK(kz)ε
−2/3
K kz

5/3 for Fh = 0.09. The continuous thin curve corresponds to the

conditional vertical spectrum E[K,κh6kb](kz) computed with modes for which κh 6 kb.

As shown in figure 1, these modes correspond to the dipole deformed by the zigzag

instability. This conditional vertical spectrum is very steep and clearly dominates the

total spectrum at the largest vertical scales where the N2k−3
z power law is observed.

The dashed curve corresponds to the conditional vertical spectrum E[K,κh>kb](kz)

computed with modes for which κh > kb. We have shown in figure 1 that these

scales are generated mostly through the KH instability. We see that this conditional

vertical spectrum is nearly flat from kz ≃ 3kb to the dissipative range, i.e. the range

corresponding to a k−5/3
z power law. This spectrum does not show any tendency

to steepen at the largest vertical scales. This indicates that the turbulent structures

generated through the shear instability are relatively isotropic with a k−5/3 inertial

range. This is consistent with the relative isotropy of the KH billows seen in figure 1,

where the peak corresponding to these structures is close to (and even below) the

diagonal isotropic line κh = kz (see also the visualizations of the KH billows in

figure 7 of Deloncle et al. 2008). This feature is hidden in the total vertical kinetic

energy spectra at the large vertical scales between the buoyancy and the Ozmidov

length scales owing to the dominance of the N2k−3
z spectra associated with the large

horizontal scales. The conditional spectra for the four Froude numbers are plotted

in figure 6(b) as a function of kz/ko. This shows that the beginning of the k−5/3
z
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FIGURE 7. (Colour online) Similar to figure 4 except that it is for the spectra of potential

energy. The horizontal line shows the 0.5ε̃
2/3

K k−5/3εP/εK law.

inertial range associated with small horizontal scales κh > kb scales with the Ozmidov
wavenumber.

Figure 7 presents the horizontal (continuous lines) and vertical (dashed lines)

compensated spectra EP(ki)ε̃
2/3

K ki
5/3εK/εP of potential energy for the four Froude

numbers. An average has been performed over the same time interval as in figure 4.
The potential spectra are very similar to the kinetic spectra (figure 4) but with less
energy at large horizontal scales since the initial dipole has no potential energy.
More pronounced bumps around the buoyancy length scale can be also seen. Like

the horizontal compensated kinetic energy spectra EK(kh)ε̃
2/3

K kh
5/3 (figure 4), the

horizontal compensated potential energy spectra EP(kh)ε̃
2/3

K kh
5/3εK/εP present a flat

range corresponding to a k
−5/3
h power law from the buoyancy wavenumber to the

dissipative wavenumber and nearly collapse at a value approximately equal to 0.5.
This means that the relation EP(kh)/εP = EK(kh)/εK approximately holds as observed
in forced strongly stratified turbulence (Lindborg 2006; Brethouwer et al. 2007).
However, the compensated spectra are slightly lower than predicted and slightly
decrease over the inertial range before the dissipative range.

The total dissipation is plotted versus time in figure 8(a). For all Froude numbers,
we see an increase at t ≃ 3.7 corresponding to the development of the KH instability.
The dissipation before this time is mostly due to the vertical shear resulting from
the development of the zigzag instability. It is thus proportional to the inverse of
the buoyancy Reynolds number (ε ∼ ν (U/Lb)

2 ∼ U3/(LhR)). Interestingly, when the
horizontal Froude number is increased, the dissipation peak tends to last a longer time,
i.e. to be broader. This might be related to the turn-over time scale of the KH billows
which is likely to scale like 1/N since their typical velocity is U and their size U/N.
Checking this hypothesis would require further investigations.

Figure 8(b) presents the temporal evolution of the instantaneous mixing efficiency
Γ (t) ≡ εP(t)/εK(t). We see that the mixing efficiency is around 0.4 and weakly
varies with the stratification and with the time period during which the dissipation
is strong. We have also looked at the isotropy of the dissipation by considering the
ratio εz(t)/ε(t) where εz is the dissipation due to vertical gradients. The maximum
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FIGURE 8. (Colour online) Temporal evolution of (a) the total dissipation rate ε(t) for
Fh = 0.0025, Fh = 0.0045, Fh = 0.09, Fh = 0.135 scaled by ε̃ the maximum dissipation
rate for Fh = 0.09 and (b) the mixing efficiency Γ = εP(t)/εK(t) (continuous lines are used
when the dissipation rate is high ε(t) > 0.8 max ε(t)).

value of εz/ε increases with R and tends to 1/3, which corresponds to an isotropic
dissipation (not shown) even though a weak isotropic hyperviscosity is used.

5. Effects of the Reynolds number and of the resolution for Fh = 0.09

We now focus on the effects of the variation of the Reynolds number and of the
resolution. Two additional simulations have been carried out for Fh = 0.09 and for the
intermediate resolution Nh = Nx = Ny = 768 and Nz = 192, but for different values of
the Reynolds number Re = 14 000 and Re = 7000. Figure 9(a) displays the horizontal

compensated spectra EK(kh)ε̃
2/3

K kh
5/3 for these two simulations with a lower Reynolds

number and for the other simulations with Re = 28 000 and intermediate (Nh = 768),
large (Nh = 1024) and very large (Nh = 1280) resolutions (see table 1). We see that the
width of the inertial range strongly decreases when the Reynolds number is decreased.
However, the bump corresponding to the shear instability is almost unaffected meaning
that, when the Reynolds number and the buoyancy Reynolds number are large enough,
the horizontal wavelength of the shear instability continues to scale with the buoyancy
length scale. In addition, as already stated, there are almost no differences between
the two spectra for Nh = 1024 and Nh = 1280 except at the smallest scales of the
dissipative range, validating the use of a weak isotropic hyperviscosity.

The total dissipation (continuous lines) and the hyperdissipation (dashed lines) are
plotted versus time for the same runs in figure 9(b). We see that despite the important
variation of resolution, the total dissipation curves for Re = 28 000 (black thick and
thin lines and light thick line) are quite close, especially for the two largest resolution
simulations (thick lines). In contrast, the hyperdissipation strongly decreases when the
resolution is increased indicating that the Kolmogorov scale becomes nearly resolved.
For the lowest Reynolds number Re = 7000, there is no need for hyperviscosity and
the simulation is a real DNS. The total dissipation curves for the different Reynolds
numbers slightly differ. For lower Re, the dissipation is more important during the
nonlinear evolution of the zigzag instability before the development of the secondary
instabilities that occurs after t = 3.7. The increase corresponding to the development
of the secondary instabilities is slightly slower leading to a slightly lower maximum
of total dissipation of the order of 0.9ε̃ for Re = 7000 and 0.94ε̃ for Re = 14 000.
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FIGURE 9. (Colour online) (a) Horizontal compensated one-dimensional spectra EK(kh)

ε̃
2/3

K kh
5/3 for five runs for different values of the Reynolds number and of resolution but

for the same Froude number Fh = 0.09. Each curve is the average over a time interval

1t = 0.3 near the maximum of the dissipation. The horizontal line shows the 0.5ε̃
2/3

K k
−5/3
h

law. (b) Temporal evolution of the total dissipation rate ε(t) (continuous lines) and of the
hyperdissipation rate εν4

(t) (dashed lines) scaled by ε̃, the maximum dissipation rate for
Re = 28 000, and the maximum resolution Nh = 1280.

However, the global evolution of the total dissipation rate is only weakly affected by
the variation of the Reynolds number. This indicates that the first mechanisms of the
transition to turbulence, namely the nonlinear evolution of the zigzag instability and
the secondary instabilities, are only weakly influenced by dissipation for these values
of the buoyancy Reynolds number and the Reynolds number.

6. Decomposition of the horizontal fluxes for Fh = 0.09

The evolution equations of the kinetic and potential energies ÊK(k) = |û|2 /2 and

ÊP(k) = |ρ̂ ′|2 /(2Fh
2) of a wavenumber k can be expressed as

dÊK(k)

dt
= T̂K − b̂ − D̂K, (6.1)

dÊP(k)

dt
= T̂P + b̂ − D̂P, (6.2)

where T̂K = −Re{û∗(k) · P⊥ ̂(u ·∇u)(k)} and T̂P = −F−2
h Re{ρ̂ ′∗(k) ̂(u ·∇ρ ′)(k)} are

the kinetic and potential nonlinear transfers, D̂K(k) = (|k|2 /Re + |k|8 /Re4) |û|2 and

D̂P(k) = (|k|2 /(ReSc) + |k|8 /Re4) |ρ̂ ′|2 /Fh
2 are the kinetic and potential mean energy

dissipation and b̂(k) = F−2
h Re{ρ̂ ′∗(k)ŵ(k)} is the local (in spectral space) conversion

of kinetic energy into potential energy. When (6.1) and (6.2) are summed over the
wavenumbers inside a vertical cylinder Ωκh

of radius κh in spectral space, we obtain

dEK(κh)

dt
= −ΠK(κh) − C (κh) − εK(κh), (6.3)

dEP(κh)

dt
= −ΠP(κh) + C (κh) − εP(κh), (6.4)
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FIGURE 10. (Colour online) Fluxes going out from a vertical cylinder Ωκh
of radius κh in

spectral space and dissipations inside this cylinder. The continuous darker grey thin, light grey
thin and black thick curves are respectively the kinetic ΠK(κh), potential ΠP(κh) and total
horizontal fluxes through the surface of Ωκh

. The dashed thick curve is the total cumulative
dissipation inside the volume Ωκh

. The dotted-dashed black curve is C (κh), the cumulative
conversion from kinetic into potential energies, i.e. the sum inside the volume Ωκh

of the local

conversion b̂(k). The lowest wavenumber corresponds to the shear modes.

where EK(κh) =
∑

|kh|6κh,kz
ÊK(k), ΠK(κh) is the kinetic flux going out of Ωκh

, C (κh)

the cumulative conversion rate of kinetic energy into potential energy inside Ωκh

and εK(κh) the cumulative kinetic dissipation rate inside Ωκh
. The quantities with the

subscript P are defined similarly but for the potential energy. In order for the fluxes
of the shear modes not to be located at −∞ in logarithmic plots, the horizontal
wavenumber κh is discretized as κh = δκh/2 + δκhl, where δκh = 2π/Lh and l is the
discretization integer. It is convenient to consider the integrated (6.3)–(6.4) because the
nonlinear terms are conservative and dissipation is non-negligible only at small scales.
This implies that the spectral fluxes (and dissipation rates) are fundamental quantities
like in isotropic turbulence (Kolmogorov 1941). Similarly, it is convenient to consider
the cumulative conversion rate C (κh) from kinetic to potential energies because the
variations of this quantity as a function of wavenumber can be directly compared with
the maximum dissipation rate.

The energy fluxes and cumulative conversion and dissipation rates are plotted versus
κh for four particular times in figure 10 for Fh = 0.09 and Re = 28 000. All the
curves have been scaled by ε̃, the maximum of the total instantaneous dissipation.
The plot for t = 3.3 (figure 10a) corresponds to a time at which the zigzag instability
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evolves nonlinearly but the shear instability has not yet developed. At this time all the

quantities are small compared to ε̃. The dissipation (dashed line) is negligible. There is

only a weak kinetic energy flux (darker grey thin continuous line) of order 0.2ε̃ toward

horizontal wavenumbers slightly larger than the leading horizontal wavenumber of the

two-dimensional base flow k0 (which is of order 0.4kb for the particular stratification

Fh = 0.09). By looking at the flux for other Fh, we have observed that the horizontal

wavenumbers at which kinetic energy is transferred at this time do not scale as the

buoyancy wavenumber but as k0. The weakness of the flux along the horizontal when

only the zigzag instability is active is consistent with figure 1, which shows that

the zigzag instability produces a strong flux along the vertical toward large vertical

wavenumber of order kb but only a weak flux along the horizontal. At wavenumbers

slightly larger than k0, the cumulative conversion C (κh) increases from nearly zero to

approximately 0.17ε̃. Since C (κh) =
∑

|kh|6κh,kz
b̂(k), an increase (respectively decrease)

of C (κh) indicates positive (respectively negative) local conversion of kinetic into

potential energies. The variation 1C (1κh) of the cumulative conversion over a

particular range of wavenumbers 1κh represents the energy converted over this range.

In this case, in the range of wavenumber 1κh = [0.6kb, kb] around 2k0, we have

1C (1κh) ≃ 0.17ε̃. This conversion at wavenumbers κh ≃ 2k0 is due to the bending

of the vortices. Remarkably, there is also a backward potential energy flux (light

continuous line) toward the smallest horizontal wavenumbers of the numerical box.

However, the potential energy flux toward the horizontally invariant ‘shear modes’

(located at the first point κh ≃ 0.1kb as previously explained) is zero. In contrast, the

kinetic energy flux is negative for the smallest wavenumber κh ≃ 0.1kb, indicating a

flux to shear modes of order 0.06ε̃.

The time t = 3.8 (figure 10b) corresponds to the development of the KH billows

before the transition to turbulence. As for t = 3.3, the dissipation (dashed lines) is

negligible and there is a weak kinetic energy flux toward shear modes. The potential

flux is still negative at large horizontal scales 0.1 6 κh/kb . 1 and is now balanced

by the cumulative energy conversion C (κh). This shows that there is almost no more

accumulation of potential energy at large scales since potential energy transferred at

these scales is now converted to kinetic energy. The kinetic energy flux becomes

positive at κh ≃ 0.3kb (second point), reaches a maximum around κh = 0.8kb, and

drops down to nearly zero around κh ≃ 3kb. This means that the kinetic energy is

transferred from the large scales κh ≃ k0 toward horizontal scales around κh = 2kb.

This flux appears as a peak and not as a plateau because the ratio 2kb/k0 is not

large but only moderate for Fh = 0.09. However, the other runs for lower Fh (not

plotted) show that for the kinetic energy flux this non-local transfer appears as a

plateau with a width 2kb/k0 proportional to F−1
h . The cumulative conversion of kinetic

into potential energies (black dashed-dotted curve) becomes positive at horizontal

wavenumber κh ≃ 1.5kb, reaches its maximum at κh ≃ 3kb to 4kb, and then slightly

decreases and remains constant around 0.2ε̃ for smaller scales. Again, the increase of

C (κh) at kb is due to the development of the KH billows, which convert kinetic energy

into potential energy at the buoyancy length scale. The slight decrease of C (κh) at

smaller scales corresponds to a weak local conversion of potential energy back into

kinetic energy. The constant cumulative conversion C (κh) at κh > 10kb indicates that

there is no local conversion in this wavenumber range.

Figure 10(c) corresponds to the time t = 4.7 when the dissipation is maximum. The

total dissipation ε(κh) (thick dashed line) reaches the value ε̃ for the largest κh. The

kinetic energy flux at large scales is similar to the one for t = 3.8 with an even
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stronger flux from large scales toward κh ≃ 2kb. The peak at large scales corresponding

to the development of the KH billows has reached a value close to unity just before

at t = 4.5. The increase of cumulative conversion of kinetic into potential energies at

wavenumbers κh ≃ 2kb is now much larger (1C ≃ 0.5ε̃) indicating that the KH billows

are efficient in displacing isopycnals. At wavenumbers around κh ≃ 3kb, kinetic and

potential fluxes are nearly equal. In contrast to figure 10(b), the total flux, equal to

0.8ε̃ between k0 and 2kb, does not drop to zero but reaches another plateau close

to Π(κh) = 0.9ε̃ down to the dissipation range. This second plateau at small scales

is due to different processes than the peak at large scales, namely the destabilization

of the KH billows and the gravitational instability. At small scales, there is a local

conversion of potential energy back into kinetic energy (the dotted-dashed curve C (κh)

goes down), which is driven by these instabilities and the associated transition to

turbulence. This conversion, accounting for 1C ≃ −0.2ε̃, leads to an increase of the

kinetic energy flux and a decrease of potential energy flux (light continuous curve)

with a nearly constant total energy flux. In addition, the upscale energy fluxes at large

scales have significantly decreased.

At later time t = 5.2 (figure 10d), the dissipation is still close to 0.8ε̃ but the plateau

of kinetic energy flux has decreased to 0.5ε̃. The new feature is that the total flux

at small scales is now dominated by the kinetic energy flux, the potential energy

flux being nearly 2 times smaller. This may be the sign of a restratification with

weaker overturning events. Moreover, both potential flux and cumulative conversion

are remarkably flat from κh ≃ 3kb to the dissipative range, meaning that there is a

constant potential flux with no local energy conversion. This may indicate that the

density at small scales is passively advected during the late decay.

Since the initial flow has no potential energy and since the energy conversion at

large scales is weak during the lifetime of the dipole, no potential energy is available

at large scales and the cascade of potential energy toward small scales should exist

at the expense of the kinetic energy. This is demonstrated by the fact that potential

energy flux ΠP(κh) is almost always equal to the cumulative conversion of kinetic

energy into potential energy C (κh). Remarkably, C (κh) always becomes positive when

κh & kb, i.e. for the scales created by the development of secondary instabilities.

7. Summary and conclusions

We have presented a spectral analysis of the transition to turbulence from a

columnar dipole in a stratified fluid. A series of instabilities and nonlinear processes

occurs in a particular time sequence leading to a breakdown into small-scale

turbulence.

We have shown that the transition to turbulence occurring during the nonlinear

evolution of the zigzag instability has a two-step dynamics. First, a shear instability

feeds quasi-isotropic and fast Kelvin–Helmholtz billows with a vertical Froude number

of order unity and a typical scale of the order of the buoyancy scale, i.e. larger

than the Ozmidov length scale. Second, the destabilization of these structures and

the gravitational instability generate turbulence from the buoyancy scale to the

dissipative range. This turbulent regime is weakly stratified because the associated

larger structures are roughly isotropic (with horizontal and vertical characteristic length

scales of the same order) and are linked to vertical and horizontal Froude numbers

of order unity. Moreover, significant vertical motions due to overturnings exist in this

regime.
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The spectra have been shown to be strongly anisotropic. The horizontal spectra

exhibit a k
−5/3
h inertial range. Nevertheless, there is a deficit of energy in the

range between the large scales associated with the dipole and the buoyancy length
scale. Remarkably, at smaller scales and down to the dissipative scales, the kinetic

and potential energy horizontal spectra approximately collapse on the 0.5εK
2/3k

−5/3
h

and 0.5εK
2/3k

−5/3
h εP/εK spectra, respectively. Thus the relation EP(kh)/εP = EK(kh)/εK

approximately holds as measured in numerical simulations of forced stratified
turbulence. The vertical kinetic spectrum follows a CNN2k−3

z law at large vertical
scales, with CN ≃ 0.08, which is due to the nonlinear evolution of the zigzag
instability. For the largest values of the buoyancy Reynolds number R, the vertical
spectrum presents a transition at the Ozmidov length scale lo toward a CεK

2/3k−5/3

spectrum, with C ≃ 0.56.
Thus, the anisotropic spectra share many characteristics with those obtained from

numerical simulations of forced stratified turbulence and from measurements in the
atmosphere and in the ocean. This is remarkable because the initial flow is very
simple and not turbulent. Moreover, the fundamental difference between a transition
toward turbulence and developed turbulence has to be stressed. With only two
vortices interacting, the dynamics at large horizontal scales is dominated by the
zigzag instability and there is no strongly stratified cascade along the horizontal.
This contrasts with numerical simulations of forced stratified turbulence which exhibit
a forward strongly stratified cascade but for which the overturning motions at the
buoyancy length scale and beyond are not resolved or only weakly resolved due to
the use of strongly anisotropic numerical meshes (see e.g. Koshyk & Hamilton 2001;
Lindborg 2006; Waite 2011).

Since the transition in the vertical spectra happens at the Ozmidov length scale, it is
tempting to conclude that the overturning motions at the buoyancy scale are strongly
anisotropic. However, this is not the case. Indeed, we have shown that the very steep
vertical spectrum is mainly due to the large horizontal scales of the dipole that is
strongly deformed along the vertical by the zigzag instability. In contrast, the vertical
spectrum computed with spectral modes with horizontal wavenumbers larger than the
buoyancy wavenumber kb does not present any k−3

z power law but exhibits a k−5/3
z

power law from a vertical wavenumber scaling like the Ozmidov wavenumber ko down
to the dissipative range.

In this paper, we have stressed the qualitative difference between the buoyancy
length scale Lb and the Ozmidov length scale lo. However, quantitatively, the ratio

Lb/lo scales like F
−1/2
h and is therefore not very large for Fh = O(0.1). In the present

case, the Ozmidov wavenumber can be computed as

ko =
(

CN

C

)3/4(
N3

εK

)1/2

= F
−3/2
h

(

CN

C

)3/4(
U3

εKR

)1/2
1

R
, (7.1)

and the buoyancy wavenumber is kb = 2π/(10Fh). The ratio is therefore

ko

kb

= F
−1/2
h

(

CN

C

)3/4(
U3

εKR

)1/2
10

2π
≃ 1.4F

−1/2
h , (7.2)

and varies only from 9.3 to 3.8 when Fh increases from 0.0225 to 0.135.
It has to be pointed out that recent results highlight the importance of the buoyancy

length scale on forced stratified turbulence (Waite 2011). Finally, we can conjecture
that such non-local transfers due to secondary instabilities act as a leak from the
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FIGURE 11. Horizontal compensated spectra EK(kh)kh
5/3 for three runs for different values of

the horizontal size of the numerical domain Lh = 4, 6 and 8 but for the same grid spacing
4/256 = 6/384 = 8/512, Reynolds number Re = 10 000 and Froude number Fh = 0.05.

strongly stratified turbulent cascade toward a weakly stratified turbulence beyond the
buoyancy scale. However, the horizontal scales larger than the buoyancy length scale
dominate the vertical spectra down to the Ozmidov length scale.

Appendix. Effect of the horizontal size of the numerical domain

In order to address the effect of the horizontal size of the numerical domain Lh,
we have carried out three simulations for Lh = 4, 6 and 8 keeping the same grid
spacing (the number of nodes in one horizontal direction Nh is equal to 256, 384 and
512, respectively) and the same physical parameters: Reynolds number Re = 10 000
and Froude number Fh = 0.05. Note that the resolution and the Reynolds number
are much smaller than for the simulations presented in the body of the paper. As
already mentioned, we have verified that the transition to turbulence involves the same
mechanisms for all the simulations.

Figure 11 shows the horizontal compensated spectra EK(kh)kh
5/3 at the maximum of

dissipation. The magnitude of the spectra decreases with Lh since turbulence invades
a smaller part of the numerical domain for larger numerical boxes. At the smallest
wavenumbers, their shape significantly varies with Lh. Apart from these differences,
the spectra at larger wavenumbers are very similar. This confirms that our results are
only weakly sensitive to the size of the numerical domain and validates our choice of
using a small numerical domain in order to resolve smaller scales and simulate larger
Reynolds numbers.
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