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Laboratory experiments point out the existence of patterns made of alternately laminar and turbulent oblique

bands in plane Couette flow (PCF) on its way to or from turbulence as the Reynolds number R is varied. Many

previous theoretical and numerical works on the problem have considered small-aspect-ratio systems subjected

to periodic boundary conditions, while experiments correspond to the opposite limit of large aspect ratio. Here,

by means of fully resolved direct numerical simulations of the Navier-Stokes equations at decreasing R, we

scrutinize the transition from temporal to spatiotemporal behavior in systems of intermediate sizes. We show that

there exists a streamwise crossover size of order Lx ∼ 70–80h (where 2h is the gap between the plates driving

the flow) beyond which the transition to or from turbulence in PCF is undoubtedly a spatiotemporal process,

with typical scenario turbulent flow → riddled regime → oblique pattern → laminar flow, whereas below that

size it is more a temporal process describable in terms of finite-dimensional dynamical systems with the scenario

chaotic flow → laminar flow (via chaotic transients). In the crossover region, the oblique pattern stage is skipped,

which leads us to suggest that an appropriate rendering of the patterns observed in experiments needs a faithful

account of streamwise correlations at scales at least of the order of that crossover size.

DOI: 10.1103/PhysRevE.83.036308 PACS number(s): 47.54.−r, 47.20.−k, 47.27.−i

I. INTRODUCTION

During the last few years there has been a resurgence of

interest regarding the formation of laminar-turbulent patterns

in wall-bounded shear flows having very large aspect ratios

(when the lateral dimensions, along x and z, are more than

two orders of magnitude larger than the relevant wall-normal

dimension, along y). The phenomenon was discovered in

circular Couette flow (CCF) by Coles and Van Atta [1,2] who

called it “spiral turbulence.” The pattern can be observed when

the two cylinders of CCF rotate in opposite directions in a

specific velocity range, which is only a part of the complete

bifurcation diagram [3]. Only one or two stripes of the

laminar-turbulent pattern were observed in those experiments

owing to their low aspect ratio (the ratio of the perimeter

to the gap between the cylinders). It was only later that

Prigent et al. [4] made detailed measurements of the relevant

features of this phenomenon in their very-large-aspect-ratio

setup, where about 10–15 stripes could be obtained.

A similar event of laminar-turbulent pattern formation was

also observed by the same team [4] in large-aspect-ratio plane

Couette flow (PCF), a schematic of which is shown in the top

panel of Fig. 1, the bottom one displaying a snapshot of the

pattern obtained experimentally. When the control parameters

of CCF and PCF are made equivalent by using appropriate

scales, both CCF and PCF display patterns in almost the

same parameter range [5], with the obvious difference of

streamwise periodicity present in CCF and not in PCF. In the

following we leave aside the case of CCF, whose bifurcation

diagram is slightly more complicated owing to the interplay

of centrifugal instability mechanisms, and concentrate our

attention on PCF in the range of parameters relevant to the

transition to turbulence.

Traditionally, the control parameter is the Reynolds number,

and for PCF it is defined as R := Uph/ν, here based on

the half channel height h, the plate velocity Up, and the

kinematic viscosity ν; in the following h and the advection

time τa = h/Up are used as length and time units, respectively.

(The viscous relaxation time is τv = h2/ν, so that R = τv/τa.)

The transition process can be studied by increasing or decreas-

ing R. The essential point is that the laminar flow is stable

against infinitesimal perturbations for all R, so that a direct

transition to turbulence is observed when finite-amplitude per-

turbations are introduced, according to a globally subcritical
scenario (for an introductory review see [9], Chap. 7]). Studies

at increasing R are strongly sensitive to the amplitude and

shape of the triggering perturbation. Quantitatively different

results about the transition can accordingly be obtained under

different protocols, e.g., [7,10], while the picture of course

remains qualitatively unchanged. In contrast, the experiments

of Prigent et al. (see [11] for details) were systematically

performed by varying R in small steps while waiting for

statistical equilibrium at each R, which helps us to clearly

identify several stages. First, beyond Rt ≈ 410, turbulence

is essentially uniform or “featureless,” borrowing the term

introduced by Andereck et al. for CCF [3]. Next, oblique

laminar-turbulent bands appear upon decreasing R slowly

below Rt. The amplitude of the laminar-turbulent modulation

grows continuously as R is further decreased, which has been

interpreted as a supercritical bifurcation in the presence of a

noise, reminiscent of featureless turbulence [4]. The bands next

become fragmented and turn into irregular oblique turbulent

patches which seem sustained for R � Rg ≈ 325 but decay in

a finite time for R < Rg. The value of Rg mentioned above

has also been obtained in experiments where turbulent spots

were triggered [6,7]. Below Rg the lifetimes of turbulent spots

are distributed according to decreasing exponentials whose

characteristic time is seen to diverge as R approaches Rg from

below [6]. Finally, for R < Ru ≈ 280 large perturbations relax

without measurable waiting time and in a mostly monotonic

way.

Direct numerical simulation (DNS) of these large-aspect-

ratio systems was delayed because of the huge computational

requirements. Barkley and Tuckerman [12] were the first

to obtain the band patterns in fully resolved simulations of

the Navier-Stokes equations, but in carefully chosen narrow
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FIG. 1. Top: Schematic of PCF with top and bottom plate moving

at ±Up (at y = ±h) separated by a distance 2h. Bottom: Experimental

visualization of laminar (dark)–turbulent (light) pattern in PCF at

R = 358, Lx = 770h, and Lz = 430h (courtesy of A. Prigent). For

comparison, most of Bottin’s experiments were performed with Lx =
284h and Lz = 72.6h [6,7]. The size of the minimal flow unit (MFU)

is λx = 2π/α, λz = 2π/γ , where α and γ are the fundamental wave

numbers in the streamwise and spanwise directions, respectively.

Here we take the values corresponding to the self-sustained exact

solution found by Waleffe [8], α = 0.49 and γ = 1.5 and thus λx =
12.8 and λz = 4.2.

and tilted computational domains. Their choice of domain,

however, precluded the occurrence of patterns with defects

or orientation changes inside the flow. This restriction was

overcome in the DNS by Duguet et al. [13] who recovered

the experimental findings of Prigent et al. in a fully resolved

very-large-aspect-ratio system. Similarly, the spiral regime

of CCF was numerically obtained by Meseguer et al. [14]

and Dong [15]. An oblique band pattern was also found

numerically by Tsukahara et al. [16] in the case of plane

Poiseuille flow (PPF). The above three systems, CCF, PCF,

and PPF, are prototypical for the study of laminar-turbulent

patterns; all of them are confined by two walls in direction y,

the other two dimensions extend to infinity, in the limit.

Two other flows of theoretical and technological importance

showing behavior similar to the above-mentioned systems are

pipe flow and the flat-plate boundary-layer flow. Pipe flow is in

some sense simpler, because it has only one spatially extended

dimension, the length of the pipe. Inside a specific Reynolds

number range, localized patches of turbulence (“puffs”) are

observed separated by laminar regions. At present it is not

clear how they are related to the oblique bands in other systems

[17]. On the other hand, the boundary-layer flow case gets

more complicated due to the fact that the relevant wall-normal

dimension, the boundary-layer thickness, increases with the

flow direction and, with it, the relevant value of R. Turbulent

spots that appear amid laminar flow during the transition are,

however, strikingly similar to those growing into oblique bands

observed in PCF.

In contrast with instabilities in closed flow systems such

as Rayleigh-Bénard convection for which the aspect ratio is

a genuine control parameter that can be varied from small

to large by changing the positions of walls in all directions

[9, Chap. 3], open flows develop most often in domains

physically less constrained by lateral walls, while stream-

wise boundary conditions make it reasonable to accept the

assumption of translational invariance in that direction, at least

locally. In this respect, all of the investigations mentioned

above, both experimental and numerical, are related to large-

aspect-ratio systems and represent the typical situation, even

if the experimental setup is difficult to construct [4,7,10]

or the DNS computationally demanding [13,16]. Despite its

relevance, this is not the situation that has been considered in

many recent works on the transitional problem. Indeed, most

of the theoretical and numerical work has been performed

in configurations confined by periodic boundary conditions

at small distances. Seminal work in the 1990s bore on

high-resolution simulations devoted to the identification of

the minimal flow unit (MFU) below which turbulence cannot

be sustained, as was done by Jimenez and Moin [18]. Such

simulations were later used for the elucidation of the self-
sustaining process (SSP), the mechanism of sustenance of

turbulence by which streamwise vortices induce streaks that

break down to regenerate the vortices, following Hamilton

et al. [19]. They were applied next to the discovery of

exact coherent states of Navier-Stokes equations, follow-

ing Nagata [20] and Waleffe [8], and to the study of

the boundary of the attraction basin of the laminar flow

[21].

In fact, setting boundary conditions at small distances

reduces the infinite-dimensional dynamical problem posed

by the Navier-Stokes equations to a finite-dimensional prob-

lem as long as R remains moderate, which is the case

in the transitional regime (but would be insufficient in

the high-R limit where fine vortical structures develop

already at the level of the MFU). Accordingly all the

works in small domains to some extent have come un-

der the purview of temporal dynamics and chaos theory.

The investigation of such small systems has indeed been

extremely valuable [21,22], with important achievements

such as the recent findings of “edge states” and “localized

solutions” in PCF [23,24], as an encouragement to make

the connection to special solutions and associated bifurca-

tion structures obtained in pattern-forming model equations

[25,26].

However, any accurate representation of the dynamics at

the level of the MFU, though remaining instructive, is not

informative of the experimental situation since the smallest

setups that have been used should rather be analyzed as

two-dimensional arrays made of tens or hundreds of MFUs

(see caption of Fig. 1), which allows for global spatiotemporal

dynamics, while placing periodic boundary conditions at the

scale of the MFU grossly overestimates the coherence of the

flow. The size of the system (≫MFU) and the coexistence

of two possible local states, either laminar or chaotic, each

corresponding to a possible temporal regime at the MFU

scale, make it possible for whole regions, either laminar or

turbulent, to coexists in physical space. The possibility of such

modulations is at the root of the recourse to concepts from
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the theory of spatiotemporal chaos [27]. Within this general

framework, the pattern → featureless transition in PCF, CCF,

and other similar flows appears to be a symmetry-restoring

bifurcation observed upon increasing R for which an order

parameter can be defined [4,28], with the understanding that

the base state is the translationally invariant, strongly noisy,

featureless regime beyond Rt.

A previous attempt to reach the spatiotemporal level

directly via modeling by one of us [29], though promising [30],

failed to reproduce the bands, due to insufficient wall-normal

resolution. Another avenue to spatiotemporal dynamics is

through DNS of the Navier-Stokes equations but, as already

mentioned, long-duration simulations of wide enough domains

is still too demanding. Reduction of the wall-normal resolution

has been shown to be a viable option at a qualitative level [31]

but it was not clear that the quantitative shift observed in the

transitional range [Rg,Rt] was without hidden consequence for

the pattern formation problem.

The aim of the present work is at studying, by means

of fully resolved DNS of the Navier-Stokes equations, what

happens when the system size L (to be defined more precisely

later) increases and the temporal dynamics gives way to

spatiotemporal dynamics. The next section anticipates the

outcome of the study before giving details on the numerics.

Section III contains the main results extracted from the

numerical simulations as well as the bifurcation diagram. The

final section summarizes the study and draws conclusions.

II. GENERAL FRAMEWORK FOR THE STUDY OF

TRANSITIONAL PCF

A. Expected bifurcation diagram for the turbulent-laminar

transition

Figure 2 gives a schematic three-dimensional view of the

bifurcation diagram for transitional PCF in the two well-

studied cases of MFU-like systems and large-aspect-ratio

systems, and proposes an interpolation between these two

cases as an educated guess. We use R, D, and L as the

coordinate system. In addition to R, the Reynolds number,

D is a measure of the distance to laminar flow, e.g., the

R

D

L

Minimum
Pattern-Forming
Domain

O(100 MFU)

O(MFU) 325

410

LAMINAR

PATTERN

TURBULENT

CHAOTIC

FIG. 2. (Color online) Schematic of the expected bifurcation

diagram for PCF including the locations of domains with size of

the order of the MFU, and that of pattern-forming systems.

time-averaged, domain-averaged rms of the velocity departure

from the laminar flow profile, and L is the characteristic

lateral domain size. The diagram shows two thick black lines

in two (R-D) planes, one at L = O(MFU) and the other at

L = O(100 MFU) where “100” is just meant to be a large

number typical of laboratory experiments. They sketch the

variation of D as a function of R, as the latter parameter

is gradually reduced from a high value where the system is

turbulent.

The first curve, at L = O(MFU) is typical of a subcritical
bifurcation with an abrupt jump from turbulence (D finite and

large) to laminar flow (D = 0). Here it is just a tentative sketch

of the ideal situation where temporal chaos would break down

in a single stage via attractor crisis [32]. This guess is consistent

with the observations of exponentially distributed lifetimes of

chaotic transients and the divergence of the average lifetime

as the putative crisis point is approached [21]. In fact, the very

existence of a crisis at finite R (here situated around R = 410)

has not been proved so far but this does not change our picture

drastically.

In contrast, the second line at L = O(100 MFU) cor-

responding to large-aspect-ratio systems is supported by

laboratory and computer experiments [4,13]. As R is lowered

below Rt ≈ 410, the distance D begins to decrease owing to

the coexistence of laminar and turbulent regions in variable

amounts in the whole domain. Whereas the turbulence inten-

sity seems to decrease only slightly with R, the main part of

the decrease of D, a quantity averaged over the whole surface

of the system, has to be attributed to the increase of the laminar

fraction, the complement of the turbulent fraction. The spatial

organization of this laminar-turbulent coexistence is expressed

by the term PATTERN (henceforth shortened as P) used in the

figure. At Rg ≈ 325, the distance D drops to zero because the

regime observed in the long-time limit is laminar, but this does

not mean that one cannot observe transiently turbulent patches

with smaller turbulent fraction and exponentially distributed

lifetimes [6].

The thick red dashed lines in Fig. 2 suggest changes in

the diagram as L varies, showing two regions more: LAMINAR

(L) and TURBULENT (T) or CHAOTIC (C). When L is large,

T actually means “featureless turbulence” but, when L is small,

“temporal chaos” would better reflect the spatial coherence in

the flow, hence the C. This coherence prevents the emergence

of subdomains that could be identified as laminar or turbulent

in the system, which is no longer the case when L gets

larger. For reasons of topological continuity, there should be

a crossover size (shown by a hatched band) below which PCF

displays two states, L and C, and above which three states, L,

P, and T, the hatched band extending into the C and T region to

mark the change from temporal chaos to spatiotemporal chaos.

It will be shown below that such a bifurcation diagram indeed

exists, with, however, some peculiarities in the P region.

B. Numerical simulation details

Direct numerical simulation of the Navier-Stokes equations

is carried out using Gibson’s well-tested, freely available DNS

software CHANNELFLOW [33]. It is a pseudospectral code using

Chebyshev polynomials in the wall-normal direction with

no-slip conditions at yp = ±1 and in-plane Fourier modes
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TABLE I. Computational domains and the corresponding grid

points.

Lx,Lz Nx,Nz Lx/Nx Lz/Nz L θ (deg)

5π,2π 64,32 0.25 0.19 16.9 21.8

24,9 94,32 0.26 0.28 25.6 20.6

32,15 128,64 0.25 0.23 35.3 25.1

60,26 192,96 0.31 0.27 65.4 23.4

70,30 282,128 0.25 0.23 76.2 23.2

80,35 384,192 0.21 0.18 87.3 23.6

90,40 384,192 0.23 0.21 98.5 24.0

100,45 384,192 0.26 0.23 109.6 24.2

128,64 512,256 0.25 0.25 143.1 26.6

adapted to periodic boundary conditions at distances Lx,z

in the (x,z) directions. The number of Chebyshev modes

is Ny = 33, which is well suited to resolve all the relevant

modes of turbulent flow in the range of R studied according

to Duguet et al. [13].1 The time step is such as to keep the

Courant-Friedrichs-Lewy (CFL) number between 0.4 and 0.6.

Some details of the various domains used in simulations are

given in Table I, where Nx and Nz are the number of collocation

points in the x and z directions, respectively, and Lx and Lz the

corresponding domain lengths. Since the 3/2 rule is applied

in all cases to remove aliasing, this corresponds to solutions in

the Fourier space using N ′
x,z = 2

3
Nx,z modes, or equivalently

to space steps Lx,z/N
′
x,z = 3

2
Lx,z/Nx,z. Domains are chosen

with increasing size, measured here by the diagonal length

L :=
√

L2
x + L2

z , which will also be used in referring to various

simulations. Moreover, in all cases θ := tan−1(Lz/Lx) is kept

between 20◦ and 30◦, consistent with previous investigations

[4,34]. For certain domain sizes, extra computations with an

increased number of grid points are also carried out to ensure

the independence of grid resolution, e.g., for L = 16.9, Nx

was raised to 96, and for L = 65.4, (Nx,Nz) were raised to

(282,128) without any significant quantitative changes in the

results.

The laminar base flow simply reads vlam = yx̂, where x̂ is

the unit vector in the streamwise direction. The velocity pertur-

bation ṽ is obtained as ṽ = v − yx̂, where v := ux̂ + vŷ + wẑ
is the instantaneous velocity field solution to the Navier-Stokes

equations that are simulated. For further reference, Fig. 3

displays typical snapshots of the solutions obtained for R =
410 in the different domains that we consider. We illustrate

the fluctuation field using u evaluated in the plane y = 0,

which is a direct trace of the perturbation since vlam ≡ 0 there.

The different domains are displayed, starting with L = 143.1

and decreasing the size from top left to bottom right. The

snapshots presented are approximately proportional to the

domain sizes. Colors red and blue correspond to u ≈ ±0.5.

These images show that the very large structures discovered

by Komminaho et al. [35], in a domain of size 28π × 8π

1This corresponds to an average wall-normal spacing 	y+ = 1.81

based on Rτ = 32; the superscript + denotes quantities scaled by the

viscous length unit ν/uτ , where uτ is the friction velocity
√

τw/ρ, τw

being the shear stress at the wall and ρ the fluid density; further, Rτ

is defined as uτh/ν and Rτ = 32 roughly corresponds to R = 420.

FIG. 3. (Color online) Streamwise velocity fluctuations (u) in the

plane y = 0 for different domains at R = 410: L = 143.1 (top left),

109.6 (top right), 98.5, 87.3, 76.2, 65.4, 35.3, 25.6, and 16.9 (bottom).

(L ≃ 91.5) at R = 750 deep inside the featureless regime, are

already present at R = 410, in the immediate vicinity of Rt. In

all cases the flow fields are dominated by streamwise elongated

(or streaky) structures which are more or less alternating in the

spanwise direction. In the smallest domains, the development

of these streaky structures is severely constrained. In larger

domains, i.e., for L = 76.2 and larger, pockets of laminar flow

can be observed already at R = 410. More details about these

structures and their significance as R is decreased will be

discussed in the subsequent sections.

The results to be described now, in connection to the

temporal vs spatiotemporal issue in domains of sizes varying

from a few units of MFU to ones where patterns or bands

appear, are all obtained using an “adiabatic protocol” to be

described below according to which, starting from a turbulent

state at high Reynolds number, R is reduced by steps of 	R

and the simulation is run for 	T , repeatedly down to the

laminar regime.

III. RESULTS

A. Fluctuations in varying domain size

Here we use two global measures of fluctuation intensity,

the overall rate of energy dissipation per unit volume,

D :=
1

LxLyLz

∫ Lx

0

∫ 1

−1

∫ Lz

0

(|∇u|2 + |∇v|2

+ |∇w|2) dx dy dz, (1)

where Ly = 2, and the rate of mechanical energy input,

I :=
1

LxLyLz

∫ Lx

0

∫ Lz

0

(

∂u

∂y

∣

∣

∣

∣

y=1

+
∂u

∂y

∣

∣

∣

∣

y=−1

)

dx dz. (2)

They are normalized such that, for the laminar solution, both

D and I are equal to 1. For any flow field, on average D is
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FIG. 4. (Color online) Input I vs dissipation D as a function of

time at different R; L = 16.9 (a), 35.3 (b), 76.2 (c), and 143.1 (d).

See text for details.

equal to I, and their instantaneous difference is a measure of

the fluctuation of the system’s energy:

E(t) :=
1

LxLyLz

∫ Lx

0

∫ 1

−1

∫ Lz

0

1

2
‖v(x,y,z; t)‖2 dx dy dz,

(3)

so that, directly from the Navier-Stokes equations, one derives

dE/dt = R−1(I − D).

Figure 4 shows the trajectories followed by the system

as projected on the D-I plane for four increasing domain

sizes L: 16.9, 35.3, 76.2, and 143.1. An adiabatic protocol

is followed, similar to the annealing experiment performed

by Schmiegel and Eckhardt [36] in a MFU-sized system or

Barkley and Tuckerman [12] in their oblique domain. We

start at R = 450 for the smallest domain and at R = 420

for the others. By adiabatic, we mean that R is reduced

by steps 	R every 	T , the final state at a given R being

used as initial condition for the simulation at R − 	R.

Usually we take 	T = 103 and 	R = 10 for R � 320 and

	R = 5 below 320. Not all the traces are shown in order

not to overprint the figure. Traces tending to the (1,1) point

in the D-I plane express turbulent → laminar breakdown,

which is the case for R = 400 when L = 16.9, R = 370

for L = 35.3, etc. This is also the case for R = 300 when

L = 143.1 but the simulation has been interrupted before

complete relaxation toward the laminar regime. For the

smallest domain, it is observed that the trajectory quickly

falls in the neighborhood of the diagonal (D = I) and then

continues to revolve in a region along this line. Decreasing R

results in a slight decrease in the wandering but the point

representing the state of the system stays along the diagonal

and close to it. As the domain size is increased, the amplitudes

of the excursions along the diagonal, and away from it,

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

t

u
rm

s

430440450 410 400 390420 380

FIG. 5. (Color online) Distance to laminar flow (Urms) at different

R for L = 16.9. Adiabatic protocol with time series of duration 	T =
5 × 103.

decrease and the dynamics seems slower; the transition from

one R to another also seems smoother. These characteristics

can be understood as the result of averaging over larger

domains, in connection with the extensive character of the

featureless turbulent regime examined in Sec. III B below.

A complementary piece of information is obtained from the

distance to laminar flow, whose time average was proposed in

Fig. 2 to characterize the flow regime on a global scale. As a

relevant measure of the distance, we take the volume-averaged

root-mean-square value of the velocity perturbation ṽ, here

denoted Urms. Time series of this quantity during simulations

performed according to the adiabatic protocol described earlier

are shown in Figs. 5 and 7 in two representative cases, L =
16.9 and L = 143.1, respectively:

(a) As seen in Fig. 5 for L = 16.9, while the average of

Urms for different R does not vary much, at some reduced R

the flow suddenly relaminarizes. This process was found to be

probabilistic, e.g., by Schneider et al. [37], and explained as

arising from chaotic transients associated with the dynamics

around a tangle in phase space. Snapshots taken during the

decay of the chaotic state at R = 380 are displayed in Fig. 6,

bottom. Whereas images taken before decay look similar to the

one at t = 2000, breakdown of the chaotic state is seen as a

fast damping of small-scale structures (t = 2050), leaving just

a pair of streaks (t = 2100,2150) that progressively fade away

z

x

FIG. 6. (Color online) Top: Distance to laminar flow (Urms) during

the end of the transient at R = 380 for L = 16.9. Bottom: Snapshots

during decay; time, corresponding to points on the graph, is indicated

below the images; exceptionally, the streamwise direction is along

the vertical.
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(t = 2250,2350). Here decay is observed for R = 380 whereas

a similar decay happened at R = 400 in the experiment

reported in Fig. 4(a), with different initial conditions and a

different protocol (	T = 103 instead of 5 × 103 here) but

this merely expresses the probabilistic character of chaotic

transients whose lifetimes are strongly sensitive to initial

conditions [21]. It should be noted that the exact size of the

domain certainly matters for such small systems since, using

their annealing protocol at a velocity corresponding to the rate

	R/	T = 2 × 10−3 of Fig. 5, Schmiegel and Eckhardt [36]

found that transient chaotic dynamics with a lifetime of order

2500 time units could be maintained down to R ≃ 310 in a

system of size 2π × π , whereas in a system of size 5π × 2π

we obtain short-lived chaotic transients already at R = 380

(though we have not performed a detailed statistical study).

On the other hand, a definite mark of spatiotemporal dynamics

will bear a much weaker sensitivity to the precise in-plane

dimensions of the system.

(b) When L = 143.1, upon further lowering of R below

400, the average value of Urms is seen to decrease regularly

with R until relaminarization occurs, here for R = 300. Also

shown in Fig. 7 are the snapshots of u at various R (indicated

at top left) at the end of a simulation step (	T = 1000). At

R = 380, laminar troughs, i.e., small patches where turbulence

seems depleted, can be observed (and not yet patterns). Upon

further reduction of R the troughs join to form a well-defined

pattern of oblique bands, alternately laminar and turbulent

(snapshot at R = 360). The subsequent decrease in Urms is

due to the increase in the width of the laminar band. The final

decay to laminar flow is neither sudden nor uniform in space

as in small domains, but through a local breaking of the band

leaving separated turbulent patches (see snapshot at R = 300)

that recede and disappear. Only at the very last stage, when the

turbulent patches have reached a small size, do they collapse

under the effects of viscous dissipation like the flow in small

domains. Throughout the decay, the internal structure of the

turbulent spots is not fundamentally different from that of

spots growing from a finite-amplitude localized disturbance at

higher Reynolds numbers, as obtained experimentally [6,7,10]

FIG. 7. (Color online) Distance to laminar flow (Urms) at dif-

ferent R for L = 143.1 (θ = 26.6◦). Inserted figures show snap-

shots of u at various R (indicated on top left) after simulation

over 	T = 103.

or numerically [13,38]. It should be noted that, here, decay is

observed at R = 300 while experiments at large aspect ratio

would rather suggest decay for R < Rg ≈ 325. A first reason

for this delayed breakdown may be that periodic boundary

conditions tend to stabilize the pattern. A second, certainly

more important, reason is that according to our adiabatic

protocol, R is changed by 	R every 	T and that 	R may be

too large and 	T too small. Basically, the systems “knows”

at which value of R the simulation is running only after

several viscous relaxation times τv = Rτa, where τa is the

advection time h/Up, which is also our time unit. Accordingly,

	T = 103 ∼ 3τv, which is barely sufficient to reach the steady

state. This is all the more true since, owing to the subcritical

character of the laminar-turbulent coexistence, we should

allow for long waiting times implied by the nucleation of the

stable (laminar) state within the metastable (turbulent) state at

the origin of the breaking of the band that causes the decay [39].

The need for long-lasting simulations in wide enough systems

was indeed a strong motivation to considering under-resolved

DNS as a modeling strategy [31].

B. From temporal to spatiotemporal dynamics through

probability distributions

From a statistical point of view, energy fluctuations are

best characterized by their probability distribution functions

(PDFs). Figure 8 plots, in lin-log coordinates, the normalized

histograms �(E) of E(t) defined as the volume average

of 1
2
ṽ2, i.e., E = 1

2
(Urms)

2, and recorded for four different

domains, L = 16.9, 35.3, 76.2, and 98.5, at different values

of R, during runs of duration up to 3 × 104 time units.

This is much longer than for Fig. 5 or 7 and sufficient

for the present purpose since the remark about the duration

of the simulation does not apply as long as the system

is not on the verge of decaying. All the curves display a

marked hump with some variations. For the smallest domain,

Fig. 8(a), neither the mean value (see also Fig. 5) nor the most

probable value (MPV) of E(t) changes significantly with R;

the tail present at large E is presumably a signature of the

underlying chaotic dynamics. For L = 35.3 in Fig. 8(b) the

curves are roughly parabolic (which corresponds to Gaussian

distributions), except for R = 380. The MPV stays fixed with

R as for L = 16.9 whereas the extended tail toward smaller E

for R = 380 suggests approaches to the laminar state which,

when sufficiently marked, lead to turbulence breakdown, so

that the system is likely not far above the value below which

decay can happen in a short time. The same tendency is

observed in Fig. 8(c) for a larger domain, L = 76.2, but now

a downward shift of the MPV of E is observed, which is

best attributed to the existence and growth of the laminar

fraction as R is decreased, a laminar fraction that will be

more conspicuous at larger L as shown in Fig. 7. The PDF

also displays a low-end tail for R = 360 which again implies

that turbulence breakdown can take place if one is patient

enough in pursuing the simulation, and will do so more easily

at a lower R. The last case is for L = 98.5 in Fig. 8(d),

showing cleaner parabolic shapes and a systematic shift in

the MPV of E. Since R = 330 is sufficiently above Rg = 325,

the system is not at risk to decay and the PDF has no low-E

tail.
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FIG. 8. (Color online) Probability distribution functions �(E) as functions of E for different system sizes; values of R are indicated in the

legends. (a) L = 16.9; (b) L = 35.3; (c) L = 76.2; (d) L = 98.5. Notice the different scales for E on the horizontal axis.

From these curves, one main feature emerges: the position

of the MPV may or may not be variable. Snapshots of the

solutions show that the decrease of the MPV with R reflects

the presence of a larger and larger region of the system which

has returned to laminar flow, temporarily or persistently, and

the PDFs tell us that the return is in a statistically significant

way. We interpret this as the signature of the change in the

dynamics from temporal to spatiotemporal and conclude that

one can decide this issue blindly from the consideration of

time series of E only. From the variation of the MPVs, one

can locate the change for L around 76.2. A secondary feature

is the presence or not of a low-end tail in the PDF of E, which

is an indication of the robustness of the state considered. In the

absence of a tail, the distribution is essentially Gaussian and

the system is not at risk to decay at the given value of R. If an

exponential tail is present, it means that the decay probability

is small but significant, which means that if the experiment is

long enough, the flow will decay.

Let us now consider the featureless turbulent regime at

R = 420 where the PDFs displayed in Fig. 8 are all nicely

one-humped. A quantitative characterization of their shapes is

obtained by fitting ln �(E) against a polynomial in the form

aE2 + bE + c. The width of the distribution can be defined

from a as σ := |a|−1/2. By eye, it can be seen in Fig. 8 that

σ decreases as L increases, which can be understood as a

consequence of averaging over wider domains. Assuming local

random behavior at the scale of the MFU, one can view the

system as an assembly of independent subsystems (which is of

course not the case but may serve as a template), in which case

one expects the standard deviation of the fluctuations to vary

as the inverse square root of their number, i.e., as the inverse

of the square root of the system’s surface. Accordingly, in

Fig. 9 we plot σ compensated by its presumed variation with

the size, i.e., σ
√

LxLz as a function of
√

LxLz. The fact that

this quantity is indeed approximately constant supports the

underlying assumption but, by virtue of contrast, also suggests

that it will have to be reexamined when the pattern sets in as a

result of the interaction between MFUs at lower R.

C. Correlation lengths and the temporal-spatiotemporal issue

In order to gain further insight into the

temporal→spatiotemporal transition at a “microscopic”

0 20 40 60
0  

0.2

0.4

(L
x
L

z
)
1/2

σ
 (

L
x
L

z
)1

/2

FIG. 9. Width σ of the PDFs of E compensated for the presumed

extensive behavior of the featureless turbulent regime at R = 420 for

L = 16.9, 35.3, 76.2, and 98.5, from data presented in Fig. 8.
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level, we now study the changes in the correlation functions

upon domain size variation. Here we focus on the streamwise

perturbation velocity component obtained upon subtraction of

the base flow profile, ũ = u − y. We consider the streamwise

and spanwise time-averaged correlation functions in the

mid-plane y = 0 where the base flow is strictly zero. They are

defined as

Cx :=
(

〈ũ(x + xx̂,t)ũ(x,t)〉
〈ũ(x,t)ũ(x,t)〉

)

,

(4)

Cz :=
(

〈ũ(x + zẑ,t)ũ(x,t)〉
〈ũ(x,t)ũ(x,t)〉

)

,

where x is the in-plane running point while 〈〉 and the overbars

denote averaging over space and time, respectively. Owing to

the periodic boundary conditions in z and x, the correlation

functions are periodic with periods Lx and Lz. Furthermore,

symmetry considerations lead one to expect them to be

symmetric with respect to the origin, which is approximately

the case. Accordingly, we only display one-sided symmetry-

averaged correlations profiles over [0,Lz/2] or [0,Lx/2] for the

different domains that we have considered. They are presented

for R = 410 in Fig. 10 which shows Cz and Cx , in panels

(a),(c) and (b),(d), respectively.

Due to the constraints caused by the boundary conditions,

both Cz and Cx show that small domains are highly correlated.

It should however be noticed that Cz passes zero even for the

smallest domain, which is consistent with the presence of a

pair of streaks (see Fig. 3). Information about processes at

the scale of the streak, such as the regeneration mechanism

of turbulence, can thus be studied in such domains. That the

process depends much more on the velocity profile variation

in z than in x can be understood from the high level of

correlation along x [Fig. 10(b), L = 16.9]. With increasing

domain size L, Cz oscillates with a period typical of the

streaks. Oscillations seem to persist even at L = 143.1. On the

other hand, the streamwise correlation function Cx decreases

much more slowly and may reach zero, testifying to the very

elongated character of these structures.

The above discussion shows that L = 76.2–87.3 forms

some kind of a boundary between the two distinct regions

which exhibit temporal and spatiotemporal dynamics. This

boundary will be further explored in Sec. III D below. It

is suggested that only domains able to accommodate these

naturally existing elongated streaks are those that will exhibit

banded patterns at lower R. In this connection let us notice

that, in their work, Barkley and Tuckerman were implicitly

taking this feature into account by using their tilted domains

since periodic conditions were correlating streaks that were
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FIG. 10. (Color online) Time-averaged streamwise velocity correlations at R = 410 for various domain sizes as indicated in the legends.

(a),(c) Along the direction ẑ. (b),(d) Along the streamwise direction x̂. Averaging over 1000 successive snapshots taken every δt = 1 is

performed.
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shifted by one spanwise MFU width λz so that their streamwise

amplitude could be modulated on a scale much longer than

the period imposed by their pseudostreamwise conditions

at Lx ′ = λz/ sin θ , where θ is the angle between their

domain short direction and the x axis [12]. In the simulation

corresponding to their Fig. 1, modulation took place over

nine periods, corresponding to simulations in a periodic box

of size Lx = 97 and Lz = 43 aligned with the flow. The

limitation of their approach is that correlation in the spanwise

direction is somewhat enhanced by the shift condition, which

ends in patterns that look much more regular than those one

obtains in boxes like our largest ones, L = 109 (Lx = 100,

Lz = 45, close to their effective dimensions) or L = 143.1

(see snapshots in Fig. 7).

D. Bifurcation diagram of transition in plane Couette flow

Bifurcation diagrams for PCF at different values of L

are displayed in Fig. 11, left panel. In the right panel we

show them unfolded according to the system size, i.e., in a

R-L-D coordinate system, the presentation adopted for Fig. 2.

The diagrams are all obtained following the same adiabatic

protocol with 	R = 10 and 	T = 103, starting from states

prepared at R = 420, except for systems with L = 16.9 and

25.6 which are started at R = 450. The distance D used to

characterize the state of the system is Urms averaged over the

last 600 time units. In all cases, an abrupt transition from

a sustained turbulent regime to laminar flow is observed as

R is decreased. It should however be stressed that the exact

quantitative position of the jump depends on the protocol:

(a) When L is small, the transition is probabilistic [21,37]

but a single trajectory is followed. A better determination

would necessitate the determination of PDFs of transient

lifetimes and the value of R at which the mean lifetime is

larger than some value beyond which the flow regime would

be considered as sustained.

(b) At larger L, the relaxation of turbulence also has

probabilistic features and choosing 	T too small may not

ensure us that the system has explored a sufficiently large part

of its accessible phase space so that the result is still sensitive

to the initial state at the value of R considered, which is the

state at the end of the simulation at R + 	R. On the other

hand, when 	R is too large, setting the system at R from

R + 	R can be a large perturbation, which may place the

initial condition outside the attraction basin of the turbulent

state at the considered R, leading to an overestimation of the

R corresponding to the jump in the bifurcation diagram for that

L. This case corresponds to quench experiments in which the

initial state is systematically taken to be fully turbulent [6]. The

risk is more limited if 	R is small enough as in the adiabatic

protocol that we are following.

We are confident that the decrease of the Reynolds number

at which decay to laminar flow occurs seen in Fig. 11 as

L increases is not an artifact of the protocol. This decrease

in R means that, when L is increased, the flow needs to be

forced less vigorously to remain turbulent because its effective

phase space has enlarged so that it has more freedom to

evolve nontrivially in a spatiotemporal manner, rather than

strictly temporally when it is confined by the lateral boundary

conditions at small distances. The increase in the region of

nonlaminar flow with increasing domain size can also be

inferred from the plot in Fig. 12 where colors from blue = zero

to red show Urms in increasing values. Also shown in this figure

are black-and-white (BW) coded snapshots of the system for a

series of sizes and Reynolds numbers. The corresponding cases

are indicated by white dots in the left panel. These images are

obtained by coarse-graining ‖ṽ‖2 from the final state of each

simulation at the corresponding R in cells of size 1 × 1 × 1,

following a procedure described in [40]. The top (y � 0) and

bottom (y � 0) cells are separately coarse grained to take the

lateral shifts of the laminar-turbulent regions in both halves

into account [2,34,40]. BW thresholding is then performed, a

pixel being termed “turbulent” and B colored when the mean of

the energy of the two corresponding stacked cells is larger than

half the average energy in the whole system, “laminar” and W

colored otherwise. This automated cutoff criterion has been
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FIG. 11. (Color online) (a) Bifurcation diagrams in the R-D plane for the different system sizes indicated in the legend, with D ≡ Urms.

(b) Three-dimensional unfolding of (a) according to system size L.
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FIG. 12. (Color online) Left:Bifurcation diagram in the R-L plane with color coded values of D ≡ Urms; red (rendered medium gray)

corresponds to the largest value of D (turbulent at large L, chaotic at small L); blue (rendered dark gray) is for laminar flow where D = 0;

patterns and rigged states have intermediate values of D from yellow to orange (rendered light to medium gray). Above and on the right: BW

representation of turbulent-laminar patches for L = 143.1 (top), 98.5, 76.2, and 35.3 (bottom). Corresponding Reynolds numbers are indicated

at the bottom right corner of each image. White dots in the left panel show the location of the states corresponding to the BW plots. Cases

(L = 143.1, R = 300) and (L = 98.5, R = 320) are decaying and eventually become laminar.

found suitable across the whole ranges of R and domain sizes

studied, yielding pictures visually similar to their y-averaged,

non-coarse-grained counterparts.

The observation of the bifurcation diagrams in Fig. 11

(left) does not lend itself to clear differentiation of the regions

where well-oriented patterns occur and where they do not,

though for domains L = 65.4 and smaller, Urms is seen not to

vary much before decay, whereas in larger domains a gradual

change is observed. However, the BW energy plots in Fig. 12,

e.g., (L = 143.1,R = 400) or (L = 98.5,R = 380), show that

apart from the patterned region, there exists a parameter

region where the surface of the system is “moth eaten” or

“riddled” with fluctuating laminar troughs. This can also be

realized from the changing magnitude of Urms in the color

plot if its slow decrease with R is attributed to a concomitant

increase of the laminar fraction. The hatched domain limited

by a white dashed line in the left part of Fig. 12 roughly

indicates the presence of these riddled states. This particular

regime thus appears as a precursor to the banded regime when

the patterns are approached by increasing L or decreasing

R, situated in the bifurcation diagram like the intermittent

regime described by Prigent et al. [4] and Barkley and

Tuckerman [12] and to which it corresponds closely. A possible

equivalent of it in pipe flow seems to be the intermittent

laminar-flash regime described in [17] near the transition to

uniform turbulence that we call featureless. In our numerical

configuration, the bifurcation diagram reaches its eventual

large-aspect-ratio limit “featureless-riddled-banded-laminar”

for systems of sizes beyond L = 76.2.

Further visualization in Fig. 13 shows systems with L �

76.2 where one can visually observe the tendency to form a

well-organized pattern as L is increased. Below this domain

size, i.e., L � 65.4, no pattern or troughs could be observed

upon reducing R down to the final laminar state. Accordingly,

patterns seems to need systems larger than some minimal size

to exist. However, this size should rather be considered to mark

some crossover than to be “critical” in the usual sense because

there cannot be any decisive criterion to decide whether one

has more or fewer oblique, elongated, laminar troughs as for

L = 76.2, or already well-formed bands, as for L = 87.3. As

noted above, these laminar troughs are also found in very large

domains at higher R and are precursors to the bands when, at

given L, R is reduced adiabatically from well above Rt. In fact,

from the plots in Fig. 11 (left), one can see that R = 350 is

close to the transition to laminar flow for L = 76.2 and 87.3,

and hence at the corner of the white hatched region in Fig. 12.

Systems in the crossover region thus go from turbulent to

laminar by skipping the patterned stage but still going through

the intermittent-riddled regime.

FIG. 13. (Color online) Streamwise velocity fluctuation u in the

plane y = 0 for different domains at R = 350: L = 76.2, (θ =
23.2◦, top), 87.3 (θ = 23.6◦, center left), 98.5 (θ = 24.0◦, center

right), 109.6 (θ = 24.2◦, bottom left), and 143.1 (θ = 26.6◦, bottom

right).
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IV. SUMMARY AND CONCLUSIONS

The formation of banded patterns in flows such as plane

Couette flow, circular Couette flow, and plane Poiseuille flow

is typically a spatiotemporal problem. And true enough, this

phenomenon has been experimentally observed in domains

with lateral dimensions that are more than two orders of

magnitude larger than the wall-normal distance. Numerical

simulations of the flow field in these large systems have

become possible only recently, thanks to the less stringent

resolution requirements to resolve all the scales of low-

R turbulent flow and to our ever-increasing computational

capabilities. Despite these favorable circumstances, simula-

tions cannot be performed over long enough durations to

give definite answers about the statistics of the transitional

regime in the large-aspect-ratio limit. Previously, with fully

developed wall-bounded turbulence in mind (high R), nu-

merical computations and theory were more focused on

small domains. In the moderate-R range of interest to the

problem of transition, these small systems are best analyzed

within the framework of finite-dimensional dynamical sys-

tems theory. The present work stays in between these two

types of studies, wherein we start with low-R turbulence

in small domains where temporal dynamics takes place,

and increase the domain size gradually to reach the spa-

tiotemporal regime. An adiabatic decrease of R for each

domain then gives information about the different regimes

visited by the system from featureless turbulence to laminar

flow.

Upon decreasing R, starting from a featureless fully

turbulent flow, we have obtained the result that, in small

systems, the mean value of the perturbation energy remains

roughly constant as a function of R down to the point where

the chaotic regime breaks down into laminar flow, whereas

it is regularly decreasing in larger systems. Furthermore,

visualization of the flow field indicates that the mean energy

variation corresponds to the system entering a spatiotemporal

regime that at first (high R) presents fluctuating laminar

troughs and later (low R) steady oblique patterns of bands

alternately laminar and turbulent, but absent in the small

systems in which spatial coherence implies a mostly temporal

dynamics.

In the featureless regime, fluctuations of the mean per-

turbation energy have distribution probabilities with a sin-

gle marked hump around the mean for all domain sizes.

Their variance decreases with increasing system size, and

fluctuations in the widest domains are close to normal,

which can be understood as a result of the additivity of

local (MFU scale) fluctuations that remain little correlated

as long as the system is sufficiently far from laminar break-

down, expressing the extensive character of the featureless

regime.

A study of the spanwise and streamwise dependence of

the streamwise velocity component correlation function as

functions of the system size has also been performed. The

spanwise variation accounts for the self-sustaining process

by displaying a periodic dependence at the scale expected

for the streaks. More importantly, the slow streamwise

variation expresses correlations reinforced by the periodic

boundary conditions in the smallest systems. The ability

to take into account this streamwise dependence properly

seems an important ingredient in order to explain the ab-

sence of patterning noticed in these systems. Indirectly,

this also explain the observation of the pattern in the

Barkley-Tuckerman tilted but short domains, since their

domain width was chosen to fulfill a commensurability

condition ensuring the periodic continuation of streaks at

the tilt angle observed in the experiments, thus mimick-

ing longer domains in the streamwise direction. In our

computations, patterns were found for L > 76.2, i.e., Lx >

70.

Inspection of flow fields (e.g., Fig. 13 or the BW insets

in Fig. 12) indicates that, in accordance with the information

gained from correlation functions, one can only observe inter-

mittent laminar troughs for L = 76.2, and see any organized

pattern of laminar-turbulent oblique bands only for L = 87.3

and beyond.

In Fig. 2, a conjecture was presented about the bifur-

cation diagram of PCF, connecting systems of MFU size

exhibiting temporal dynamics [37] to large-aspect-ratio sys-

tems displaying spatiotemporal dynamics and patterns [4].

Substantiating this conjecture at a quantitative level, Figs. 11

and 12 display the bifurcation diagrams obtained for various

system sizes. The smallest domains follow the direct route

chaotic flow → laminar flow (via chaotic transients), whereas

in very large domains one has turbulent flow → riddled

regime → oblique pattern → laminar flow. For L in the range

75–85 the oblique pattern stage is skipped, which marks

the crossover from temporal to spatiotemporal dynamics.

Furthermore, the threshold at which the pattern decays, Rg,

is shown to decrease with increasing system size, seemingly

tending to a constant in the large-aspect-ratio limit. A precise

quantitative estimate of this limit was, however, outside the

scope of this paper since the final turbulence breakdown still

keeps probabilistic features that require statistics (longer time

series, large number of independent realizations), especially

in regard to the occurrence of turbulent patches issued

from the fragmented bands and next turned into turbulent

spots closer to Rg. At any rate the exact value is of little

interest, all the more that periodic boundary conditions tend

to stabilize the pattern, which thus artificially decreases Rg

at moderate aspect ratios. The observed trends (decrease of

Rg as L is increased, shrinking of the band regime to the

benefit of the intermittent riddled regime), however, go in the

same direction as the experimental findings, showing that at

intermediate aspect ratio, the transitional range is pushed to

higher R and that patterns can hardly be observed—see [10]

and [7, Sec. 4.4]—though no quantitative link can be

made in view of the differences in the lateral boundary

conditions.

All in all, the recognition of a crossover size beyond which

the transition to or from turbulence in PCF is undoubtedly a

spatiotemporal process, and the need for a faithful account

of streamwise correlations at this scale, either directly or

indirectly via the tilted-domain trick, seem our most important

observations. They might help us to unravel the physi-

cal mechanism behind the organization of low-R turbu-

lence in wall-bounded flows, which still largely remains an

enigma.
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