
J. Fluid Mech. (2011), vol. 669, pp. 375–396. c© Cambridge University Press 2011

doi:10.1017/S0022112010005252

375

Global stability of swept flow around a parabolic
body: features of the global spectrum

CHRISTOPH J. MACK1,2† AND PETER J. SCHMID1

1Laboratoire d’Hydrodynamique (LadHyX), CNRS-École Polytechnique, F-91128 Palaiseau, France
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The global temporal stability of three-dimensional compressible flow about a yawed
parabolic body of infinite span is investigated using an iterative eigenvalue technique
in combination with direct numerical simulations. The computed global spectrum
provides a comprehensive picture of the temporal perturbation dynamics of the
flow, and a wide and rich variety of modes has been uncovered for the investigated
parameter choices: stable and unstable boundary-layer modes, different types of
stable and unstable acoustic modes, and stable wavepacket modes have been found.
A parameter study varying the spanwise perturbation wavenumber and the sweep
Reynolds number reproduced a preferred spanwise length scale and a critical Reynolds
number for a boundary-layer or acoustic instability. Convex leading-edge curvature
has been found to have a strongly stabilizing effect on boundary-layer modes but
only a weakly stabilizing effect on acoustic modes. Furthermore, for certain parameter
choices, the acoustic modes have been found to dominate the boundary-layer modes.
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1. Introduction

Soon after the invention of the aircraft in the beginning of the twentieth century, it
was realized that hydrodynamic instabilities of the Tollmien–Schlichting type trigger
the laminar–turbulent transition process for unswept wings. With the advent of high-
speed aircraft in the 1940s, the introduction of swept wings became necessary in order
to overcome serious design problems emanating from compressibility effects, notably
the shock stall phenomenon. The subsequent investigations on swept wings suggested
that the presence of sweep does not affect the stability of the flow. However, in
later flight tests on swept wing aircraft, Gray (1952) found that beyond a critical free
stream velocity q∞, the transition front moved towards the attachment line of the wing;
this phenomenon could not be explained by existing two-dimensional arguments. He
further observed that this critical free stream velocity depends on the sweep angle Λ

as well as the leading-edge radius R of the wing.
The theoretical and experimental investigations that followed revealed a new type of

instability, the crossflow instability (Gregory, Stuart & Walker 1955). The presence of
sweep (and curvature) leads to a highly three-dimensional boundary-layer flow in the
leading-edge region of a swept blunt body and, thus, fundamentally alters its inherent
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stability properties; the initially two-dimensional boundary layer along the attachment
line gradually develops into a three-dimensional boundary-layer downstream of the
attachment line (see, e.g., Bippes 1999, for a detailed description of the flow). The
crossflow instability exhibits coherent co-rotating vortices whose axes are aligned with
the streamlines of the external flow. The prevalence of crossflow vortices led to the
hypothesis of a crossflow-vortex-induced transition.

New experiments revealed once more a lack of understanding of swept leading-
edge flow, since they demonstrated that leading-edge transition – in particular, the
phenomenon of leading-edge contamination caused by turbulent flow propagating
along the leading edge (Gaster 1965; Pfenninger 1965) – cannot be explained by
the crossflow instability mechanism alone. Based on wind-tunnel experiments on a
swept wing model with a circular leading edge, Poll (1979) concluded that the flow
is also susceptible to instabilities right at the attachment line. This general finding
has become known as attachment-line instability. The above experimental results
have fuelled a substantial effort to investigate the flow behaviour governed by the
two identified mechanisms. These investigations, however, have been based on local
flow models for either instability mechanism: (i) the swept Hiemenz flow model has
been generally accepted as an approximation for the incompressible flow near the
attachment line and has been studied, among others, by Hall, Malik & Poll (1984),
Spalart (1988), Kazakov (1990), Joslin (1995, 1996) and Lin & Malik (1996, 1997,
1995); (ii) crossflow instabilities, which have been experimentally observed further
downstream of the attachment line, have been studied using a local flow model based
on a three-dimensional boundary layer. For an overview of the current state of the
art, the reader is referred to, e.g., Saric, Reed & White (2003), Wassermann & Kloker
(2003), Bonfigli & Kloker (2007) and references therein.

Up until about a decade ago, the two instability mechanisms have been investigated
in isolation of each other. Despite hints from experimental efforts that a link between
the two instability mechanisms may exist, the technical and numerical tools to
investigate the two instabilities together were not available at that time. Attempts
to establish a link between the two mechanisms have been undertaken by Spalart
(1989) and Bertolotti (1999) using, respectively, direct numerical simulations (DNS)
and parabolized stability equations (PSE) based on swept Hiemenz flow. A recent
global stability analysis, focusing only on boundary-layer instabilities, of compressible
flow about a swept parabolic body established a more definite connection between
(local) attachment-line instabilities and (local) crossflow vortices (Mack, Schmid &
Sesterhenn 2008).

Besides boundary-layer modes, the same flow model also contains additional
instability mechanisms due to compressibility effects (see, e.g., Mack 1984).
Furthermore, based on experience with semi-infinite flow geometries such as boundary
layers, we expect the presence of continuous branches (Grosch & Salwen 1978;
Balakumar & Malik 1992) in the global spectrum. The coupling of DNS with a
standard iterative eigenvalue solver (Barkley & Henderson 1996; Mack et al. 2008;
Bagheri et al. 2009) is insufficient to extract spectral information of such a complex
flow configuration. Rather, a more advanced DNS-based global stability solver had to
be developed (Mack & Schmid 2010b) that enables us to explore selected parts of the
global spectrum and thus to gain a more complete picture of the (full) perturbation
dynamics of the flow.

This paper is organized as follows. In § 2 we present the three-dimensional flow
model, including the governing parameters, the governing equations and details of
the DNS code. In § 3 we briefly introduce the concept of DNS-based global stability
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Figure 1. (a) Schematic of a detached bow shock (in black) and the relevant flow parameters
upstream and downstream of the shock. (b) Sketch of the three-dimensional flow configuration.

analysis and its implementation. This is followed by the results in § 4 where features
of the global spectrum are discussed; concluding remarks are offered in § 5.

2. Flow configuration, governing parameters and numerical method

The flow configuration, as displayed in figure 1(b), consists of a parabolic body (in
grey) about which a three-dimensional body-fitted grid (in blue) is mapped. The local
Cartesian coordinate system (in red) is given by the x-, y- and spanwise z-direction
pointing along the attachment line (in black), and the local parabolic coordinate
system (in orange) consists of the chordwise ξ - and the normal η-direction pointing
along grid lines in the downstream direction and along grid lines normal to the wall,
respectively. The surface of the parabolic body is given by

x(y) =
1

2R
y2, (2.1)

where R denotes its leading-edge radius. We consider flow situations where the
oncoming flow is supersonic,

M1 = M∞ cos Λ > 1, (2.2)

where M∞ and M1 denote the free stream Mach number and its component normal
to the shock, and Λ is the free stream angle (see figure 1a); thus, the computational
domain is limited by a detached unsteady bow shock in the η-direction, and this shock,
assumed to be an infinitely thin moving discontinuity, acts as the inflow boundary.

The supersonic flow state upstream of the detached bow shock, denoted by the
subscript ∞, is given by the free stream Mach number M∞ and the free stream angle
Λ, and a total temperature T0 = 728 K and total pressure p0 = 1.55 × 106 Pa are used
as a reference state. From these quantities and the Rankine–Hugoniot relations, the
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flow state downstream of the shock, denoted by the subscript 2, is obtained (see
figure 1a). Consequently, the incoming flow impinges on the body with a velocity q2

and a sweep angle Λ2, yielding a sweep velocity w2 and a normal velocity v2. The
latter quantities will be used in what follows to define the governing parameters.

2.1. Governing parameters

The flow configuration under investigation is characterized by two distinct length
scales, the leading-edge radius R and a viscous length scale δ, which, respectively,
describe the outer flow and the flow inside the boundary layer. We define this viscous
length scale as

δ =
(νr

S

)1/2

with S =

(
∂u

∂x

)

w

=
2v2

R
, (2.3)

where S is the strain rate at the wall, at the attachment line, which follows from
the chordwise derivative of the potential solution of flow around a circular cylinder
with radius R, chosen as R =0.1 m, evaluated at the stagnation point. The size of the
length scale δ is depicted in figure 3(c) for a selected parameter choice.

We further define a sweep Reynolds number Res , a leading-edge Reynolds number
ReR , a sweep Mach number Mas and a wall temperature ratio θw as

Res =
w2δ

νr

, ReR =
v2R

νr

, Mas =
w2

c2

, θw =
Tw

Tr

, (2.4)

where v2 and w2 are the wall-normal and sweep velocities downstream of the bow
shock, c2 stands for the speed of sound, and νr denotes the kinematic viscosity
evaluated at recovery temperature Tr and stagnation pressure ps . In this paper, we
consider an adiabatic wall, and thus the ratio of the temperature Tw at the wall and
Tr is θw ≈ 1.

Alternatively, the sweep Reynolds number Res can be reformulated to display an
explicit dependence on the leading-edge Reynolds number ReR and the sweep angle
Λ2 as well as the leading-edge radius R:

Res =

(
ReR

2

)1/2

tan Λ2 =
R

2δ
tan Λ2. (2.5)

As we can see from (2.5), the sweep Reynolds number describes the influence of the
sweep as well as the leading-edge curvature.

2.2. Free stream dependence

The governing parameters have been defined using the flow quantities downstream of
the bow shock (see § 2.1), and these parameters depend on the free stream conditions
in a nonlinear manner. As an example, using the definition of the sweep Mach
number in (2.4), the thermodynamic relation for the speed of sound for a perfect gas,
c2 = γRT , as well as the Rankine–Hugoniot relation for the temperature ratio T2/T1,
the sweep Mach number can be computed via

Mas =
γ + 1

2
M2

1 tan Λ

(
1 − γ

2
+ γM2

1

)−1/2 (
1 +

γ − 1

2
M2

1

)−1/2

. (2.6)

For the shock-free configuration, this relation reads

Mas = M1 tan Λ

(
1 +

γ − 1

2
M2

1

)−1/2

. (2.7)
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Figure 2. (a) Sweep Mach number Mas and (b) sweep angle Λ2 as a function of the
shock-normal Mach number M1 =M∞ cos Λ and the free stream angle Λ. The region in
grey denotes the case where the oncoming flow is subsonic, i.e. M1 < 1 (note that, in this case,
Λ2 = Λ), and the blue lines represent constant values of Λ while the dashed black lines depict
constant values of M∞. The red cross marks the free stream conditions of the present study,
and the green and blue crosses represent the flow conditions which have been used in previous
linear stability analyses.

Both (2.6) and (2.7) reveal a nonlinear dependence of Mas on the free stream
conditions, and this dependence is given in figure 2. In figure 2(a), we show Mas

as a function of M1 and Λ, where the solid and the dashed lines represent constant
values of Λ and M∞, respectively. For instance, in this paper, we study a free stream
Mach number M∞ = 8.15 and a free stream angle Λ = 30 ◦, yielding a shock-normal
Mach number M1 =7.06, which results in a sweep Mach number Mas = 1.25. Since
M1 defines the shock-detachment distance and thus the size of the domain in the η-
direction (see Mack & Schmid 2010a), this parameter choice results in a rather small
domain in η. Furthermore, figure 2(b) demonstrates that since the sweep Reynolds
number Res is a function of the sweep angle Λ2 (see (2.5)), it also depends in a
nonlinear manner on the free stream conditions.

2.3. Numerical method

We consider the motion of a compressible fluid modelled as a perfect gas with
constant specific heat ratio γ = 1.4 and constant Prandtl number Pr = 0.71. The
compressible Navier–Stokes equations, the equation of state, Fourier’s law for
the thermal conductivity and Sutherland’s law (at ambient conditions) for the
viscosity fully describe the flow. The equations are formulated based on pressure
p, Cartesian velocities (u, v, w) and entropy s, and are solved on a time-dependent,
curvilinear and non-uniformly distributed grid, with a clustering of the grid points
towards the wall as well as in the leading-edge region, as shown in figure
1(b).

For the DNS in this study, the computational domain is limited by a detached
unsteady bow shock, assumed to be an infinitely thin moving discontinuity, in the wall-
normal direction. This discontinuity is incorporated through a shock-fitting technique
(Moretti 1987) and provides the inflow conditions via the Rankine–Hugoniot relations.
Along the surface of the body, no-slip boundary conditions and adiabatic wall
conditions are applied. At the chordwise edges of the computational domain, non-
reflecting outflow boundary conditions are imposed and, under the assumption of
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infinite span, periodic boundary conditions are used in the z-direction. For details on
the implementation of the numerical procedure such as the spatial and the temporal
discretization, we refer the reader to Mack & Schmid (2010a). The homogeneity
in the spanwise z-direction allows us to Fourier transform this direction, and the
remaining inhomogeneous η- and ξ -coordinate directions are discretized by compact
finite-difference schemes using 128 × 255 grid points, respectively.

3. Global stability analysis

Information about the disturbance behaviour for complex geometries and/or
complex flow physics relies on the formulation of a global stability problem when
limiting assumptions such as locally parallel flow, multiple homogeneous coordinate
directions or a low-Mach-number approximation are undesirable or impossible. For a
comprehensive understanding of the perturbation dynamics for our flow configuration
(see figure 1), neither of the above-mentioned limiting assumptions should be made;
rather, a global formulation of the stability problem has to be attempted. For
this reason, we assume a three-dimensional perturbation field φ′ = (p′, u′, v′, w′, s ′)T

superimposed on a (steady) base flow φ0 according to

φ(x, y, z, t) = φ0(x, y, z) + ǫφ′(x, y, z, t), ǫ ≪ 1. (3.1)

We proceed by computing a base flow as a steady solution of the nonlinear
compressible Navier–Stokes equations, and a subsequent linearization about this base
flow yields the linearized Navier–Stokes equations for the perturbations φ′ which can
formally be written as

∂φ′

∂t
= J(φ0)φ

′, (3.2)

with J(φ0) denoting the linear stability operator (the Jacobian).

3.1. Base flow

The assumption of infinite span permits us to eliminate the z-dependence, but not
the w-component, from the base flow φ0(x, y, z) and to reduce the computations
to a problem with only two independent variables x and y. From the solution
of a long-time integration, the full three-dimensional base flow can be recovered.
This procedure is possible since the flow is stable with respect to two-dimensional
perturbations, thus allowing a simple time-integration towards a steady state. As a
consequence, more sophisticated techniques such as Newton-type methods (Jacobian-
free), Newton–Krylov techniques (Knoll & Keyes 2004) or selective frequency damping
(Åkervik et al. 2006) can be avoided.

An initial two-dimensional flow field has thus been integrated in time until a steady
state has been reached to within a sufficiently high accuracy. For a detailed discussion
of the required quality of this steady base flow and the distinction between base and
mean flow for global stability problems, the reader is referred to Theofilis (2003) and
Sipp & Lebedev (2007). The converged three-dimensional base flow is visualized, in
terms of streamlines and pressure field, in figure 3(a). In addition, the local and nearly
two-dimensional flow field in the vicinity of the leading edge is depicted in figure 3(c)
shown by the normal and streamwise velocities. The three-dimensional base velocity
profile further downstream from the attachment line is illustrated in figure 3(b).
It represents a typical profile of a three-dimensional boundary layer consisting of
twisted velocity vectors inside the boundary layer which eventually align with the
curved streamlines of the inviscid outer flow.
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Figure 3. (a) Streamlines (in blue) and pressure field (in Pa) of the computed steady base flow
for Res = 800, ReR = 129 136, Mas = 1.25 and θw ≈ 1; attachment line in black. (b) Schematic
of the three-dimensional boundary layer at a selected position downstream of the attachment
line (adapted from Bippes 1999). (c) Normalized w-velocity profile, stretched by a factor of
100 in η, along the attachment line; the normal velocity v is shown at the back as the coloured
shading and δ = 1.968 × 10−4 m for the present parameter choice.

3.2. DNS-based global stability solver

This three-dimensional base flow forms the starting point for our DNS-based global
stability analysis. The details of this stability solver are given in Mack & Schmid
(2010b), but for the sake of completeness, we briefly outline and discuss its main
features.

Assuming a disturbance field (see (3.1)) of a travelling-wave form,

φ′(x, y, z, t) = φ̃(x, y) ei(βz−ωt), (3.3)

where φ̃(x, y) denotes the complex amplitude and β the real spanwise wavenumber of

the perturbation; the temporal long-term evolution of the disturbance is characterized
by ω whose real part ωr describes the frequency and whose imaginary part ωi

represents the growth rate. Upon substitution of expression (3.3) into the linearized
compressible Navier–Stokes equations (3.2) and subsequent discretization in the
remaining coordinate directions, we can formally write the global discrete stability
problem as

ω φ̃ = J(φ0) φ̃. (3.4)
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Herein, the matrix J(φ0) represents the linear stability matrix (the Jacobian). The

direct solution of the resulting discrete n × n eigenvalue problem, where n= 5nξnη

(with nξ and nη as the number of grid points in the chordwise and normal direction)
denotes the size of J(φ0) and typically is of the order O(106–107), is prohibitively
expensive. For this reason, iterative solution techniques have to be employed to
extract pertinent stability information.

The algorithm to accomplish this task is the implicitly restarted Arnoldi method
(IRAM), a Krylov subspace technique presented by Sorensen (1992), which is publicly
available and described in Lehoucq, Sorensen & Yang (1998). This class of techniques
requires only the action of the Jacobian matrix J(φ0) onto a given velocity field φ′.
These matrix-vector products can be obtained readily from DNS via

J(φ0)φ
′ ≈

F(φ0 + ǫφ′) − F(φ0)

ǫ
=

∂F(φ)

∂φ

∣∣∣∣
φ=φ0

φ′ + O(ǫ), (3.5)

where ǫ is a user-specified parameter, chosen as ‖ǫφ′‖/‖φ0‖ = ǫ0 = 10−8, and F

represents the right-hand side of the nonlinear Navier–Stokes equations. This
approximation avoids the explicit formulation and storage of the Jacobian matrix
and thus allows a Jacobian-free framework where our DNS code provides the input
for the iterative stability solver. For a discussion on the choice of the parameter
ǫ0, see Mack & Schmid (2010b). In the same reference, it was further demonstrated
that a spectral transformation such as the Cayley transformation is necessary to
accelerate and control the convergence of the iterative eigensolver by judiciously
deforming the complex plane. In addition, this same spectral transformation adds
to the robustness of the solver and allows the Krylov subspace method to converge
towards specific parts of the complex global spectrum. The Cayley transformation
consists of a two-parameter conformal mapping defined as

TC(σ, µ) ≡ (J(φ0) − σ I)−1(J(φ0) − µI), ω =
σλ − µ

λ − 1
, (3.6)

where σ and µ denote the mapping parameters, and I is the mass matrix, in our
case the identity matrix. The computed region of the full global spectrum depends
on the choice of these parameters, most notably on the choice of the shift parameter
σ . The desired eigenvalues ω of J(φ0) can be recovered straightforwardly from the
eigenvalues λ of the transformed problem. The advantages of this transformation (see
(3.6)), however, come at the expense of solving a linear system which, in keeping with
the overall iterative nature of our global stability method, has to be done iteratively
by a Krylov subspace technique, in our case the BiCGStab method (van der Vorst
1992) with an ILU-type (incomplete LU decomposition) pre-conditioner (Saad 2003).
Details can be found in Mack & Schmid (2010b).

4. Results

The iterative algorithm outlined in § 3.2 is applied to simulations of compressible
flow around a swept parabolic body, as depicted in figure 1. As the Krylov subspace
is augmented by subsequent calls to the DNS code, the ILU-pre-conditioned Cayley-
transformed Arnoldi method provides an approximate spectrum that consequently
increases not only in complexity but also in accuracy.

4.1. Global spectrum

The computed global spectrum (see figure 4) reflects the richness of physical processes
present in the flow configuration under investigation. It consists of (mostly unstable)
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Figure 4. Global spectrum showing the frequency ωr and the corresponding growth rate ωi

of the iteratively computed modal structures (Res = 800, ReR = 129 136, Mas = 1.25, θw ≈ 1
and β =0.314); the eigenvalues ω have been non-dimensionalized using the strain rate S.
Each region shows the least-stable eigenvalues belonging to boundary-layer modes (region I),
acoustic modes (regions I, II and III), and wavepacket modes (region IV); unstable-half-plane
in grey. The most unstable modes in region I were presented in Mack et al. (2008).

discrete shear modes (region I, in red) that express the flow characteristics inside the
boundary layer, of acoustic modes that describe the presence of (stable and unstable)
sound waves (regions I–III, in blue) and of (stable) wavepacket modes (region IV,
in green) that represent the dynamics of general perturbations outside the boundary
layer; the latter type of modes is complemented by the partial spectrum (region IV,
in grey) obtained by directly solving for the eigenvalues of the Jacobian matrix for an
embedded and significantly smaller sub-domain located near the attachment line. For
the current parameter choice – i.e. a sweep Reynolds number of Res = 800, a leading-
edge Reynolds number of ReR = 129 136, a sweep Mach number of Mas = 1.25, an
adiabatic wall (θw ≈ 1) and a disturbance wavenumber β = 0.314 = 2π/Lz (with Lz

the fundamental length scale of the perturbations, non-dimensionalized by the viscous
length scale δ, in the spanwise z-direction) – the discrete boundary-layer branch (in
red) features the most unstable global modes.

The global spectrum (see figure 4) also shows that the physical processes described
by different types of global modes exhibit a distinct but characteristic frequency ωr .
The boundary-layer modes (in red), for instance, prevail inside the boundary layer,
and the displayed modes travel with a phase speed of approximately 12 %–37 % of
the (mean) velocity, wmean ≈ w2, in the spanwise z-direction (ωr,mean = w2β/(Sδ) with
w2 = 583.1 m s−1, δ = 1.968 × 10−4 m and S =3704 s−1). The acoustic modes (in blue),
on the other hand, travel downstream and upstream in z with w2 ±c2, where c2 stands
for the speed of sound in the free stream. This speed of w2 ± c2 corresponds to Mach
numbers Mas = (w2 ± c2)/c2 of 2.25 and 0.25 (see figure 4). The wavepacket modes (in
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Figure 5. (a) Two representative global modes from the boundary-layer branch visualized
by iso-surfaces (positive values in red, negative values in blue) of the normal velocity
v(x, y, z) = Re{ṽ(x, y) (cos βz + i sin βz)}; eight periods in z are shown. The left and right
modes, respectively, correspond to the two eigenvalues B1 and B2 depicted by circles in (e);
contours of the associated pressure field are shown in the background; attachment line in
black. (b) Top view of v in the ξ–z plane at approximately half the boundary-layer thickness;
a log scale is used to visualize the positive values of v. (c, d ) Chordwise cross-cuts of v at
ξ/δ ≈ 400 and ξ/δ ≈ 580. (e) Region I of the global spectrum shown in figure 4.

green) move with approximately the (mean) velocity w2 since they mainly capture the
dynamics of perturbations in the free stream. The frequencies of the respective modes
and an argument about their local propagation speed thus allows a first classification
of the eigenvalues as well as an estimate of the localization of the corresponding
global modes within the computational domain.

4.1.1. Boundary-layer modes

Concentrating on boundary-layer modes (in red, see region I in figure 4), the
employed global stability solver identified an eigenvalue branch of typical parabolic
shape. This branch consists of stable and unstable discrete modes whose frequency
ωr ranges from 31.1 to 92.8 (see figure 5e); the maximum growth rate, ωi = 2.64, is
achieved for ωr =60.1. Owing to the inherent symmetry properties of the flow, the
eigenvalues appear double at closer inspection, and the associated modes exhibit
characteristic symmetry properties with respect to the attachment line. As the
symmetry of the base flow is broken, such as by introducing an angle of attack,
the coalescence of two respective eigenvalues from the boundary-layer branch is
expected to vanish, giving rise to two slightly displaced parabolic arcs.

Two representative global modes, labelled B1, B2, and indicated by black circles in
figure 5(e), are visualized by iso-surfaces of the normal velocity v in figure 5(a). The
slower moving mode B1 displays typical features of both attachment-line instabilities
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and crossflow vortices, as previously reported by Mack et al. (2008). The faster moving
mode B2 shows a substantially stronger component of the crossflow instability, and
its maximum amplitude is located further downstream from the attachment line.
This property is more evident in figure 5(b), where we present a body-fitted cross-
cut at a distance of half the boundary-layer thickness from the wall. The same
figure also demonstrates the two-dimensional character of the global modes near the
attachment line (see mode B1). Further downstream, both modes display the typical
curved shape of crossflow instabilities. With the spanwise wavenumber β = 2π/Lz held
constant for both modes, the clearly visible difference in the spatial orientation of the
crossflow vortices is a consequence of a corresponding difference in the equivalent
‘local chordwise wavenumber’. This same ‘local chordwise wavenumber’ parameterizes
the parabolic eigenvalue branch of the associated global boundary-layer modes in
figure 5(e). An equivalent parabolic shape would be obtained in local stability analyses
as the least-stable eigenvalue is traced as a function of the chordwise wavenumber.
Figure 5(c, d ) depicts two chordwise cross-cuts of the normal velocity v at two selected
positions, (c) at ξ/δ ≈ 400 and (d ) at the location of the maximum amplitude of B1.

The compressible nature of the flow is expressed in the existence of an associated
weak pressure field, which reflects the acoustic footprint of a global shear mode.
This phenomenon is visualized in the ξ–η plane by contours of the pressure for the
boundary-layer mode B1 (see figure 5a).

Due to the global nature of the analysis, the modes from the boundary-layer branch
display a complex spatiotemporal behaviour. The temporal behaviour is captured by
the eigenvalues while the associated spatial characteristics are represented by the
eigenfunctions. In analogy to local analyses, the exponential growth of individual
modes (as observed for our parameter settings) has to be examined and evaluated in
the light of the limitations of a linear model, the necessity of superposing individual
modes to describe short-time behaviour as well as the saturating and modifying effects
of nonlinearities. It is also important to keep in mind that, even though the global
modes displayed in figure 5 show features familiar from local analyses, the extracted
global modes are best interpreted as compound quantities that do not necessarily
have to strictly adhere to the local characteristics of accustomed attachment-line or
crossflow modes.

4.1.2. Acoustic modes (type A)

Due to the presence of compressibility, the global spectrum also features distinct
sets of slow- and fast-moving acoustic global modes (see blue dots in regions I and
II in figure 4) which describe the presence of sound waves. These modes travel with
approximately w2 ± c2 in the spanwise z-direction, as already discussed in § 4.1. In
figure 6(a), we display region II of the global spectrum (see figure 4) which contains
the fast-moving set of acoustic modes. It is found that these modes can be divided
into symmetric S modes – the spatial distribution of all disturbance quantities except
for the chordwise velocity u is symmetric with respect to the attachment line – and
antisymmetric A modes. We again note that this symmetry property will disappear
in the case of a non-symmetric base flow profile (e.g. due to a non-zero angle of
attack). Each S mode is found to pair with an A mode at the same frequency ωr , e.g.
ωr,S2 =ωr,A2 (see dashed line in figure 6a). Moreover, either type of modes describes a
distinct branch in the eigenvalue spectrum, indicated by the grey line in figure 6(a),
where the modes on the A branch are always more stable than the modes on the S

branch.
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Figure 6. (a) Computed region of the global spectrum containing the fast-moving set of
acoustic modes (see regions II and III in figure 4). (b–e) Spatial structure of a sample
of associated global acoustic modes belonging to the eigenvalues S1, S2, S3 and S4 from
the S-branch depicted by red circles in (a). The modes are visualized by the chordwise
velocity u(x, y, z) in the x–y plane. The green hue corresponds to vanishing amplitudes (larger
amplitudes in red); R =0.1 = 508δ.

The spatial structure of a representative sample of acoustic modes from the S

branch is presented in figure 6(b–e); the corresponding eigenvalues of these modes
are circled in red in figure 6(a) and denoted by S1–S4, respectively. All modes are
visualized by the amplitude distribution of the chordwise velocity u in the x–y plane.
The unstable (S1) and the marginally stable modes (S2) reveal a dominant spatial
structure downstream of the detached bow shock, and this structure decays towards
the surface of the body; the bow shock acts as a flexible ‘wall’, which prevents sound
waves from travelling upstream of the shock. More stable modes (S3 and S4) are
more pronounced in the half of the physical domain which is adjacent to the body,



Global stability of flow around a parabolic body 387

1

(a)

0

0 –1

x/
R

y/R

–1

1

(b)

0

0 –1

y/R

–1

1

(c)

0

0 –1

y/R

–1

Figure 7. Sign of the pressure distribution, sign(p), of selected global acoustic modes in the
x–y plane: (a) S mode (S2) and (b) A mode (A2) from the fast-moving set of acoustic modes
(see figure 6a); (c) mode corresponding to S2, from the slow-moving set of acoustic modes
denoted by S̄2 (see blue dots in region I in figure 4).

and they exhibit smaller spatial structures as they are increasingly tilted and damped;
the smaller spatial structures are the result of this obliqueness of the waves.

The smaller the spatial structures, the larger is the chordwise ‘wavenumber’ α and
thus the propagation angle of the acoustic waves. The unstable mode S1 exhibits a
small value of α and thus displays an approximately two-dimensional wave travelling
in the spanwise z-direction. This mode further shows no strong interaction with the
shock; rather, the bow shock reacts to the structure of the mode by adjusting its
spatial shape. However, for larger values of α, the oblique travelling acoustic waves
strongly interact with the bow shock resulting in a small energy loss (S2). Finally, for
even larger chordwise ‘wavenumbers’, α structures close to the parabolic body prevail
(S3 and S4).

In figure 7, we present a comparison of three acoustic global modes belonging to
the S and the A branch of the fast-moving set of acoustic modes (see region II in
figure 4) as well as an acoustic mode from the corresponding slow-moving symmetric
branch (marked by blue dots in region I in figure 4). As an example, we concentrate
on mode S2 and its associated mode A2 (see dashed line in figure 6a). From the
slow-moving set of acoustic modes we choose the image mode (denoted by S̄2) to
S2, i.e. the mode with the identical decay rate ωi as S2 but with a frequency of
approximately ωr ≈ w2 − c2. Regarding the spatial shape of these three modes, it
is found that the sign of the pressure distribution, sign(p), is nearly identical (see
figure 7). Besides the above-mentioned chordwise symmetric/antisymmetric structure
of these modes, the two fast-moving modes exhibit a characteristic wall layer that
decreases as we proceed downstream from the attachment line (figure 7a, b); this
feature is absent for the slow-moving mode S̄2 (figure 7c).

4.1.3. Acoustic modes (type B)

In addition to the acoustic modes presented in § 4.1.2, another type of global
acoustic modes exists. The dominant part of these modes lies in the free stream,
and they display a characteristic structure in a local region between the detached
bow shock and the attachment line (see figure 8). Starting with the global mode in
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Figure 8. (a–d ) Sample of a further type of global acoustic modes visualized by the sign of
the chordwise velocity, sign(u), in the x–y plane; sonic line, i.e. Ma =(u2 + v2)1/2/c = 1, in red.
(e) The black dots display the corresponding eigenvalues in the global spectrum (see region
III in figure 4); the eigenvalues circled in green belong to the global modes (a–d ).

figure 8(a), which represents the first mode A1 of the A branch shown in § 4.1.2, we
again observe a symmetric spatial distribution for the chordwise velocity component
u in the free stream (visualized by the sign of u). As we proceed along the eigenvalue
branch marked in black in figure 8(e), an interesting behaviour emerges. It appears
that a localized region between the bow shock and the attachment line decouples
itself – in terms of distinct spatial scales – from the regions downstream from the
attachment line. This decoupling is already visible, even though barely, in figure 8(a)
directly behind the bow shock at x = 0. Progressing farther along the eigenvalue
branch, this feature becomes more pronounced as the localized region further extends
in a semi-circular fashion from its point of origin towards the body, and as the
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structure within shows increasingly finer scales (see figure 8b–d ). It appears that the
symmetry properties of the structures inside and outside the localized region are
uninfluenced by each other. The range of scales, on the other hand, indicates a link
between the two regions: generally speaking, the smaller the scales inside the localized
region, the coarser the structures on the outside (see figure 8d ).

This type of modes is believed to account for the interaction of a moving flexible
shock and a rigid curved surface, and these modes are reminiscent of localized
standing waves. The increasingly finer spatial scales of the higher order modes are
linked to higher damping rates. The localized spatial shape of the modes is also
influenced by the different reflective behaviour (impedance) of acoustic waves by
the curved solid surface (perfect reflection) and the curved flexible shock (imperfect
reflection).

Acoustic modes of either type described above capture the propagation of sound
due to compressibility of the fluid. Their source and the characteristics of their
propagation are given by the perturbations in the boundary layer as well as the
properties of the moving bow shock. The parabolic body with its boundary layer
and the detached shock imperfectly reflect acoustic waves and thus act as a curved
waveguide, which, in turn, imprints a specific stability behaviour onto the acoustic
part of the spectrum. It is thereby not surprising that the acoustic modes show a
considerable degree of complexity – making their direct interpretation difficult. The
dynamics of the acoustic components, their role in the overall flow behaviour and (in
the case of unstable acoustic modes) their saturation due to nonlinear interactions
with other flow structures are best studied by DNS, starting with particular acoustic
modal perturbations. A detailed investigation is beyond the scope of this paper and
is left to a future effort.

4.1.4. Wavepacket modes

Returning to the global spectrum in figure 4, a distinct set of eigenvalues centred on
the mean spanwise velocity is clearly visible. Region IV is again plotted in figure 9(a),
and it shows a dense clustering of damped eigenvalues confined to a triangular-
shaped region. The exact location of individual eigenvalues within this region is
highly sensitive to numerical details. For this reason, it can be assumed, and will be
later argued, that this part of the spectrum consists of an area which is progressively
filled by the discrete eigenvalues as the numerical parameters (resolution, starting
vector, Cayley parameters, convergence tolerances, etc.) but the physical parameters
are not varied.

The location and distribution of the eigenvalues in region IV suggest a link to
the continuous spectrum, familiar from boundary layers (Grosch & Salwen 1978;
Balakumar & Malik 1992) and other semi-infinite and bi-infinite viscous shear flows.
In the boundary-layer case, the continuous spectrum can be determined by a constant-
coefficient Orr–Sommerfeld equation for the free stream. Its solutions are given by
bounded exponential and trigonometric functions; the location of the spectrum is
defined by a line parameterized by an equivalent wall-normal wavenumber.

In contrast, our governing equations evaluated in the free stream still retain a
dependence on the wall-normal coordinate via the non-uniform base velocity. As
a consequence, the solutions in the free stream are no longer wave trains (as, for
instance, in the boundary layer) but rather localized wavepackets. As an example,
three representative modes (W1, W2 and W3) from region IV are displayed in
figure 9(b), which shows the spatial distribution of u in the normal direction in the
form of a wavepacket; this property is even more visible in figure 10, where we present
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(W1, W2 and W3) are visualized by the (normalized) chordwise velocity u; attachment line in
black.

0.25 0.20 0.15 0.10 0.05 0
−5

0u

5
(×10−3)

η/R

0.25 0.20 0.15 0.10 0.05 0

η/R

−1

0

1

(a)
(×10−3)

(b)

Figure 10. Amplitude distribution of two wavepacket modes shown in figure 9: (a) W2 and
(b) W3. The modes are visualized using cross-cut profiles at the attachment line (in black) and
at selected positions near the attachment line.

cross-cut profiles of W2 and W3 in the normal direction near the attachment line.
These cross-cuts also demonstrate, even though barely visible, that the wavepacket
modes extend into the boundary layer and thus establish a connection between
boundary-layer and exterior perturbation dynamics. They are thus certain to play a
critical role in the receptivity of boundary-layer instabilities to the external disturbance
environment.
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A consequence of the wavepacket shape is its parameterization by two variables, a
wall-normal local wavenumber and the location of the wavepacket peak (Trefethen
2005; Obrist & Schmid 2010). For this reason, the associated continuous spectrum is
area-filling as the continuous spectrum for the boundary layer was line-filling due to
only one variable, the wall-normal local wavenumber.

Despite the marked sensitivity of the eigenvalues corresponding to wavepacket
modes, these modes carry physical significance as they describe a link between free
stream processes and boundary-layer perturbations. In this respect, wavepacket modes
are instrumental in describing transition processes in the boundary layer triggered
by external disturbances via a receptivity mechanism; particularly in the absence
of acoustic effects they establish the only connection between the free stream and
boundary-layer dynamics. The role of continuous (predominantly free stream) and
discrete (predominantly boundary layer) modes in the transition process triggered
by external disturbances has been established in the work of Zaki & Durbin (2005)
and Liu, Zaki & Durbin (2008); analogous mechanisms are expected to be at play in
the receptivity process of compressible flow about a swept parabolic body.

4.2. Parameter studies

Compressible flow around a swept parabolic body is governed by a large number
of parameters describing various flow quantities, fluid properties and geometric
characteristics of the flow configuration. For a particular choice of parameters, i.e.
Res =800, ReR = 129 136, Mas = 1.25, θw ≈ 1 and β = 0.314, the global spectrum
(see figure 4) revealed that the only temporal instabilities arise from boundary-layer
and/or acoustic modes. To gain further insight into the global stability properties of
both types of instabilities, we present a parametric study of their stability behaviour
by varying the spanwise disturbance wavenumber, β = 2π/Lz, and the leading-edge
Reynolds number, ReR . In particular, we focus on the stability of the global modes
in regions I and II in figure 4.

The first parametric study allows us to investigate the linear stability of a computed
base flow with respect to spanwise-propagating perturbations with a fundamental
length scale Lz. The second parametric study assesses the influence of the leading-edge
Reynolds number ReR , via the leading-edge radius R, on the stability of the flow. This
influence is particularly important for the global stability of the boundary-layer modes.
Such a study requires, for each value of ReR , the computation of a steady base flow,
even though the free stream conditions remain fixed. For all other types of parameter
studies, for example, the influence of the sweep Reynolds number Res = Res(M1, Λ)
or the sweep Mach number Mas = Mas(M1, Λ), the nonlinear dependence between
the governing parameters (see § 2.2) requires a substantial effort for a systematic
exploration of the four-dimensional parameter space.

4.2.1. Influence of the spanwise disturbance wavenumber β

The influence of the spanwise disturbance wavenumber on the boundary-layer
modes was already discussed in Mack et al. (2008) for 0.090 � β � 0.314, where they
found a maximum modal growth for β = 0.213. For a more comprehensive parameter
study, the application of the Cayley-transformed Arnoldi method, as employed in this
paper, was found to be mandatory for accessing selected parts of the global spectrum
and to investigate a larger range of spanwise wavenumbers β . The computed temporal
spectra of the (most unstable) boundary-layer modes are shown in figure 11(a) for
0.071 � β � 0.349. For a given value of β , the frequency ωr and its corresponding
growth rate ωi reveal an unstable discrete branch, as discussed in § 4.1.1. Each branch
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Figure 11. Influence of the spanwise disturbance wavenumber β on the stability of the flow:
(a) temporal spectra of the least-stable boundary-layer modes for selected values of β; unstable
half-plane in grey. The solid line in dark grey describes the evolution of the maximum temporal
growth rate ωi,max , and the evolution of ωi,max , denoted by crossflow branch, as a function of
β is shown in (b); (c) temporal spectra and evolution of the maximum temporal growth rate
ωi,max of the least-stable acoustic modes; the corresponding acoustic branch is displayed in (b).

displays a maximum value of the growth rate ωi , and this value appears to grow
steadily up to a specific wavenumber β before decaying again (see crossflow branch
in figure 11b). Figure 11(b) also indicates that the boundary-layer modes are unstable
for 0.061 � β � 0.363.

By adjusting the parameters in the Cayley transformation (3.6), we are also able to
focus on the computation of fast-moving acoustic modes (see region II in figure 4). In
figure 11(c), we present the influence of β on the stability of these modes. We observe
clusters of discrete acoustic eigenvalues where the least-stable mode belongs to the S

branch. This mode is similar to the most unstable boundary-layer mode, unstable for
a specific range of spanwise wavenumbers, 0.118 � β � 0.585 (see acoustic branch in
figure 11b). It is furthermore evident from the same figure that the overall prevailing
instability can come from either branch depending on the spanwise scale of the
perturbation.

4.2.2. Influence of the leading-edge Reynolds number ReR

The influence of the leading-edge Reynolds number ReR on the global stability of
the flow is demonstrated in figure 12. As mentioned in § 2.1, variations in the leading-
edge Reynolds number ReR cause a proportional change in the sweep Reynolds
number Res (see (2.5)). Three spanwise wavenumbers, located near the peak of the
crossflow branch in figure 11(b) with β = 0.224 and from either side of the peak
with β = 0.143 and 0.314, have been selected for this parameter study. As expected, a
stabilizing effect due to a convex curvature parameterized by the leading-edge radius
R has been found as ReR is decreased from 129 136 to 32 284 (and consequently
Res changes from 800 to 400). This observation is in accordance with wind-tunnel
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Figure 12. Influence of the leading-edge Reynolds number ReR on the stability of the flow:
(a) β = 0.143, (b) β = 0.224 and (c) β = 0.314. ReR ranges from 129 136 to 32 284 (Res decreases
from 800 to 400 with a step size of 100) from the top to the bottom. The dashed lines indicate
the evolution of the maximum growth rate ωi,max .

experiments on a swept wing, as reported in Bippes (1999), and with theoretical
studies on the effect of leading-edge curvature using local models of the attachment-
line boundary layer (Lin & Malik 1997). Our results also indicate that, for the selected
values of β , the frequency ωr of the computed unstable global boundary-layer modes
decreases as ReR is decreased (see dashed lines in figure 12).

5. Summary and conclusions

The flow about yawed blunt bodies constitutes a configuration with many
applications, not only in aeronautics (such as swept wings) but also in general vehicle
engineering. A profound understanding of all aspects of this flow, in particular its
stability characteristics, is hence important for the geometric design and analysis of
any blunt body that is subject to an obliquely impinging flow.

Historically, the flow about swept bodies has been broken down into two local
flow models that describe the flow in the neighbourhood of the attachment line
(stagnation-point flow) and in the region further downstream (three-dimensional
boundary-layer flow). Growth rates and modal structures for each of these models
have been studied, and deviations from the most common assumptions, among them
nonlinearities, curvature and compressibility, have been incorporated, mostly in a
perturbative manner. The resulting body of literature still forms the basis for any
current design process, despite the fact that discrepancies between the two local
models exist. Efforts to connect the dominant structures of these two models have
recently been reported (Bertolotti 1999; Mack et al. 2008), but a first comprehensive
study of the full global problem has been attempted in the present study. This is
possible owing to a DNS-based global stability solver, which is based on iterative
algorithms and a spectral transformation of the complex eigenvalue plane (Mack &
Schmid 2010b).

Due to the complex nature of the flow, which includes curved geometry
and compressibility effects, the global spectrum is accordingly rich and intricate.
Nevertheless, distinct modal structures could be identified and catalogued.
Boundary-layer modes, describing the perturbation dynamics close to the wall,
are dominated by structures reminiscent of crossflow vortices which connect to
associated attachment-line modes. For specific parameter combinations, modes from
this boundary-layer branch become unstable. Acoustic modes have been observed to
fall into two categories: common wave-like structures that propagate at approximately
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the respective characteristic velocities, i.e. the mean spanwise velocity plus or minus
the speed of sound, and acoustic standing waves communicating between the flexible
bow shock and the attachment-line region of the solid body. Symmetry properties
and a hierarchy of increasingly finer spatial scales parameterize both types of
acoustic modes. Wavepacket modes complete the global spectrum and describe the
perturbation dynamics between the edge of the boundary layer and the bow shock.
They represent the equivalent of what is known in semi- and bi-infinite flows as
the continuous spectrum. Evidence supports the fact that, for our flow case, this
continuous spectrum covers an area of the complex plane, rather than a curve as is
the case, e.g. for classical flat-plate boundary layers.

This first attempt at extracting pertinent stability information from a complex
flow in a complex geometry was aimed at dissecting the flow into physical and
fundamental fluid processes that help describe the overall dynamic behaviour of
infinitesimal perturbations in flow about a swept parabolic body. The role of these
processes and their modification by neglected effects (specifically, nonlinearities) is
an interesting and worthy topic for a subsequent investigation; it is hoped that the
presented results will serve as a guide for such a study.

In general, advanced numerical techniques – both for providing highly resolved
flow fields and for processing them by modern iterative algorithms – are capable of
tackling the global stability problem of complex flows without the need to resort to
local models or simplifying assumptions. Such a type of stability analysis, employed in
this study for compressible flow about a swept parabolic body, gives a more complete
and encompassing picture of the flow behaviour, and the challenge of interpreting
the spectral features of the flow far outweighs the insight one gains into the global
perturbation dynamics.
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