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The onset of transition in the leading-edge region of a swept blunt body depends
crucially on the stability characteristics of the flow. Modelling this flow configuration
by swept compressible flow around a parabolic body, a global approach is taken to
extract pertinent stability information via a DNS-based iterative eigenvalue solver.
Global modes combining features from boundary-layer and acoustic instabilities
are presented. A parameter study, varying the spanwise disturbance wavenumber
and the sweep Reynolds number, showed the existence of unstable boundary-layer
and acoustic modes. The corresponding neutral curve displays two overlapping
regions of exponential growth and two critical Reynolds numbers, one for
boundary-layer instabilities and one for acoustic instabilities. The employed global
approach establishes a first neutral curve, delineating stable from unstable parameter
configurations, for the complex flow about a swept parabolic body with corresponding
implications for swept leading-edge flow.

Key words: boundary layer stability, compressible boundary layers

1. Introduction

Since the early 1950s, the problem of transition in the leading-edge region of swept
wings has been central to a great deal of investigations concerning the design of high-
performance aircraft. This problem was first observed in early flight tests on swept
wing aircraft, where Gray (1952) found that, beyond a critical free-stream velocity,
the transition front moved towards the attachment line of the wing, a feature that
could not be explained by invoking two-dimensional arguments. Furthermore, the
employed flow visualization technique showed a series of closely spaced streaky
structures almost aligned with the external streamlines of the flow. Subsequent
investigations confirmed these streaky structures as a consequence of crossflow
instabilities.

In an attempt to gather further information on leading-edge transition, Pfenninger
conducted a series of flight tests on a swept X-21 wing in 1963. He observed that
unexpectedly high suction rates had to be applied to eliminate the crossflow vortices
and, therefore, to achieve laminar flow over the outer part of the wing. This strong
suction was required particularly in the wing’s leading-edge region which indicated
that rather strong disturbances had to be present in the laminar boundary layer
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originating near the attachment line. Evaluating his database, Pfenninger (1965) was
able to establish a criterion for the existence of spanwise contamination along the
wing’s leading edge in the presence of an initially turbulent attachment-line boundary
layer emanating from the wing-body junction. He further realized that maintaining a
full-chord laminar flow on an X-21 wing critically depended on the existence of an
undisturbed laminar attachment-line boundary layer, thus stressing the importance of
flow instabilities in the vicinity of the attachment line. Practical consequences of the
above early findings are reflected in the proposition of geometric devices, introduced
near the attachment line, to prevent the onset of instabilities and to extend the
parameter regime for laminar flow near the leading edge (see Gaster 1965, 1967).
Pfenninger’s criterion is expressed in terms of a critical sweep Reynolds number
of R̄ ≈ 245, which corresponds to a Reynolds number of Rθ ≈ 100 (based on the
momentum thickness), to avoid leading-edge contamination. Presently, this value still
guides state-of-the-art design efforts for swept wings.

The observed prevalence of crossflow vortices in the experiments of, among others,
Pfenninger (1965) and Poll (1979) led, in the beginning, to the hypothesis of a
leading-edge transition caused by crossflow vortices; however, doubts remained as to
their singular role. In wind-tunnel experiments on a swept wing configuration with
a semi-circular leading edge, Poll (1979) observed that the flow is also susceptible to
instabilities close to the attachment line. As a result, he established attachment-line
instabilities as a viable alternative governing the stability of swept leading-edge flow.
Summarizing his investigations on incompressible attachment-line flow, he confirmed
Pfenninger’s critical Reynolds number of R̄ ≈ 245 for large-amplitude disturbances.
In addition to that, Pfenninger reported a critical Reynolds number of R̄crit ≈ 570 for
small-amplitude perturbations. The discrepancy between these two critical Reynolds
numbers suggests a subcritical nature of leading-edge transition, and an interplay
between linear and nonlinear mechanisms is expected to play a considerable role in
this parameter range (see e.g. Joslin 1996).

Over time, the early studies of incompressible or weakly compressible flows have
been extended, and experimental investigations into the subsonic, supersonic and
hypersonic flow regime have been undertaken by many scientists. A comprehensive
summary of their results is given in Poll (1983) and Gaillard, Benard & Alziary
de Roquefort (1999). Adopting a reference temperature concept, a unique critical
Reynolds number of R̄∗ ≈ 245 has been determined for a finite-amplitude disturbance
environment (Poll 1983). For infinitesimal perturbations a critical Reynolds number
of R̄∗

crit ≈ 650 has been found (see e.g. Gaillard et al. 1999). In both cases, the critical
values of the Reynolds number appear to be independent of the sweep Mach number
Mas up to a value of Mas ≈ 5.

The experimental results as well as our desire to fully understand swept leading-
edge flow have fuelled a substantial effort (see e.g. Hall, Malik & Poll 1984; Hall &
Malik 1986; Spalart 1988; Joslin 1995; Lin & Malik 1996; Semisynov et al. 2003)
to investigate the flow behaviour governed by the two identified mechanisms, i.e.
attachment-line instabilities and crossflow vortices. All these investigations, however,
have been based on local flow models for either instability mechanism, which was a
necessary simplification before classical tools of hydrodynamic stability theory could
be applied. Despite remarkable theoretical and numerical efforts based on these local
models, our understanding of the mechanisms underlying the perturbation dynamics
in the subcritical range still remains incomplete, even though limited success, such
as approximating the critical Reynolds number for attachment-line instabilities (Hall
et al. 1984; Lin & Malik 1996), has been achieved.
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Figure 1. Sketch of the supersonic flow about a swept parabolic body.

The shortcomings of the local flow models have been discussed by a number of
scientists, and the potential of a global stability approach based on a comprehensive
flow model is unquestionable. Such an approach will yield a more complete
understanding of swept leading-edge flow and help answer questions such as the
connection between attachment-line instabilities and crossflow vortices. An approach
of this type has already been alluded to by Lin & Malik (1996), who stated that ‘... [b]y
choosing a computational domain large enough in the [chordwise] direction to cover
both the attachment-line instability and crossflow instability regions, and by using an
appropriate spatial resolution, the two-dimensional eigenvalue approach can provide
us with a means to explore this connection ...’. Based on such a global approach, this
connection has been established by Mack, Schmid & Sesterhenn (2008), and the same
line of analysis will be pursued by more sophisticated tools in this article to explore
the parameter dependence of swept flow around a parabolic body. In particular, a
neutral stability curve for a global model of compressible swept leading-edge flow will
be presented; to our knowledge, this curve represents – specifically – the first attempt
to delineate stable and unstable parameter combinations for this type of flow and –
more generally – a neutral stability curve for a complex flow configuration described
by global stability analysis.

2. Flow model, governing parameters and numerical method

Our model consists of supersonic flow about a swept parabolic body displayed (in
grey) in figure 1. The same figure introduces the used three-dimensional body-fitted
grid (in blue) and two coordinate systems: a local (x, y, z) Cartesian coordinate system
(in red) and a local parabolic (ξ, η, z) coordinate system (in orange). The attachment
line (in black) coincides with the spanwise z-direction. The surface of the parabolic
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body is given by y(x) = −1/(2R)x2, where R denotes its leading-edge radius. We
consider flow situations where the oncoming flow is supersonic M1 =M∞ cosΛ > 1,
with M∞ and M1 respectively denoting the free-stream Mach number and its normal
component, and Λ denotes the free-stream angle. The computational domain is
limited by a detached unsteady bow shock in the wall-normal direction, and this
shock, assumed to be an infinitely thin, moving discontinuity, acts as the inflow
boundary. The supersonic flow state upstream of the detached bow shock is given
by the Mach number M∞, the free-stream angle Λ as well as the pressure p∞ and
temperature T∞. Via the Rankine–Hugoniot relations

u2 = u1, p2 = −
γ − 1

γ + 1
p1 +

2

γ + 1
ρ1v

2
1,

v2 =
γ − 1

γ + 1
v1 +

2γ
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v1ρ1
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,
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γ

2

)
,

⎫
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(2.1)

where u, v and w respectively denote the (locally) tangential, normal and bi-normal
velocity components and p, ρ and s denote respectively the pressure, density and
entropy, the flow state downstream of the shock, indicated by the subscript 2, is
obtained. As a result, the incoming flow impinges on the body with a velocity q2 and
a sweep angle Λ2 yielding a sweep velocity w2 and a normal velocity v2 (see figure 1).

This flow configuration is characterized by two distinct length scales, the leading-
edge radius R and a viscous length scale δ, which describe the outer flow and the
flow inside the boundary layer, respectively. We define the viscous length scale as

δ =
(νr

S

)1/2

with S =

(
∂u

∂x

)

w

=
2v2

R
, (2.2)

where S is the strain rate at the wall, evaluated at the attachment line. Its value is
approximated using the potential solution of flow around a circular cylinder with
radius R. On the basis of these two length scales, we define a sweep Reynolds number
Res and a leading-edge Reynolds number ReR as

Res =
w2δ

νr

, ReR =
v2R

νr

, (2.3)

where νr denotes the kinematic viscosity evaluated at recovery temperature Tr and
stagnation pressure ps . We further consider a supersonic sweep Mach number of
Mas = w2/c2 =1.25 and assume an adiabatic wall, i.e. the ratio of the temperature Tw

at the wall and Tr is θw = Tw/Tr ≈ 1.
It is instructive to demonstrate an explicit dependence of the sweep Reynolds

number Res on the sweep angle Λ2 and the leading-edge radius R as well as the
leading-edge Reynolds number ReR according to

Res =

(
q2R

νr

sin Λ2 tan Λ2

2

)1/2

=

(
ReR

2

)1/2

tan Λ2 =
R

2δ
tan Λ2. (2.4)

The definition in (2.4) was used by Poll (1979) for incompressible flow over a swept
cylinder. For compressible flow it was extended using a reference temperature concept
(see Poll 1984) where the kinematic viscosity ν∗ in the sweep Reynolds number R̄∗ is
evaluated at a reference temperature T ∗ given by T ∗ = Te +0.1(Tw −Te)+0.6(Tr −Te);
the temperature Te is computed at the boundary-layer edge.
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The governing compressible Navier–Stokes equations are solved on a curvilinear,
moving and body-fitted mesh using high-order compact finite-difference schemes and
high-order time stepping. Shock-fitting techniques, a characteristic-type formulation
and standard non-reflecting outflow boundary conditions are used, and further details
about the direct numerical simulation (DNS) are given by Mack & Schmid (2010a).
To properly resolve small-scale features inside the boundary layer as well as near the
attachment line, a highly non-uniform grid distribution is employed, as indicated in
figure 1.

3. Global stability analysis

It should be evident that stability studies of flow about a blunt body such as
a swept wing no longer allow the standard simplifying assumptions of multiple
homogeneous coordinate directions or a low-Mach-number approximation. Rather,
a global approach has to be adopted to extract pertinent stability information about
the flow. Such an approach has already been amply motivated in the Introduction,
where we concluded that further advances in our understanding of leading-edge
contamination critically rely on the formulation of a global stability problem.

We therefore assume a three-dimensional perturbation field, which in our case
consists of the pressure, velocity components and entropy, i.e. φ′ = (p′, u′, v′, w′, s ′)T,
superimposed on a steady base flow φ0 according to

φ(x, y, z, t) = φ0(x, y, z) + ǫφ′(x, y, z, t), ǫ ≪ 1. (3.1)

The base flow φ0 is computed as a steady solution of the nonlinear compressible
Navier–Stokes equations by time marching the DNS code.

Despite the complexity of our flow model, we can still take advantage of the
homogeneous spanwise z-direction in the form of a Fourier transform in z introducing
a spanwise wavenumber β . Physically, this corresponds to a swept parabolic body of
infinite span. Assuming exponential behaviour in time, we take the perturbation in
(3.1) in the form of travelling waves according to

φ′(x, y, z, t) = φ̃(x, y) ei(βz−ωt). (3.2)

In this expression, φ̃(x, y) denotes the complex amplitude of the disturbance, and
its temporal long-term evolution is given by ω whose real part ωr describes the
frequency and imaginary part ωi represents the corresponding growth rate. The
complex frequency ω has been non-dimensionalized by the strain rate 2v2/R; see (2.2).

Characteristic information about the stability behaviour of compressible flow about

a swept parabolic body is contained in the global modes φ̃(x, y), which present the
spatial shape of the instabilities, and the corresponding global eigenvalues ω, which
describe the associated temporal dynamics. This information is extracted by applying
a DNS-based iterative global stability solver which consists of the implicitly restarted
Arnoldi method (see Lehoucq, Sorensen & Yang 1998) combined with a conformal
map (Cayley transformation) of the complex eigenvalue plane. By implementing a
Jacobian-free framework, flow fields computed by the DNS provide the required
input for the Arnoldi method, and a shift parameter σ in the Cayley transformation
allows us to manipulate the computed flow fields and direct the convergence of the
Arnoldi method towards specific global modes. In this manner, we are able to scan
the physically relevant regions of the full global stability spectrum. The computed
global spectrum has been confirmed to be independent of numerical parameters and
approximations, such as resolution, grid distribution and location of the outflow
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Figure 2. (a) Part of the full global spectrum showing the least-stable boundary-layer modes
(in blue) and the slow-moving set of acoustic modes (in black) for Res =800, Mas = 1.25,
θw ≈ 1 and β = 0.314, as presented in Mack & Schmid (2011); unstable half-plane shown
by light grey. (b) Least-stable eigenvalues, belonging to global boundary-layer modes, of the
global spectrum for selected sweep Reynolds numbers Res (Mas = 1.25, θw ≈ 1 and β = 0.224).
The dashed line indicates the evolution of the maximum growth rate.

boundary condition. For more details about the DNS-based global stability solver,
the reader is referred to Mack & Schmid (2010b).

4. Results

Compressible flow around a swept parabolic body (see figure 1) exhibits a complex
perturbation dynamics and thus features a wide and rich variety of global modes.
This fact has already been discussed in Mack & Schmid (2011), where several types
of global modes, such as stable and unstable boundary-layer modes, stable and
unstable acoustic modes and stable wavepacket modes, have been uncovered for
Res = 800, ReR = 129 136, Mas = 1.25, θw ≈ 1 and β = 0.314. Furthermore, the present
flow configuration is governed by a large number of parameters describing various
flow quantities, fluid properties and geometric characteristics of the flow. Among
these parameters, the influence of the spanwise wavenumber β and the leading-edge
Reynolds number ReR on the global stability of the flow has been briefly addressed
in Mack & Schmid (2011). A more comprehensive study including the neutral curve
will be presented in what follows.

4.1. Spectrum and global modes

Boundary-layer instabilities have been found in previous studies (Mack & Schmid
2011) to play a dominant role in the transition process. For this reason, we start by
presenting results from the global spectrum which is displayed in figure 2(a) for a
sweep Reynolds number of Res = 800 and a spanwise wavenumber of β = 0.314. It
shows (in blue) a characteristic parabolic shape of discrete global modes which are
unstable for a frequency range of 36 � ωr � 93. The most unstable modes from this
branch for Res = 800, 600 and 400 are shown in figure 2(b); this time the spanwise
disturbance wavenumber was chosen as β = 0.224 which is close to 0.213, the value for
the most amplified perturbations (see Mack & Schmid 2011). Figure 2(b) further shows
that decreasing Res – which is equivalent to decreasing the leading-edge Reynolds
number ReR and thus the leading-edge radius R (see table 1) – has a stabilizing effect
on boundary-layer modes.

In figure 3, we present the spatial distribution of three global boundary-layer modes,
each belonging to the most unstable eigenvalue (depicted by a circle) of the three
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Res ReR δ in 10−4 (m) R̄∗

800 129 136 1.968 840
600 72 639 2.624 630
400 32 284 3.935 420

Table 1. Values of the Reynolds numbers, as defined in § 2, of the investigated
parameter choices.

(a) (b) (c)

Figure 3. Spatial structure of the most unstable boundary-layer modes (depicted by circles in
figure 2b) visualized by iso-surfaces (positive values in red and negative values in blue) of the
normal velocity v(x, y, z) = Re{ṽ(x, y) (cos βz + i sin βz)}, where Re is real part; eight periods
in z are shown; attachment line in black: (a) Res = 800, (b) Res = 600 and (c) Res = 400.
Contours of the associated pressure field of each mode are displayed in the background.
Based on the chosen colour map for the pressure, only the acoustic footprint of the global
boundary-layer mode for Res = 400 is visible; the associated acoustic components for Res = 600
and 800 are too weak to appear in the visualizations.

eigenvalue branches in figure 2(b). The modes are visualized by iso-surfaces of the
normal velocity v, and eight periods in the spanwise z-direction are used; furthermore,
contours of the associated pressure field of each mode are plotted in a wall-normal
cross-plane at z = 0, due to the chosen colour map the pressure distribution of the
boundary-layer modes is only visible in figure 3(c), though. The noticeably different
size of the domain in z, for a fixed wavenumber β , is the consequence of our definition
of the spanwise length scale Lz = (2π/β) δ, where the viscous length scale δ depends
on the sweep Reynolds number Res (see table 1). The disturbance wavelength thus
scales with the length scale δ and the thickness of the boundary layer δ99 ≈ 2.38δ.
Regarding the structure of the global modes in figure 3, we identify typical features
of crossflow instabilities: co-rotating vortices that almost align with the external
streamlines. Closer inspection of their spatial distribution, as Res is decreased from
800 to 400 (see figure 3a–c), reveals, as we proceed downstream from the attachment
line, (i) a weaker spatial exponential growth, causing (ii) a shift of the maximum
amplitude in the chordwise direction, followed by (iii) a weaker exponential decay
further downstream in the chordwise direction. A consequence of this behaviour
is, on the one hand, a more compact spatial distribution closer to the attachment
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line of more unstable global modes at higher Reynolds numbers and, on the other
hand, a substantially more elongated spatial distribution farther downstream from
the attachment line of less unstable global modes. It is these latter modes that are
capable of describing the dynamics in the entire leading-edge region.

Regarding the associated pressure field of the global modes in figure 3, an interesting
feature is observed. While the global modes in figure 3(a, b) do not display any
pronounced pressure field, the global mode in figure 3(c) adopts a pressure distribution
which is known from the least-stable acoustic mode of the slow-moving acoustic modes
(see figure 2a, marked by a black circle). This is a consequence of the coalescence of
two eigenvalues, the least-stable eigenvalues of the respective types, for the particular
parameter choice Res = 400 and β = 0.224, which results in a composite mode
(showing typical features of boundary-layer modes and the least-stable acoustic mode).
Noticeable grid effects in figure 3 demonstrate that the limit of numerical resolution
of the fine spatial features of the global modes has been reached; careful studies have
however shown that the least stable part of the global spectrum and the neutral curve
are grid-independent and converged for the chosen numerical parameters.

The global nature of our geometry makes a direct comparison with local stability
results rather difficult. A comprehensive study – morphing a complex geometry
gradually into a simpler one while tracing the global spectrum as it approaches
a superposition of familiar local spectra – would be desirable, but is prohibitively
expensive for our configuration. The global modes, as they pertain to the neutral
stability curve, will thus be categorized by their individual temporal dynamics and
spatial features. Stationary boundary-layer modes – commonly observed in a local
setting – have not been found for our configuration and parameter settings, despite
efforts to focus on the ωr = 0-axis by appropriately choosing the shift parameter σ in
the Cayley transformation.

4.2. Neutral curve

The neutral curve for supersonic flow about a swept parabolic body is presented
in figure 4. In this figure, we display contours of constant growth rate ωi for the
boundary-layer modes (red) and the acoustic modes (blue). The presence of unstable
global modes of boundary-layer as well as acoustic type yields a composite neutral
stability curve delineating parameter regimes across which either boundary-layer or
acoustic modes change from stable to unstable. Boundary-layer instabilities prevail for
small spanwise wavenumbers β and cease to exist below a critical Reynolds number
of Res,crit ≈ 375 (for β = 0.213). For rather large values of the spanwise disturbance
wavenumber β acoustic instabilities dominate the linear stability of the flow even for
sweep Reynolds numbers Res,crit < 375. However, for Res < 170 acoustic instabilities
cease to exist as well.

For more detailed information, cross-cut profiles of the neutral curve for selected
values of Res are presented in figure 5. The cross-cuts (as well as the neutral curve)
show that for large values of Res the boundary-layer modes (denoted by the crossflow
branch) exhibit significantly larger growth rates ωi than the acoustic modes. These
growth rates decay linearly with Res; the maximum growth rate is always found at a
critical spanwise wavenumber of β = 0.213. The acoustic modes, on the other hand,
show rather weak growth rates, do not scale linearly with Res and do not show a
Reynolds-number-independent critical value of β .

The neutral curve displayed in figure 4 represents a two-dimensional cut through
a high-dimensional parameter space. The immediate choice of varying parameters
consists of the spanwise wavenumber β (based on a one-time computed base flow)
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and the sweep Reynolds number Res (requiring the computation of a new base
flow for each value of Res). While for these two parameter studies the free-stream
conditions remain unchanged, investigating the influence of additional parameters
(sweep angle, sweep Mach number, wall temperature ratio, etc.) requires a substantial
effort owing to the added complication of a nonlinear dependence of these parameters
on the free-stream conditions (see Mack & Schmid 2011 for details).

5. Discussion and conclusions

The stability of supersonic flow around a swept parabolic body has been studied
using a global approach based on an inclusive flow model which incorporates
attachment-line instabilities and crossflow vortices. These two instabilities have been
identified as the dominant mechanisms for the onset of transition in swept leading-
edge boundary-layer flow. Global boundary-layer and acoustic modes have been
found to become unstable for specific parameter combinations, and a neutral stability
curve for these two types of modes has been presented as a function of the spanwise
disturbance wavenumber and the sweep Reynolds number. Two critical Reynolds
numbers, based on a boundary-layer or an acoustic instability, have been determined.

The instability mechanism based on boundary-layer modes follows the classical
pattern of shear-induced instabilities of generic wall-bounded shear layers, i.e. the
amplification of disturbances by extraction of energy from the base flow. The
instability mechanism underlying the acoustic branch of the neutral curve stems from
the parametrically resonant amplification of sound waves as they are reflected between
the bow shock and the rigid wall. The geometry of the bow shock and the wall, as
well as their respective reflective behaviour for acoustic wave, influences the overall
amplification potential of acoustically driven instabilities: a weak instability can be
observed for a significant range of parameter values. Examples of the spatial shape of
unstable modes from the acoustic branch are given in Mack & Schmid (2011). To our
knowledge, these types of instabilities have not been observed experimentally; only
the influence of compressibility on the boundary layer modes has been discussed (see
Gaillard et al. 1999).

Central to our analysis is the global stability approach and consequently the
realization that the computed global modes are of composite type combining features
from boundary-layer and acoustic instabilities. Even though the global boundary-
layer modes show characteristics that are known from the stability analysis of local
flow models (for the attachment-line and the flow further downstream), our approach
treats the coherent dynamic structures of the flow as one entity. Consequently, stability
information obtained from a local approach, which constitutes our current theoretical
understanding of swept leading-edge flow, is expected to differ from results based on
a global approach.

A stability analysis based on a global point of view – avoiding the limitations of
local flow models – constitutes a novel approach for swept leading-edge flow, promises
new insight into the inherent instability mechanisms and has the potential to uncover
a wealth of stability behaviour as stated by Joslin (1996). The computed global
eigenmodes have been found to be non-orthogonal and, consequently, transient effects
are expected to play a significant role in the description of disturbance and bifurcation
behaviour near the critical parameter values. In particular, for the subcritical regime
the global stability approach taken in this article is expected to give new results which
will help answer some of the remaining questions regarding the onset of transition
for swept leading-edge flow.
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