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Recently, Deloncle, Billant & Chomaz (J. Fluid Mech., vol. 599, 2008, p. 229) and Waite
& Smolarkiewicz (J. Fluid Mech., vol. 606, 2008, p. 239) have performed numerical
simulations of the nonlinear evolution of the zigzag instability of a pair of counter-
rotating vertical vortices in a stratified fluid. Both studies report the development of
a small-scale secondary instability when the vortices are strongly bent if the Reynolds
number Re is sufficiently high. However, the two papers are at variance about the
nature of this secondary instability: it is a shear instability according to Deloncle
et al. (J. Fluid Mech., vol. 599, 2008, p. 229) and a gravitational instability according
to Waite & Smolarkiewicz (J. Fluid Mech., vol. 606, 2008, p. 239). They also profoundly
disagree about the condition for the onset of the secondary instability: ReFh

2 >O(1)
according to the former or ReFh > 80 according to the latter, where Fh is the horizontal
Froude number. In order to understand the origin of these discrepancies, we have
carried out direct numerical simulations of the zigzag instability of a Lamb–Chaplygin
vortex pair for a wide range of Reynolds and Froude numbers. The threshold for the
onset of a secondary instability is found to be ReFh

2 ≃ 4 for Re � 3000 and ReFh = 80
for Re � 1000 in agreement with both previous studies. We show that the scaling
analysis of Deloncle et al. (J. Fluid Mech., vol. 599, 2008, p. 229) can be refined
to obtain a universal threshold: (Re − Re0)Fh

2 ≃ 4, with Re0 ≃ 400, which works
for all Re. Two different regimes for the secondary instabilities are observed: when
(Re − Re0)Fh

2 ≃ 4, only the shear instability develops while when (Re − Re0)Fh
2 ≫ 4,

both shear and gravitational instabilities appear almost simultaneously in distinct
regions of the vortices. However, the shear instability seems to play a dominant role
in the breakdown into small scales in the range of parameters investigated.
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1. Introduction

Strongly stratified flows are anisotropic and generally exhibit a layered structure
(Riley & Lelong 2000). Layers can arise spontaneously through an instability, the
zigzag instability, when several vertical vortices are interacting. This has been shown
in the cases of pairs of counter- or co-rotating vortices (Billant & Chomaz 2000a;
Otheguy, Chomaz & Billant 2006) and vortex arrays (Deloncle, Billant & Chomaz
2011). The study of such elementary flows is convenient to identify and understand
some of the fundamental mechanisms at work in more complicated flows such as
stratified turbulence.
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The zigzag instability exists for low horizontal Froude number Fh =U/(Na), where
U is the typical horizontal velocity of the vortices, a the vortex radius and N the
Brunt–Väisälä frequency. It originates from the coupling between vortex bending
waves and the strain exerted by companion vortices (Otheguy, Billant & Chomaz
2007; Billant 2010; Billant et al. 2010). The instability bends the vortices with a
growth rate scaling like the strain and a vertical wavelength scaling like Lbb/a, where
Lb = U/N is the buoyancy length and b the vortex separation distance.

In the laboratory, the zigzag instability of a counter-rotating vortex pair has been
observed to grow to a very large amplitude producing high vertical shear and leading
to the formation of thin but laminar layers (Billant & Chomaz 2000a). Recently,
Deloncle et al. (2008) and Waite & Smolarkiewicz (2008) have carried out numerical
simulations of the nonlinear evolution of the zigzag instability at higher Reynolds
number Re = Ua/ν (where ν is the viscosity) than in the laboratory. They have both
observed that small scales develop leading to a transition to turbulence when the
zigzag instability is fully developed and the Reynolds number sufficiently large.

Deloncle et al. (2008) attributed this breakdown into small scales to the onset of
the Kelvin–Helmholtz instability by showing that it develops in regions where the
Richardson number becomes lower than 1/4. In contrast, Waite & Smolarkiewicz
(2008) have shown that small scales emerge when density perturbations generated by
the zigzag instability become gravitationally unstable.

In addition to this difference of interpretation about the nature of the secondary
instabilities, Deloncle et al. (2008) and Waite & Smolarkiewicz (2008) also disagree
about the threshold for their onsets. Deloncle et al. (2008) have shown that the
exponential growth of the zigzag instability is not saturated by nonlinear effects but
by viscous effects due to the vertical shear when there is no secondary instability. This
occurs when the vertical length scale Lv has decreased down to the viscous length
scale Lv ∼ a/

√
Re. At that time, the Richardson number is Ri ≃ N2/|∂uh/∂z|2 ∝

N2L2
v/U 2 ∝ 1/(ReFh

2), where ∂uh/∂z is the vertical gradient of horizontal velocity.
Therefore, when ReFh

2 is large, the Richardson number can be lower than 1/4 before
viscous saturation of the zigzag instability. Deloncle et al. (2008) have shown that
this criterion predicts well the occurrence of the shear instability in their simulations.
In contrast, Waite & Smolarkiewicz (2008) reported that the gravitational instability
occurs when ReFh > 80. However, this threshold is empirical and no theoretical
justification has been provided by Waite & Smolarkiewicz (2008).

Deloncle et al. (2008) and Waite & Smolarkiewicz (2008) have speculated that
the discrepancies between their conclusions might come from the different initial
conditions: Waite & Smolarkiewicz (2008) used a Lamb–Chaplygin vortex pair while
Deloncle et al. (2008) used a pair of counter-rotating Gaussian vortices with a
separation distance b =2.5a. In order to check this hypothesis, we have reconsidered
the problem and performed direct numerical simulation (DNS) of a Lamb–Chaplygin
vortex pair for a wide range of Reynolds number Re and Froude number
Fh.

2. Numerical method and initial conditions

The numerical procedure is the same as in Deloncle et al. (2008) except that
the vortex pair consists of a Lamb–Chaplygin dipole instead of a pair of adapted
counter-rotating Lamb–Oseen vortices. The incompressible Navier–Stokes equations
under the Boussinesq approximation are solved by means of a pseudo-spectral method
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Run Fh Re R = ReFh
2 Lx × Ly × Lz Nx × Ny × Nz δt

Fh0.15Re500 0.15 400 9 10 × 10 × 1.5 256 × 256 × 64 0.01
Fh0.15Re1000 0.15 1000 22.5 10 × 10 × 1.5 256 × 256 × 64 0.01
Fh0.1Re600 0.1 600 6 10 × 10 × 1.0 256 × 256 × 64 0.01
Fh0.1Re2500 0.1 2500 25 10 × 10 × 1.0 512 × 512 × 96 0.005
Fh0.05Re1500 0.05 1500 3.75 10 × 10 × 0.5 384 × 384 × 64 0.006
Fh0.05Re4000 0.05 4000 10 10 × 10 × 0.5 768 × 768 × 96 0.003
Fh0.03Re4500 0.03 4500 4.05 10 × 10 × 0.3 768 × 768 × 96 0.003
Fh0.03Re6000 0.03 6000 5.4 10 × 10 × 0.3 768 × 768 × 96 0.003

Table 1. Overview of the physical and numerical parameters of the simulations with highest
and lowest Re for each Fh. The number of nodes in the x-, y- and z-direction are denoted,
respectively, by Nx , Ny and Nz. The time step is δt . We recall that the length and time units
are R and R/U , respectively.

with periodic boundary conditions (see Deloncle et al. (2008) for details). The velocity
field u and the density perturbation ρ ′ are initialized as

[u, ρ ′](x, y, z, t = 0) = [u2D(x, y), 0] + ε cos(2πz/λz)[up, ρ ′
p](x, y), (2.1)

where (x, y, z) are Cartesian coordinates with z along the vertical, u2D is the
velocity field of a Lamb–Chaplygin dipole in the co-moving frame like in Waite
& Smolarkiewicz (2008). This dipole is a steady solution of the Euler equation given
by u2D = − ∇ × ψ0ez, with

ψ0(r, θ) ≡

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2UR

µ1J0(µ1)
J1(µ1r/R) cos θ, if r < R,

Ur

(

1 − R2

r2

)

cos θ, if r � R,

(2.2)

where (r, θ) are cylindrical coordinates with (x = r cos θ, y = sin θ), U the velocity of
propagation in the laboratory frame, R the dipole radius, J0 and J1 are the zeroth-
and first-order Bessel functions and µ1 = 3.8317 is the first root of J1.

The second term on the right-hand side of (2.1) is a small perturbation with
[up, ρ ′

p] the most unstable eigenmode of u2D determined by a numerical linear
stability analysis, λz its vertical wavelength and ε a small amplitude.

The Reynolds number Re and the Froude number Fh are based on the
initial conditions: Re =UR/ν, Fh = U/(NR), where ν is the kinematic viscosity and
N =

√−(g/ρ0)(dρ̄/dz) the Brunt–Väisälä frequency (assumed constant), where g is
the gravity, ρ0 a reference density and ρ̄(z) the basic density profile. The total density
is given by ρtot = ρ0 + ρ̄(z) + ρ ′. The Schmidt number Sc = ν/D, where D is the mass
diffusivity, is set to unity in all runs. For simplicity and without loss of generality, R

and R/U are taken, respectively, as length and time units, i.e. are fixed to unity. The
density perturbations are non-dimensionalized by R|dρ̄/dz|. The same symbols are
kept for the non-dimensional variables.

The parameters of the main runs are summarized in table 1. The value of the
Froude number is kept below the threshold Fh = 0.2, where the zigzag instability
is dominant in the case of the Lamb–Chaplygin dipole (Billant & Chomaz 2000b).
For each Froude number investigated, only the runs with the highest and lowest
Reynolds numbers are listed in table 1. For the runs with intermediate values of
Re, the resolution and time step have been chosen between these two limiting cases.
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Figure 1. Three-dimensional contours of the vertical vorticity of the dipole for Fh = 0.1
and Re = 2500 at time t = 3.8. The grey surfaces are iso-surfaces of vertical vorticity
|ωz|= 0.7 max(ωz). The blue surfaces correspond to iso-values of the Richardson number equal
to 1/4 (indication of the possibility of shear instability) and the orange surfaces correspond to
iso-values ∂ρtot/∂z =0 (instability condition for the gravitational instability). The red and blue
lines indicate the position of the vertical cross-sections (xz) and (yz) displayed in figure 2(a,b).

The height of the computational domain is set to the most amplified wavelength of
the zigzag instability Lz = λz. The horizontal size of the box Lx = Ly =10 is taken
sufficiently large compared to the dipole radius R = 1 in order to have negligible effects
of the periodic boundary conditions. Several additional runs have been performed
with different domain sizes and numerical resolutions in order to check the accuracy
and convergence of the results presented.

3. Description of the transition to small scales

We first describe a simulation for Fh = 0.1 and Re = 2500 for which the nonlinear
evolution of the zigzag instability leads to a transition to small scales. Since the
development of the zigzag instability has already been described in detail by Waite &
Smolarkiewicz (2008) and Deloncle et al. (2008), we start our description at the time
when the zigzag instability is mature and the transition to small scales is incipient.
Our main purpose is to determine the nature of the underlying secondary instabilities.

Figure 1 displays in grey the iso-surfaces of vertical vorticity at t = 3.8. As can
be seen, the zigzag instability has reached a finite amplitude and the vortices are
fully bent but small scales have not yet developed. Even if the growth of the zigzag
instability is still exponential at that time, the bending deformation of the vortices is
no longer purely sinusoidal: one can see that the vortices tend to be vertically aligned
at the extrema of the bending deformation, i.e. at z = 0 and z =0.5, while in between
the vortices tend to be more inclined than for a pure sinusoid. In order to identify
regions susceptible to the shear instability, we have plotted in blue the iso-surfaces
where the local Richardson number

Ri =
−∂ρtot/∂z

Fh
2|∂uh/∂z|2 (3.1)

is equal to 1/4, where ∂ρtot/∂z is the non-dimensional vertical gradient of total density,
i.e. ∂ρtot/∂z = −1+∂ρ ′/∂z. The condition Ri < 1/4 somewhere in the flow is a necessary
but not sufficient condition for the shear instability of a steady parallel inviscid shear
flow (Howard 1961; Miles 1961). It is therefore not rigorously applicable to the present
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flow but we expect that the application of this condition will be meaningful if the
flow is sufficiently parallel and evolves sufficiently slowly compared, respectively, to
the characteristic length scale and time scale of the shear instability. As seen in figure
1, there are six distinct regions where Ri < 1/4. Four of these regions are located close
to the iso-vorticity surfaces, i.e. inside the vortex cores at the vertical levels where
they are most slanted. The two other regions are located approximately at the same
vertical levels but right in the middle between the two vortex cores. Quite strikingly,
an orange surface, corresponding to the iso-value Ri = 0, is embedded within each
of the two latter regions. This means that the vertical gradient of the total density
is positive inside these regions so that they are prone to a convective instability.
Interestingly, the conditions for the shear and gravitational instabilities can be also
satisfied simultaneously for inertia-gravity waves (see, e.g. Lelong & Dunkerton 1998;
Fritts & Alexander 2003). However, we emphasize that here these two conditions are
fulfilled for distinct physical reasons: the regions where 0 <Ri < 1/4 appear in the
vortex cores because the bending of the vortices enhances the vertical shear (Deloncle
et al. 2008). In contrast, the regions where Ri < 0 (connected to small regions where
Ri < 1/4) appear because the bending of the low-pressure vortex cores produces high
vertical pressure gradient and so high-density perturbations by hydrostatic balance
(Waite & Smolarkiewicz 2008).

The precise position of these regions can be seen more clearly in figures 2(a)
and 2(b) which show the colour contours of the Richardson number in the vertical
cross-sections yz and xz indicated, respectively, in blue and red in figure 1. These
figures show also the contours of total density. The subsequent time evolution of
these quantities is shown in figure 2(c–j ). Note that the y position of the xz cross-
sections (figure 2b,d,f,h,j ) is displaced with time in order to always cut through the
mean position of the two vortex centres. At t = 4.4 (figure 2c,d ), we see that the
regions where 0<Ri < 1/4 and Ri < 0 have widened and intensified but no secondary
instability is yet visible. At t =5 (figure 2e,f ), Kelvin–Helmholtz rolls are clearly
formed in the regions where 0 <Ri < 1/4. These rolls can be seen in both yz and xz

cross-sections because they are oblique with respect to the x direction as observed
by Deloncle et al. (2008). This creates gravitationally unstable regions as seen by
the yellow contours. We stress that the billows in the xz cross-section (figure 2f )
develop in the regions where the condition Ri < 1/4 is satisfied because the shear
is enhanced and not because the vertical gradient of the total density decreases. In
contrast, the overturning of the isopycnals is steeper in the regions where Ri < 0
(red regions, figure 2f ) but no instability is yet apparent there. At t = 6, the Kelvin–
Helmholtz billows have grown up to a large size (figure 2g). In the xz cross-section
(figure 2h), there is an abrupt breakdown into small scales leading to large areas
of mixed fluid (figure 2j ) as described by Waite & Smolarkiewicz (2008). However,
this breakdown occurs everywhere in the regions where the Richardson number is
below 1/4 not only where Ri < 0. In addition, the shear instability develops faster
and over a wider region than the gravitational instability. Thus, the breakdown seems
mostly due to the Kelvin–Helmholtz instability and not due solely to the gravitational
instability as argued by Waite & Smolarkiewicz (2008). It is likely that there is a
coupling between the two instabilities since they develop in neighbouring regions.
In particular, the perturbations generated by the shear instability may trigger the
gravitational instability. The shear present in the statically unstable regions may also
affect the gravitational instability (see Fritts & Alexander 2003).

Figure 3 shows a similar time series as in figure 2 but for a lower Reynolds number
Re = 1000. For such intermediate values of Re, we have observed another scenario
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Figure 2. Time evolution of the total density in the vertical cross-sections yz (a, c, e, g, i ) and
xz (b, d, f, h, j ) indicated in blue and red, respectively, in figure 1. The colour contours indicate
the Richardson number where Ri < 1/4. The red vertical lines indicate the location of the xz
cross-sections. Conversely, the blue vertical lines indicate the location of the yz cross-sections.
The contour interval of total density is equal to 1/22. (Supplementary movie 1, available at
journals.cambridge.org/flm.)
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Figure 3. Same as in figure 2 but for Re = 1000. (Supplementary movie 2, available at
journals.cambridge.org/flm.)

where only the shear instability operates. Indeed, figure 3(a,b,c,d ) is very similar
to the corresponding figure 2(a,b,e,f ) except that the Kelvin–Helmholtz billows are
less intense. A rolling-up of the isopycnals is also visible in the xz cross-section
(figure 3d ) but this occurs in the regions unstable to the shear instability (blue regions
at t = 5, figure 3b). In contrast, the size of the gravitationally unstable regions (red)
near x = 0 decreases with time after t =6.5 (figure 3d,f,h) without any development of
the gravitational instability. Note that the other red regions which appear at t = 6.5
in figure 3(d,f,h) are due to the overturnings created by the Kelvin–Helmholtz billows.
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Figure 4. (Colour online available at journals.cambridge.org/flm) Summary of all the runs in
the parameter space [Re, Fh]. The asterisks indicate runs in which both Kelvin–Helmholtz and
gravitational instabilities are observed. The crosses correspond to runs where Kelvin–Helmholtz
rolls are observed but no gravitational instability is observed. Triangles are intermediate cases
for which the shear instability creates undulations but roll-up does not fully develop. The
circles denote the runs where no secondary instability is observed. The dashed dotted and
dashed lines correspond, respectively, to the criterion ReFh = 80 and ReFh

2 = Rc , with Rc = 4.
The solid and dotted lines correspond to the criterion (Re − Re0)Fh

2 = Rc , with, respectively,
Re0 = 400 and Re0 = 240.

The gravitational instability does not develop probably because its growth rate is not
sufficiently high compared to the characteristic time scale of the zigzag instability or
compared to the diffusive time scale.

When the Reynolds number is just below the threshold for the onset of secondary
instabilities, the minimum Richardson number still drops below 1/4 for a short time
period but the shear instability does not appear. It is likely that the growth rate of
the shear instability is then too small for the instability to develop over this time
period.

4. Flow regimes in the parameter space [Re, Fh]

Figure 4 summarizes all the different runs in the parameter space [Re, Fh]. As
already mentioned, only the range Fh < 0.2 has been explored since the zigzag
instability is most unstable only in this range in the case of the Lamb–Chaplygin vortex
pair (Billant & Chomaz 2000b). The different symbols distinguish the simulations with
gravitational and shear instabilities (∗), from those with only the shear instability (×)
and those with no secondary instability (◦). The triangle symbols (△) indicate an
intermediate case for which undulations of the isopycnals are observed but Kelvin–
Helmholtz rolls do not really develop.

The dashed line shows the threshold ReFh
2 = Rc derived by Deloncle et al. (2008)

for the onset of the shear instability. Note that the critical value Rc depends on
the properties of the vortex pair and has been empirically found to be Rc ≃ 4 in the
present case. The alternative threshold ReFh = 80 proposed by Waite & Smolarkiewicz
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Figure 5. Time evolution of (a) the horizontal enstrophy Zh rescaled by Re and of (b) the
quantity (Zh(t) + Z0)/Re E0/E2D(t) for different Froude and Reynolds numbers: (Re =600,
Fh = 0.14, black dotted line), (Re = 670, Fh = 0.12, black dashed line), (Re = 790, Fh = 0.10,
black dashed dotted line), (Re =1000, Fh = 0.08, black solid line), (Re = 1480, Fh = 0.06, grey
dotted line), (Re = 2800, Fh = 0.04, grey dashed line), (Re = 4000, Fh = 0.03, grey dashed dotted
line) and (Re = 6000, Fh = 0.025, grey solid line).

(2008) is indicated by the dashed dotted line. We can see that the threshold proposed
by Deloncle et al. (2008) works well for large Reynolds number Re � 3000 but not
below. Alternatively, the threshold proposed by Waite & Smolarkiewicz (2008) is
in good agreement for Re � 1000 but departs from the observations for larger Re.
The solid line shows the threshold (Re − Re0)Fh

2 = Rc, with Re0 =400, which works
remarkably well for any Reynolds number. In particular, it is as good as the threshold
ReFh = 80 for Re � 1000, even if it has not the same functional dependence with Fh.

This universal threshold can be justified by refining the analysis of Deloncle
et al. (2008). These authors observed that the zigzag instability causes an
exponential growth of the total horizontal enstrophy per unit of vertical wavelength:
Zh = (1/Lz)

∫

V dV|ωh|2/2, where ωh is the horizontal vorticity. This growth saturates
only when Zh is of the order of the Reynolds number, i.e. Zhmax ∝ Re. Since
the flow is strongly stratified, the vertical velocity is small and vertical gradients
are large so that the horizontal enstrophy Zh is a direct measure of the mean
vertical shear of the horizontal velocity, i.e. Zh ≃ (1/Lz)

∫

V dV|∂uh/∂z|2/2. Thus,
by assuming that the maximum local shear is proportional to the mean shear,
Deloncle et al. (2008) obtained the following estimate for the minimum Richardson
number: Rimin ≃ 1/[F 2

h max(|∂uh/∂z|2)] ∝ 1/[F 2
h Re]. Hence, the condition for the

shear instability, i.e. Ri < 1/4, is equivalent to ReF 2
h > Rc.

The scaling law Zhmax ∝ Re is at the heart of this reasoning. In order to check
its validity, we have plotted in figure 5(a) the horizontal enstrophy Zh scaled by the
Reynolds number for several simulations covering a wide range of parameters:
0.025 <Fh < 0.16 and 600 <Re < 6000. Note that these runs are all below the
threshold for the onset of secondary instabilities in order that the development
of small scales, which tends to be less affected by the stratification and thus more
isotropic, does not introduce any bias on the maximum of the horizontal enstrophy.
We see in figure 5(a) that all the curves of Zh/Re collapse remarkably well when
the Reynolds number is large: Re � 2800. However, when the Reynolds numbers is
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moderate: Re � 1500, there is a significant decrease of Zhmax/Re when Re decreases
and the collapse deteriorates.

In order to understand this discrepancy, it is interesting to consider the equation
for the total energy per unit of vertical length in non-dimensional form following
Deloncle et al. (2008):

dE

dt
= − 2

Z

Re
− 1

ReSc

∫

V
dV|∇ρ ′|2

Fh
2Lz

, (4.1)

where Z is the total enstrophy per unit of vertical wavelength. The potential energy
dissipation (last term in the right-hand side) remains small in all cases (less than
10 % of the total dissipation) so that it can be neglected as a first approximation. The
viscous effects (first term in the right-hand side) shown in equation (4.1) will be able to
dissipate the energy, i.e. to saturate the development of the zigzag instability, when the
total enstrophy is of the order of the Reynolds number: Zmax = Zhmax + Zvmax = CRe,
where C is a constant of order unity. Since the vertical enstrophy Zv is observed
to decrease from its initial value (which is of order unity by virtue of the non-
dimensionalization), this implies Zhmax ∼ CRe when Re ≫ 1 (Deloncle et al. 2008).
However, for moderate Reynolds number, the accuracy of this approximation is
no longer ensured since Zhmax is no longer very large compared to Zvmax . A better
estimate is therefore Zhmax ∼ CRe−Z0, where the vertical enstrophy has been assumed
to be approximately constant: Zvmax ∼ Z0.

In addition, one has to remark that (4.1) is non-dimensionalized based on the initial
velocity U and radius R of the dipole. Thus, the relation Zmax/Re = C implicitly
assumes that the energy of the dipole E(tmax) at the time tmax of the enstrophy peak,
is approximately the same as at t = 0: E(tmax) ∼ E0. Again, this assumption is valid
for large Reynolds number but is more questionable at moderate Reynolds number.
The energy of the dipole indeed significantly decays owing to two-dimensional viscous
diffusion before the zigzag instability has reached a finite amplitude. This effect can
be taken into account by considering the energy E2D(tmax) that the dipole would have
at tmax if the dynamics were purely two-dimensional. This energy can be estimated by
E2D(t) ≃ E0 −2(Z0/Re)t since the enstrophy Z0 remains almost constant for 2D flows.

Altogether, we see that the relation Zhmax = CRe for Re ≫ 1 should become for
moderate Reynolds number

Zhmax + Z0 = CReE2D(tmax)/E0 (4.2)

where the right-hand side has been normalized by E0 in order to be consistent with
the relation for Re ≫ 1. In order to test the validity of this scaling law, we show in
figure 5(b) the quantity

Zh(t) + Z0

Re

E0

E0 − 2(Z0/Re)t
(4.3)

for the same set of Froude and Reynolds numbers as in figure 5(a). We see that the
maxima of each curve are now almost equal confirming the above reasoning.

Using the relation (4.2) and the assumption max(|∂uh/∂z|2) ∝ Zhmax , it is now
a simple matter to deduce that the minimum Richardson number scales like
Rimin = 1/[F 2

h max(|∂uh/∂z|2)] ∝ 1/[F 2
h (Re − Re0)] where Re0 =2Z0tmax/E0 + Z0/C

is approximately a constant since tmax is almost independent of Re. For the Lamb–
Chaplygin dipole (2.2) in the computational box, we have Z0 ≃ 46.1 and E0 ≃ 5.5.
Using these values and the empirical values of C ≃ 0.38 and tmax ≃ 7 obtained from
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figure 5(b), we obtain Re′
0 ≃ 240. In figure 4, we see that the criterion (Re−Re′

0)F
2
h = Rc

(dotted line) is in better agreement with the data for low Re than the threshold
ReF 2

h = Rc. However, an even better agreement can be obtained by using the empirical
value Re0 = 400 shown by the black line in figure 4.

In summary, the constant Re0 takes into account two features which were neglected
in the analysis of Deloncle et al. (2008): the viscous dissipation of the base flow and
the fact that the vertical enstrophy is actually not so small compared to the maximum
horizontal enstrophy when the Reynolds number is moderate.

5. Conclusion

We have performed direct numerical simulations of the nonlinear development
of the zigzag instability of a Lamb–Chaplygin dipole for a large range of Reynolds
numbers Re and Froude numbers Fh in order to understand the discrepancies between
the previous studies of Deloncle et al. (2008) and Waite & Smolarkiewicz (2008).

Secondary instabilities produce a transition to small-scales when (Re − Re0)Fh
2 �

Rc, where Re0 ≃ 400 and Rc ≃ 4. This threshold, which has been obtained by refining
the analysis of Deloncle et al. (2008), is valid for any Reynolds number. It agrees
with the threshold derived by Deloncle et al. (2008) for large Reynolds number
and with the one of Waite & Smolarkiewicz (2008) for moderate Reynolds number.
Just above the threshold, a shear instability develops in the most bent region of
the vortex cores. Further above the threshold, there are simultaneously two types
of secondary instabilities: the shear instability mentioned above and a gravitational
instability which develops in the middle between the two vortices. However, the shear
instability develops faster and seems to play a dominant role in the transition to
small scales in all the simulations that have been performed. Our study therefore
clarifies and reconciles the different results reported by Deloncle et al. (2008) and
Waite & Smolarkiewicz (2008). Some further simulations have been carried out
in the case of two counter-rotating Lamb–Oseen vortices like in Deloncle et al.
(2008). They agree qualitatively with the present conclusions and are therefore not
shown.

The transition to small scales has important implications for our understanding of
stratified turbulence. As pointed out by Deloncle et al. (2008), the shear instability
generates small billows whose size LKH scales like the buoyancy length scale Lb = U/N .
There is therefore a direct transfer from the large scales to a small horizontal scale
LKH instead of a local cascade. Deloncle et al. (2008) associated LKH to the Ozmidov

length scale lo =
√

ε/N3, where ε is the mean kinetic dissipation rate per unit mass,
because the corresponding Froude number is unity if the typical velocity of the billows
is assumed to be U , i.e. the same as the velocity of the large-scale vortices. However,
it would be more appropriate to call this length scale the buoyancy length scale. As
shown recently by Waite (2011), the Ozmidov and buoyancy length scales are indeed
distinct physical scales even if they both correspond to a Froude number of order
unity. In future investigations it would be interesting to study also the scale selected
by the gravitational instability and its implications for stratified turbulence.
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Supplementary movies are available at journals.cambridge.org/flm.
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