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The transition to turbulence in a rotating boundary layer is analysed via direct
numerical simulation (DNS) in an annular cavity made of two parallel corotating
discs of finite radial extent, with a forced inflow at the hub and free outflow at the
rim. In a former numerical investigation (Viaud, Serre & Chomaz J. Fluid Mech.,
vol. 598, 2008, pp. 451–464) realized in a sectorial cavity of azimuthal extent 2π/68,
we have established the existence of a primary bifurcation to nonlinear global mode
with angular phase velocity and radial envelope coherent with the so-called elephant
mode theory. The former study has demonstrated the subcritical nature of this primary
bifurcation with a base flow that keeps being linearly stable for all Reynolds numbers
studied. The present work investigates the stability of this elephant mode by extending
the cavity both in the radial and azimuthal direction. When the Reynolds number
based on the forced throughflow is increased above a threshold value for the existence
of the nonlinear global mode, a large-amplitude impulsive perturbation gives rise to
a self-sustained saturated wave with characteristics identical to the 68-fold global
elephant mode obtained in the smaller cavity. This saturated wave is itself globally
unstable and a second front appears in the lee of the primary where small-scale
instability develops. These secondary instabilities are identical for the 2π/68 and the
2π/4 long sectorial cavities, indicating that transition involves a Floquet mode of zero
azimuthal wavenumber. This secondary instability leads to a very disorganized state,
defining the transition to turbulence. The observed transition to turbulence linked to
the secondary instability of a global mode confirms, for the first time on a real flow,
the possibility of a direct transition to turbulence through an elephant mode cascade, a
scenario that was up to now only observed on the Ginzburg–Landau model.
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1. Introduction
The flow above an infinite rotating disc is an example of three-dimensional boundary

layers where cross-flow instability can develop as over swept wings. When a second
rotating disc is added parallel to the first, the configuration schematizes the cavity
between the discs holding the blades of a turbine or compressor. For corotating discs
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of finite extent with a forced inflow, early theoretical and experimental results were
obtained by Hide (1968). The steady flow may be decomposed into four regions: an
inflow and an outflow zone framing a solid-body rotating core sandwiched by two thin
Ekman boundary layers. Later work by Owen & Pincombe (1980) has confirmed these
results for the stationary flow and added measurements of Ekman-layer instabilities.
A review of the subject can be found in Owen & Rogers (1995). The recent
numerical work by Viaud, Serre & Chomaz (2008) (from now on labelled VSC) has
demonstrated the similarity of the local velocity profiles in the boundary layers over
a single rotating disc and in an annular rotating cavity with a forced throughflow. For
the cavity, VSC have shown that the flow is linearly stable but nonlinearly unstable
with large initial perturbation giving rise to self-sustained nonlinear global mode with
a steep front located at the transition point between convective and absolute instability
(the so-called elephant mode). Transposed to the case of the disc this finding of a
subcritical global instability conciliates both the linear results of Davies & Carpenter
(2003) and the nonlinear dynamics proposed by Pier (2003).

In the parallel-flow approximation, linear stability analysis has revealed that the flow
above the single infinite rotating disc is subject to two generic types of instability.
An inviscid instability, due to the inflexional nature of the velocity profile, is labelled
type I, whereas type II is due to the combined action of viscous and Coriolis effects
(see the review by Crespo del Arco et al. 2005). The type I inflexional instability
undergoes a transition from convective to absolute instability at a Reynolds number
just below the value found for transition to turbulence in the experiments (Lingwood
1995, 1996, 1997). However, the non-parallel numerical study of Davies & Carpenter
(2003) has shown that the flow over a single disc is linearly globally stable, the
stabilization being attributed to the detuning: the radial variation of absolute frequency
(Davies, Thomas & Carpenter 2007). Following the approach of Chomaz, Huerre &
Redekopp (1991) these authors devised a selection criterion for global frequency, while
taking into account a radial variation of the local absolute frequency. In the case of the
rotating-disc flow, when using a non-local time scale, the temporal frequency of the
absolute instability varies linearly with the radius. This linear variation of the temporal
absolute frequency will promote linear global stability whenever it is stronger than the
corresponding variation of the local absolute growth rate.

However, nonlinearities can counterbalance this stabilizing effect when they reach
a sufficient magnitude and lead to a nonlinear global mode, even in the case of
linear global stability (Chomaz 1992). In the strongly nonlinear and weakly non-
parallel regime, the presence of an absolutely unstable region of finite extent is
a sufficient condition for the existence of a nonlinear global mode with a steep
front, located at the upstream border of the absolute region, separating upstream
evanescent perturbations from a downstream saturated wave. This so-called elephant
mode was first described in Tobias, Proctor & Knobloch (1998) and Pier et al. (1998).
Couairon & Chomaz (1999) have shown, on a model equation, that when the saturated
primary wave behind the front of the global mode is itself absolutely unstable to
local secondary perturbations, direct transition to disorder can occur. Pier (2003) has
demonstrated that the saturated type I wave which should follow the primary front on
a rotating disc if an elephant mode were present is already itself absolutely unstable.
The primary nonlinear global mode on a rotating disc should therefore be unstable
toward a secondary instability global mode with the possibility of a rapid transition to
turbulence shortly behind the primary front. One should emphasize that on the single
rotating disc the existence of a nonlinear global mode, be it stable or unstable to
secondary perturbations has not yet been established numerically or analytically. More
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FIGURE 1. Sketch of the annular cavity. Shades of grey in the (r, z)-plane map the radial
velocity field of the base flow. Centrifugal Ekman layers appear in white and the radial
velocity vanishes in black areas. The vector field is a close-up of the upper Ekman layer in the
white box.

generally, to best of the authors’ knowledge, the direct route to turbulence through
a cascade of absolute instabilities (initially proposed by Huerre 1988 as a generic
shortcut on the route to turbulence) has been observed only on a model equation
(Couairon & Chomaz 1999) but never identified on a numerical simulation of a real
flow. The present work is therefore the first observation of this direct cascade scenario
on a real flow. In a previous paper on the 2π/68 rotating cavity with throughflow,
VSC have observed the existence of a subcritical global bifurcation toward an elephant
mode of azimuthal wavenumber 68. The present paper addresses the question of the
secondary stability of the resulting global mode by relaxing the 2π/68 periodicity
constrain previously imposed and by running the same computation in a cavity twice
as long in the radial direction and 17 times wider domain in the azimuthal direction.
Identical computations have been performed both in a cavity of angular extent 2π/68
and 2π/4, to discriminate the effect of the domain size in the radial direction and
of the periodicity. Longer runs have been performed using a standard Large eddy
simulation (LES) method to approach statistical stationarity of the flow.

The configuration is presented in § 2. Section 3 introduces the numerical method,
with particular stress on key points. Results of numerical runs are discussed in § 4 and
exhibit a global behaviour with two successive fronts leading to a disordered domain.
The possible origin of this spatial transition to turbulence is further discussed in § 5.

2. Configuration
The configuration (figure 1), similar to that presented by VSC, is made of

two corotating discs of finite radial extent, having same axis and angular velocity
(Ω∗d =Ω∗d ez) and separated by a gap of height h∗. The cavity is open at both inner and
outer radius R∗1 and R∗2 = R∗1+1R∗, and a flow is forced at the hub and exits at the rim.
The geometry is defined by two control parameters, the curvature Rm = (R∗2 + R∗1)/1R∗

and the aspect ratio L = 1R∗/h∗. For the long cavity of this paper, the values L = 10
and Rm = 5 have been retained, to be compared with L= 5 and Rm = 9 in VSC.

The volume flow rate Q∗ is imposed at the hub through the use of Dirichlet
boundary conditions on the velocity, using a precomputed balanced profile (see
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VSC for details on the balanced profile computation). The flow is defined by two
global control parameters, the throughflow parameter Cw = Q∗/(νR∗1) and the Reynolds
number Reh = (h∗/δ∗)2 = h∗2Ω∗d/ν which represents the ratio of the cavity height (h∗)
and the Ekman length scale (δ∗ =√ν/Ω∗d ). The Navier–Stokes equations written in
the frame rotating at Ω∗d are made non-dimensional using the time, length, velocity
and pressure scales tref = Ω∗−1

d , lref = h∗, Vref = Ω∗d h∗ and Pref = (1/2)ρ∗Ω∗2d R∗
2

1 ,
respectively.

When CwRe−1/2
h is small, Ekman’s linearity assumption holds for the stationary

axisymmetric solution, with nonlinear effects negligible compared with the Coriolis
force. An asymptotic solution for the flow in the cavity can then be obtained by
matching Ekman solutions for two single infinite discs (Zandbergen & Dijkstra 1986;
Serre et al. 2001):

u(r, z)=−Vg(r)

[
exp

(
−z+ 1

2

δ

)
sin

(
z+ 1

2

δ

)
− exp

(
z− 1

2

δ

)
sin

(
z− 1

2

δ

)]
(2.1)

v(r, z)= Vg(r)

[
1− exp

(
−z+ 1

2

δ

)
cos

(
z+ 1

2

δ

)
− exp

(
z− 1

2

δ

)
cos

(
z− 1

2

δ

)]
(2.2)

with (u, v) the radial and azimuthal velocity in the frame rotating with the discs,
δ = Re−1/2

h the non-dimensional Ekman layer thickness and Vg the geostrophic velocity

Vg(r)/r =−CwRe−1/2
h R1/(2πr2) (2.3)

which is small in the asymptotic limit. For the base-flow asymptotic solution the
throughflow occurs in the Ekman layers only, forcing the core of the fluid to rotate
at a slightly smaller differential rotation rate Vg(r)/r, compared with the disc rotation
rate Ωd = 1. Note that axial velocity in the core w(r, z) scales as δVg(r)/r and is
asymptotically smaller than u or v. Local stability properties are controlled by local
parameters, the Rossby number (Ro) and the local Reynolds number (Reδ)

Ro(r)= Vg(r)

r
Reδ(r)= |Vg(r)|δReh = |Vg(r)|Re1/2

h . (2.4)

For the base-flow asymptotic solution (2.1) analytical expressions of these local
parameters can be derived using (2.3): Rea

δ = R1Cw/(2πr) and Roa =−Reδ/(r
√
Reh). In

the direct numerical simulation (DNS) CwRe
−1/2
h is finite and the asymptotic solution

is not valid. The velocity Vg(r) is then not given by (2.3) but directly measured in
the midplane of the cavity. The present double-disc cavity differs from the single
infinite rotating disc since for the cavity the flow rate is constant and the differential
rotation between the fluid core and the disc decreases with r, whereas for the single
disc the flow rate increases with r and the differential rotation is constant. For the
single-disc case, the local Reynolds number increases outward with r, and the Rossby
number is a global control parameter independent of r. In the cavity configuration, the
Reynolds number decreases with 1/r and the Rossby number is a local parameter that
decreases with 1/r2. The critical Reynolds numbers (Rec

δ) associated with the different
thresholds (convective instability, absolute instability) are then functions of the local
Rossby number and are found to decrease faster than the actual local Reynolds number
(Reδ). Owing to the radial variation of the Rossby number, transition from convective
to absolute instability may arise at a position where the local Rossby number is
significantly different from the value of −1 used in most of the single-disc studies.



Transition to turbulence through steep global-modes cascade 497

3. Numerics
The pseudospectral collocation-Tchebyshev Fourier–Galerkin code has been

described in VSC. When the flow becomes turbulent and a long computation has to be
carried out in order to obtain converged results, calculations have been stabilized using
the spectral vanishing viscosity (SVV) techniques (Severac & Serre 2007). A new
diffusion operator 1SVV is simply implemented by combining the classical diffusion
and the new SVV terms to obtain

ν1SVV ≡ ν1+∇ · (εNQN∇)= ν∇ · SN∇ (3.1)

where ν is the diffusive coefficient and where

SN = diag{Si
Ni
}, Si

Ni
= 1+ ε

i
Ni

ν
Qi

Ni
(3.2)

with εi
Ni

the maximum of viscosity and Qi
Ni

a one-dimensional viscosity kernel
operator acting in direction i, and defined in the spectral space by an exponential
function: Q̂i

Ni
(ω) = 0, if 0 6 ω 6 ωi

T and Q̂i
Ni
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N)
2
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T)
2
) if

ωi
T 6 ω 6 ωi

N , where ωi
T is the threshold after which the viscosity is applied and

ωi
N the highest frequency calculated in the direction i. In present computations
ωi

T = 10
√

Ni and εi
Ni
= 2/Ni. We note that the SVV operator affects at most two-thirds

of the spectrum on the highest frequencies (wT = 0) and, consequently, that DNS
results are recovered for laminar flows.

Owing to the decomposition on a Fourier basis, it is straightforward to impose
the chosen periodicity by concentrating the mesh points in a sector of angular extent
2π/68 or 2π/4.

To speed up computation, symmetry with respect to the midplane (z = 0) has
been imposed and simulations ran in upper-half cavities. This reduction of the
computational domain has been extensively validated in the shorter cavities (VSC),
by comparing with full-height cavity simulations. Usual no-slip boundary conditions
are applied at the disc and stress-free conditions at the lower plane, enforcing the
symmetry with respect to the middle of the cavity. At the outflow, convective boundary
conditions as in VSC were used in order to avoid reflections of the wave packets.
At the inflow, precomputed velocity profiles, picked up from the computations of
the axisymmetric flow in a shifted cavity overlapping the present one, were imposed.
The very slight off-balance in the imposed velocity profiles brings about convectively
unstable axisymmetric type II rolls that must be damped to keep them from reaching
a noticeable amplitude through exponential growth all along the cavity, eventually
modifying the underlying base flow through nonlinear interaction. Being axisymmetric
they can only be filtered using a frequency criteria since the axisymmetric base flow
must remain free to evolve in time. To avoid the appearance of these spurious waves,
a buffer zone (1r = 2) is placed at the inlet, where oscillations of the zero azimuthal
wavenumber are damped using the selective frequency damping (SFD), as proposed
by Akervik et al. (2006). This damping is limited to azimuthal wavenumber zero and
to the very upstream part of the computational domain, between r = 20 and r = 22.
Being applied well ahead of the primary front located at r = 24, it is not altering its
dynamics, as verified by comparison with short cavity results presented in VSC where
no damping was applied since the total amplification of the axisymmetric mode was
small enough to keep being in the background noise.

The final size of the mesh used is 649 × 10 × 65 in the radial, azimuthal and
axial directions, respectively, in the 1/68 cavity, and 649 × 170 × 65 in the 1/4



498 B. Viaud, E. Serre and J.-M. Chomaz

cavity. To ensure that the front dynamics was grid-independent we have first checked
the convergence of the spectral coefficients spectra. Moreover, in the 1/68 cavity
identical simulations were carried out with twice as many mesh points in the azimuthal
direction (20 instead of 10). Prior to saturation no differences could be detected, and
beyond saturation the maximum difference in perturbation-velocity amplitude was less
than 5 %.

The cut-off scale has been determined based on an estimation of the inertial-range
extent and on the assumption that the primary spiralling vortices correspond to the
largest structures in the turbulent cascade. These vortices have been extracted from the
DNS flow field, and their wavelength as well as their velocity has been measured. A
Reynolds number (Re) was constructed from these two values, and the inertial range
extent assumed to be of the order of Re−3/4 as predicted by the Kolmogorov theory
for developed, isotropic and homogeneous turbulence. The resolution of the mesh is
approximately 10 and 6 Kolmogorov length scales in the radial and axial directions,
respectively, meaning that the turbulent dissipation scale is not resolved in the present
computations. We need a long cavity to properly resolve the global mode structure and
cannot afford at the same time a mesh fine enough to resolve the turbulent cascade
down to the dissipation scale. As a result, when transition to turbulence is triggered
and a long integration time is needed, energy piles up at the cut-off scale leading
eventually to the divergence of the solution due to the nearly-zero numerical diffusivity.
LES using the SVV as a subgrid model has been carried out to model the effects of
the unresolved cascade and dissipation range. Such a model is very attractive because
it keeps the spectral convergence (Severac & Serre 2007).

The total simulations time is very long since one has to wait for the transient
(1t = 2.5) during which the three-dimensional convective impulse response is seen to
end, and then for the fronts to stabilize. For this reason the finest mesh is not used
from the start, but mesh resolution is increased when the spectra show that spectral
aliasing becomes noticeable. The initial mesh is the same as in VSC (433 × 33 × 10),
but for a twice-as-long cavity, with a time step equal to 5× 10−5, each step consuming
0.27 s of CPU time on the NEC SX-8 of IDRIS. Computations with this mesh can be
carried up to t = 10.49 where they blow up. The solution taken at t = 10.4 is projected
on the finest possible grid (649×65×10) and the computation restarted. The time step
is now equal to 2 × 10−5, and each one costs 1.1 s of CPU time. Any attempt to use
a finer grid leads to poor conditioning of the matrix for the radial-derivative operator.
Using this mesh the simulation can be pushed up to t = 10.6 before blowing up.
Perturbation-energy profiles, as demonstrated in figure 4, are obtained using this fine
mesh. From t = 10.4, alternatively, the computation can be continued using SVV as
a LES approach, keeping the lower-resolution mesh. LES computations remain stable
and are run up to t = 15.8 when they are voluntarily stopped because of CPU-time
limitation. All of this process has been done again from the start in a cavity of angular
extent 2π/4 with 170 points in the azimuthal direction, leading to the same behaviour
and results, but with a cost of 21 s of CPU time per time step when using the finer
mesh.

The DNS code is also used to get local stability properties and in particular the
precise location of the transition to absolute instability and the absolute frequency ω0

and spatial growth rate k0 there, following the method of Perret et al. (2006). This
approach yielded results in full agreement with those extrapolated from the single-disc
flow analysis by Lingwood (1997) for the position, slope and frequency of the primary
front as already shown in VSC.
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FIGURE 2. Predicted area of absolute instability in the computational domain, based on the
radial distribution of the local Reynolds number (bold line) and the critical Reynolds number
for absolute instability estimated through interpolation of Lingwood’s data using the actual
local value of the Rossby number which is varying with the radial position r.

4. Results
The global Reynolds number is set to Reh = 780, and the mass flow rate to

Cw = 1995 which places the transition from convective to absolute instability in the
first half of the cavity and sufficiently downstream of the inlet buffer zone as shown
in figure 2. Axisymmetric stationary base flow is first computed through the use of
SFD extended to the entire cavity. As done in VSC the non-axisymmetric dynamics
of the flow is analysed by superimposing a spatially localized perturbation during a
single time step at the beginning of the computations. The perturbation velocity field
corresponds to a Stokes flow over a hemispherical roughness of radius Rp/h = 0.008
located at the wall near the hub. An m-fold azimuthal periodicity harmonics of the
symmetry of the cavity may be imposed on the initial perturbation by placing in
the 2π/4 cavity m/4 regularly spaced identical perturbations. This value for radius
Rp/h = 0.008 is the same as that used in VSC and as for the small cavity it triggers
a saturated global mode in the long cavity. In the present cavity, where the end of
the absolutely unstable domain is located at the downstream limit of the computational
domain, the subcritical nature of the bifurcation is confirmed since the wave packet
generated by a smaller initial perturbation with Rp/h = 0.002 initially grows but
eventually relaxes to zero. From now on only Rp/h = 0.008 initial perturbation will
be reported.

Figure 3 presents the nonlinear evolution of such an initial perturbation with a 68-
fold symmetry computed in the 1/68 sectorial cavity. The spatiotemporal diagram on
figure 3(a) is designed to show only the finite-amplitude part of the wave packet due
to the thresholding effect of the grey-scale used. The initial impulse at time t = 0 and
r = 21 is first too small to be visible. It saturates close to time t = 2 where its leading
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edge keeps heading downstream until it reaches the outer boundary around t = 4. The
trailing edge moves upstream and rapidly reaches r ' 24 at t = 2 before stabilizing
progressively close to r = 23.5 around t = 8. Shortly after t = 3, the saturated wave
downstream of the trailing front starts being perturbed with order-unity perturbation
close to r = 27. This secondary perturbation moves up and then forms a stationary
secondary front close to r = 25.5 around t = 8. Behind that secondary front the state
is disordered in time and space indicating incipient turbulence. Beyond t = 8 and up
to t = 10.4 the two fronts seem to stabilize. Shortly after t = 10.4 the DNS blows up
by pilling of energy at the truncation, visible when energy spectra are plotted, since
the dissipation scale cannot be resolved. To allow the energy that cascades through
nonlinear evolution of the primary and the secondary instabilities to be dissipated,
LES simulations have been restarted from the DNS solution at time t = 10.4. As seen
on figure 3(a) after the discontinuity in the time axis marking the shift to the LES
computation, the nearly steady state reached at t = 10.4 is maintained up to t = 15.8
where we stop the computation. During this phase the primary front keeps vacillating
around the same mean position and seems nearly not affected by the use of the SVV
whereas the secondary front very slightly moves upstream as a result of a change in
the high radial and axial wavenumber dissipation.

The associated spatial structure is shown by horizontal cross-section of the axial
velocity field taken at t = 8.4, figure 3(b). The alternation of positive (white) and
negative (black) axial velocity evidences spiralling vortices winding clockwise in space
and rotating counterclockwise in time according to figure 3(a). The spiral saturates
after the primary front at r = 23.5, developing secondary instability close to r = 25.5.
Figure 3(c) shows the vertical cut of the axial velocity at the same instant, with the
primary front visible as cross-flow rolls forming close to r = 23.5. These vortices
saturate and remain localized in the boundary layer before becoming unstable with
perturbations invading the whole cavity depth close to r = 25.5 (figures 3c and 6).
At this secondary front, axisymmetric flow modifications, measured by the azimuthal
average of the axial velocity field, figure 3(d), become of order unity. Close to
this secondary front the harmonic component m = 136 also becomes of the same
amplitude compared with the primary rolls as shown on figure 4. The spatial onset
of disorder is thus due to a small-scale instability but its physical origin is not easy
to determine since the flow is directly disordered at the secondary front. Indeed a
frequency decomposition of the flow done on the space–time diagram of figure 3(a)
between time t = 4 and t = 8 when statistical steadiness is approximately achieved
(figure 5) shows the bursting of all frequencies downstream of the secondary front
at r = 25.5, whereas the global mode frequency and its harmonics are experiencing
saturation between the primary front close to r = 23.5 and the secondary front close
to r = 25.5. The global mode frequency and its harmonics correspond to a Doppler
effect of the rotating spiral which is stationary in a particular rotating frame. Spatial
harmonics 136, 204, . . . of the base azimuthal wavenumber 68 have the same phase
speed as the fundamental and are therefore associated to 2ωg, 3ωg, . . . , ωg being the
dominant frequency. The breaking of the temporal invariance (Gollub & Swinney
1975) occurs only at secondary front and is presently associated with a direct transition
to a broadband spectrum.

This secondary instability is noticeably different from that predicted by the stability
analysis of Pier (2003) which should correspond to a subharmonic large-scale mode
(seen on figure 10 in the cited paper) with m = 18 for Rossby number unity. In
the cavity the Rossby number is smaller than unity at the secondary front and the
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FIGURE 3. Nonlinear impulse response: (a) spatiotemporal recording of the axial velocity
for given azimuth θ = 0 and height z = 0.49 in the cavity: DNS results for 0 < t < 10.4
and LES results for 10.4 < t < 15.8. Grey scale saturates at 10−5. Globally unstable flow
exhibiting a secondary front (r ' 25.5) in the lee of the primary (r ' 23.5). (b) Thresholding
of axial velocity (|vz| > 2 × 10−5) in an horizontal plane z = 0.49 (time t = 8.4), featuring
the same fronts at r = 23.5 and r = 25.5, the change of radial wavelength from λ = 30δ to
λ = 18δ corresponding to the saturation of the type I absolute mode is visible upstream the
second front where disorder sets in. (c) and (d) Axial velocity perturbation in a vertical plane
corresponding to azimuth θ = 0. (c) Total velocity field, with the side cut of the primary
spiralling vortices visible between r = 23.5 and r = 25.5. (d) Azimuthal average of the axial
velocity. In (c) and (d) the vertical scale has been multiplied by two to enhance visibility, and
the domain has been truncated as no perturbations are detected upstream of r = 23.5. On each
view the left and right vertical lines mark the position of the primary and secondary front,
respectively.
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FIGURE 4. Linear–log amplitude of the perturbations of m = 68, 0 and 136 two fronts
as a function of the radial coordinate, for Cw = 1995, Reh = 780 (Reδ ∈ [330; 491],
Ro ∈ [−0.9;−0.45]). The curve corresponding to m = 68 in the short cavity has been plotted
versus r − RCA for comparison since both simulations correspond to different flow parameters.
The difference in saturation amplitude may be explained by the fact that the two fronts are
obtained for different values of the Rossby number, Ro = 0.81 in the short cavity versus
Ro = 0.75 in the longer one. The right vertical line marks the station at which the second
front is visible on figure 3. The primary absolute spatial growth rate k0,i at the transition point
is indicated by its slope. The curve for m = 0 is extracted from the difference between the
velocity fields at two times (δt = 0.018) to retain only the unsteady component and not the
mean-flow modification.

existence of a subharmonic secondary instability mode of the cross-flow vortices over
a single disc is not known for this particular Rossby number value.

To test the possibility of such a large-scale subharmonic mode, the computation
is performed again in a 1/4 sectorial cavity of same radial extent as mentioned in
the numerics part. The initial perturbation is still a 68-fold perturbation. Moreover
the simulation in this 2π/4 cavity was started again from t = 6 adding at this time
an impulsive noise exciting mode number 16. The dynamics in both cases gave
a spatiotemporal diagram similar to figure 3(a), eventually leading to the same
global mode structure as in the 1/68 sectorial cavity with a first front leading
to saturated cross-flow vortices followed downstream by a secondary front where
transition to disordered state occurs. The only difference was that the disordered region
progressively desynchronized from one 1/68 sector to the next resulting in an increase
of the energy of all of the low wavenumbers. Shortly before blow-up and the end
of the computation, the energy level associated with those low wavenumbers remains
close to 1010 times weaker than the energy level of the mode numbers zero, 68, and
its resolved harmonics. We conclude that the small-scale instability already observed in
the 1/68 sector keeps being the mechanism for transition in larger sector. The growth
of subharmonics occurs later as the result of the decorrelation of 1/68 sectors and not
directly of subharmonic instability building on an unperturbed spiralling base flow as
suggested for a single disc by Pier (2003). The instability does not involve Floquet
azimuthal wavenumber close to 18 as predicted by Pier (2003) but Floquet number
zero, the secondary instability having the same period as the primary flow.
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station the energy spectrum is represented by mean of grey scale, low amplitudes are in white,
large amplitudes are in black. Downstream of r/h = 25.5 there is a sudden change in the
spectrum. The left and right vertical lines mark the position of the primary and secondary
front respectively, as extracted from figure 3.

FIGURE 6. Three-dimensional view of the vorticity field in the 2π/4 cavity, obtained through
DNS with the finer mesh shortly before blow-up.

5. Discussion and conclusion
The present results are fully consistent with the study in the short (L = 5) cavity

of VSC where a steep-fronted nonlinear global mode, a so-called elephant mode, was
observed. Figure 4 compares the present case with the prediction of the elephant-mode
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theory and with short cavity results. The total kinetic energy

E(r)= r
∫ 2π

0

∫ 1/2

0
1/2(u

′2 + v′2 + w
′2) dz dθ (5.1)

of the perturbation averaged in z and θ presents a primary front located on the
upstream limit of the absolutely unstable domain r = RCA, followed downstream by
a saturated wave and preceded upstream by a low-level perturbation region. The
front location with respect to the predicted convective to absolute instability transition
RCA, its slope, the amplitude and starting point of the saturated wave agree with
the elephant-mode prediction. In the present computations local analysis conducted
using the DNS code yields a position RCA = 23.5 and a corresponding absolute spatial
growth rate k0,i = 3.61, in excellent agreement with the location and the slope of the
computed front measured on figure 4. As visible on figure 3(b) the wavelength shifts
from λ = 30δ in the upstream part of the front (r ∈ [23.5; 24.5]) where amplitude
is low to λ = 18δ in its downstream part (r ∈ [24.5; 26]) where the amplitude has
saturated. These values agree with the absolute radial wavelength λ = 29δ predicted
by the absolute instability analysis of Lingwood (1997) and by the presently computed
value of k0,r (the absolute radial wavenumber) that should be valid ahead of the front
where the amplitude is low and with λ = 20δ, the wavelength of the saturated parallel
wave beating at the global frequency ωg according to Pier (2003). The spiralling arms
corresponding to the saturated wave on figure 3(b) have a pitch of ε = 31◦, to be
compared with the value of ε = 30◦ obtained by Pier (2003) for local nonlinear wave.
Therefore, we can conclude that the upstream part of the nonlinear solution shown
in figures 4 and 3(b) corresponds to an elephant mode due to the type I absolute
instability as already described in VSC. Since in each cavity the mass-flow rate is
chosen to place RCA at the position which optimizes the use of the computational
domain: the flow conditions differ between the two simulations but comparison may
still be achieved by plotting of the short cavity as a function of r − RCA. In figure 4
the major difference between the short and the long cavities is that a secondary front
follows the primary in the longer cavity, whereas it has no space to develop before
reaching the outlet of the computational domain in the small cavity. It was noted in
figure 3(a) that the primary and secondary instabilities exhibit fronts whose position
is undergoing some small and slow vacillations. These may be accounted for at the
beginning by the establishment time of the fronts, and next (after t = 8) by variations
in the high wavenumber dissipation. It is further argued that as the two curves in
figure 2 cross at a very shallow angle (inducing a strong sensitivity to perturbation
of the RCA location), the vacillation of the fronts may correspond to a small coupling
between the fronts and the perturbation that changes the mean flow properties with a
feedback on the RCA location of the mean flow.

In the long cavity the elephant mode is visible only for a short distance downstream,
less than half the width of the primary front itself as seen on figure 4, since spatial
and temporal disorder sets in at a secondary front located close to r = 25.5, suggesting
that the primary wave is already absolutely unstable to small-scale instability when it
saturates.

Such a scenario of direct transition to disorder due to a cascade of absolute
instabilities, the nonlinear wave resulting from the saturation of the primary instability
being directly absolutely unstable to secondary instability, has been observed on the
envelope equation (figure 12 of Couairon & Chomaz 1999). The mode shape and the
impulse response dynamics are in their case of amplitude equation strikingly similar
to that reported here. This scenario, first proposed by Huerre (1988), was conjectured



Transition to turbulence through steep global-modes cascade 505

by Pier (2003) to explain the transition to turbulence over a rotating disc since, for
Rossby number unity, he showed that the saturated cross-flow vortices beating at the
global frequency are absolutely unstable, the subharmonic mode m = 18 having the
largest absolute growth rate. In the present double-facing-discs configuration, where
the Rossby number is smaller than unity, the linear stability analysis of saturated cross-
flow vortices remains to be done. We presently observe the occurrence of secondary
short-scale perturbations that reaches finite amplitude at the secondary front. This
short-scale perturbations are present even whether a 68-fold or a 4-fold symmetry is
imposed, meaning that the Floquet azimuthal wavenumber of the perturbation is zero,
and not subharmonic as predicted by Pier for the single disc. It is however presently
unknown if this secondary instability is linear or nonlinear, i.e. linked to a linear or
nonlinear absolute instability (Chomaz 1992). The difference in behaviour with that
predicted by Pier (2003) may also be due to the interaction between the two cross-
flows over the facing discs. Indeed the difference with the single-disc configuration
investigated in Pier (2003) lies in the effect of confinement on the secondary instability.
Whereas former numerical study has shown that the primary instability is not affected
by the presence of the second disc, it is clear from figures 3(c,d) and 6 that this may
not hold for the secondary instability since perturbations fill the whole height of the
computational domain after the secondary front.

To the best of the authors’ knowledge the present study confirms for the first
time the conjecture that transition to disorder, i.e. incipient turbulence, may take the
form of an elephant-mode cascade with a primary front followed by a saturated
wave already nonlinearly absolutely unstable and giving rise to a secondary front, a
second-generation elephant mode living on the back of a primary elephant mode.

This work was granted access to the HPC resources of IDRIS under the allocation
2009-0242 made by GENCI (Grand Equipement National de Calcul Intensif).
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