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Drops placed on very hot solids levitate on a cushion of their own vapor, as discovered by Leidenfrost.

This confers to these drops a remarkable mobility, which makes problematic their control and manipu-

lation. Here we show how crenelated surfaces can be used to increase the friction of Leidenfrost drops by a

factor on the order of 100, making them decelerate and be trapped on centimetric distances instead of the

usual metric ones. We measure and characterize the friction force as a function of the design of the

crenelations.

DOI: 10.1103/PhysRevLett.107.114503 PACS numbers: 47.55.D�, 68.03.�g

For a water drop moving on a plate, adhesion and
friction are generally related to contact angle hysteresis
and dissipation at the contact line [1]. Suppressing the
contact line drastically modifies the picture, and liquids
on superhydrophobic solids can run (or roll) typically 100
times faster than on conventional solids [2,3]. The situation
is even more spectacular with Leidenfrost drops, which
make strictly no contact with their support: The substrate is
at a temperature much higher than the boiling point of the
liquid, so that a cushion of vapor sets between the drop and
the solid, which fully suppresses hysteresis and line dis-
sipation [4–7]. The thickness h of the film on which
levitation takes place is typically 100 �m [8]. Because
of this film, the friction is especially low. A drop of a
few millimeters of liquid nitrogen (in a Leidenfrost state
at room temperature) thrown at a velocity V ¼ 0:3 m=s
onto the ground slows down on a distance L of a few
meters. This corresponds to a friction of the order of
MV2=L� 1 �N (M� 0:1 g is the drop mass), much
lower than its weight.

In this Letter, we discuss how textured surfaces can be
used to enhance the friction of sliding Leidenfrost drops
and even trap them. Aluminum was micromachined to a
depth H varying between 150 and 730 �m, forming cren-
elations of wavelength � ¼ 3 mm (Fig. 1). The solid is
heated to 450 �C, and the liquid is ethanol, with drops of
controlled volume� between 50 and 150 �L. Using a hot
incline meeting the solid tangentially, we make the drops
come to the surface at a velocity V0 [9]. We compare in
Fig. 2 their trajectories on a horizontal flat surface (empty
symbols) and on a crenelated surface with � ¼ 3 mm and
H ¼ 480 �m (full symbols). The typical duration of an
experiment is 1 s, much smaller than the evaporation time
of the liquid, which is about 1 min. We observe that the
liquid decelerates much faster if the surface is textured.
Its velocity V first decreases exponentially with the
distance, and we deduce from the plot a characteristic de-
celeration length L ¼ 2:8� 0:2 cm. In a second regime,
V drastically falls to zero, showing that textures also

have the ability to trap the liquid at a well-defined distance
x�. We further discuss how drop deformations in the
grooves (visible in Fig. 1) can be responsible for these
effects.
Since the friction is large, we could use inclined textured

surfaces to quantify it (Fig. 3). An ethanol drop deposited
on a crenelated substrate tilted by an angle � slides under
the action of gravity. After a few centimeters, it reaches a
constant terminal velocity V, for which the friction F
balances the weight ��g sin� (� ¼ 730 kg=m3 is the
density of ethanol at boiling point, and g is the acceleration
due to gravity [9]). The larger �, the larger V, so that this
simple device allows us to measure the force F as a
function of the velocity V, in the range V ¼ 4–40 cm=s.
Figure 4(a) shows our results for three different volumes

(� ¼ 50, 100, and 150 �L). These drops of radius R

larger than the capillary length a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
�=�g

p ¼ 1:6 mm
(� ¼ 18 mN=m is ethanol surface tension at the boiling
point) are flattened by gravity as seen in Fig. 1.
Consequently, their thickness is 2a and � � 2�R2a [8].
The corresponding frictions were found to vary between 20
and 300 �N. We observe that the force increases with the
volume � and with the velocity V. More precisely, F is
proportional to V2, as emphasized by the dashed lines of
slope 2 in this logarithmic plot. In addition, we changed the
heightH of the crenelations. Figure 4(b) shows the friction
F as a function of H for different velocities. F is seen to

FIG. 1. Ethanol drop (� ¼ 150 �L) sliding on aluminum
crenelations of wavelength � ¼ 3 mm and height H ¼ 480 �m.
The solid is at a temperature of 450 �C, and the drop moves at a
velocity V ¼ 19 cm=s.
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increase linearly with H (dotted lines): The more textured
the surface, the higher the friction.

In order to interpret these experiments, we propose a
mechanism based on the drop deformations. As seen in
Fig. 1, the bottom of the liquid gets deformed into the
grooves. If the groove were infinitely deep, the amplitude �
of the bump would result from a balance between hydro-
static pressures (scaling as �ga) and Laplace pressure
(scaling as ��=�2 for � � �). This yields �� �2=a, that
is, a few millimeters. Therefore, the liquid reaches the
bottom of the grooves if the height H is smaller than
�2=a, which is the case for our crenelations of a depth of
a few hundreds micrometers. Hence the volume of liquid
trapped per groove scales as RH�.

These bumps can generate friction for two reasons. First,
they hit the crenelation sides and lose kinetic energy in
these soft impacts. The energy loss per crenel scales as
�V2RH�, and it must be multiplied by the number R=� of
bumps. The total loss W1 is �V2R2H, and it corresponds
to the work F1� of a friction force F1. Second, the

sliding liquid has to overcome potential energy barriers
W2 � �gR2H2, and, again, this energy can be lost when the
liquid falls into the groove. The corresponding friction
force F2 scales as W2=�, from which we deduce the total
friction force F ¼ b1F1 þ b2F2:

F ¼ b1�R
2V2 H

�
þ b2�gR

2 H
2

�
; (1)

where b1 and b2 are numerical coefficients. For shallow
crenelations, the dominant term in Eq. (1) is the inertial
one F1. Then the friction force is linear in crenel height
and quadratic in velocity, which is consistent with
the experimental observations in Figs. 4(a) and 4(b).
With R� 3 mm,H=�� 0:1, and V � 0:3 m=s, we predict
F� 100 �N, on the order of the measurements. The
agreement between this law and the experimental data
can be checked quantitatively: We plot in Fig. 5(a) the
measured force F as a function of F1. We observe that the
data with H < 400 �m collapse on a straight line of slope
b1 ¼ 1:4� 0:3. This implies that we can build substrates
exerting an enhanced and tunable friction on Leidenfrost
drops, by adjusting the ratio H=�.

FIG. 3. Drop of volume � sliding on a crenelated surface
inclined by an angle �; for each �, we measure the terminal
velocity V.
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FIG. 2. Velocity V of a Leidenfrost drop (� ¼ 90 �L) as a
function of its position x, either on a flat surface (�) or on a
crenelated one with � ¼ 3 mm andH ¼ 480 �m (d), for an ini-
tial velocity V0 ¼ 21 cm=s. On the crenelated surface, the drop
velocity first decreases exponentially [Eq. (4)], from which we
deduce a trapping length L ¼ 2:8� 0:2 cm. For V < 3 cm=s,
the velocity critically falls to zero, which defines a trapping dis-
tance x� � 6 cm. The solid line is Eq. (6) with V� ¼ 2:5 cm=s.
By contrast, a similar drop on a flat surface hardly decele-
rates (empty symbols). The temperature of both solids is
450 �C.
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FIG. 4. (a) Friction force F as a function of the velocity V
for different volumes �. The velocity is varied by changing
the angle � of textured inclines between 3� and 12�. Dashed
lines show F / V2. Crenelation properties are � ¼ 3 mm and
H ¼ 280 �m. (b) Friction force F as a function of crenel height
H, for different velocities, � ¼ 100 �L, and a fixed wavelength
� ¼ 3 mm. The dotted lines have slopes of 0.19 and 0:38 N=m,
respectively.
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However, the friction on deeper crenelations in Fig. 5(a)
is clearly not described by the sole inertial term F1.
The friction then becomes higher than expected due to
the gravitational term in Eq. (1). Considering the total
friction (1) indeed allows us to understand the whole set
of data. We plot in Fig. 5(b) the same data as a function of
the force b1F1 þ b2F2 (with b1 ¼ 1:4) and find a fair
agreement between the model and the observations with
b2 ¼ 2:9� 0:3.

The gravitational correction in Eq. (1) can also explain
the trapping of the drop observed in Fig. 2, at a well-
defined position x�. This can be understood by discussing
how Leidenfrost drops get decelerated on horizontal sub-
strates, from an initial velocity V0. We balance the drop
inertia MdV=dt with the friction force:

�R2aV
dV

dx
���R2V2 H

�
� �gR2 H

2

�
; (2)

where x is the distance travelled by the drop. The dominant
term in the friction is the inertial one at high velocity, i.e.,
for V > V� with

V� � ffiffiffiffiffiffiffi
gH

p
: (3)

For H � 100 �m, V� is a few centimeters per second. For
drops faster than that, the solution of Eq. (2) simply is

V ¼ V0 expð�x=LÞ; (4)

where L is the characteristic distance of slowing down
given by

L� a
�

H
: (5)

The length L is found to be independent of the drop
initial velocity and mainly fixed by the crenel design. It is
expected to be typically 10a, i.e., about 1.5 cm for ethanol,
in agreement with Fig. 2, where the drop velocity is first
found to decrease exponentially, with a characteristic dis-
tance L ¼ 2:8� 0:2 cm.
As the drop slows down (V ! V�), the gravitational

term in Eq. (2) becomes more and more significant.
A general solution of Eq. (2) is

V2 ¼ ðV2
0 þ V�2Þ expð�2x=LÞ � V�2: (6)

Equation (6) is drawn with a solid line in Fig. 2, where it is
found to fit the data for L ¼ 2:8 cm and V� ¼ 2:5 cm=s. It
also predicts the trapping of the drop (V ¼ 0) at a well-
defined distance x�. For V0 	 V�, we expect

x� � L ln

�
V0

V�

�
: (7)

The distance x� is a few times L, as observed in Fig. 2,
where x� � 6 cm � 2L. Remarkably, it only logarithmi-
cally depends on the initial velocity V0, and it appears to be
mainly fixed by the design of the texture, via L. In this
scenario, trapping occurs when the drop velocity becomes
of the order of V�, because the liquid does not have enough
kinetic energy to climb the next crenel. The transition to
the trapped state is sharp (Fig. 2); expanding Eq. (2) for
x ! x�, we find that the drop velocity critically falls to zero
[V � V� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðx� � xÞ=Lp
] as it approaches x�. Other factors

can cause the brutal stop of the drop after a distance of the
order of L. In some cases we observed that defects on the
solid surface can generate local pinning. Conversely, drop
oscillations or local boiling can help the drop to reach the
next crenel. The trapping distance remains of the order of
L, but uncertainties of the order of � exist for the
distance x�.
We also displayed in Fig. 2 the deceleration of a similar

Leidenfrost drop on a flat surface, for which the velocity
hardly decreases on similar distances. For such a drop, the
balance of inertia and inertial friction in air can be written
MV2=L� �aV

2R2 (with �a the air density), which yields a
slowing distance L� a�=�a on the order of 1 m, instead of
1 cm for our traps [Eq. (5)]. Crenelations increase the
friction by a factor �=�a 
H=�, and the efficiency of
the trap relies on the fact that dissipation mostly takes
place in the liquid and only marginally in the surrounding
air. Because the density of a liquid is 3 orders of magnitude
higher than the one of air, the resisting inertial force is
greatly increased, compared to the one on a flat solid.
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FIG. 5. (a) Measured friction force F as a function of F1 ¼
�R2V2 H

� ; the straight line has a slope of b1 ¼ 1:4. (b) Friction

force F as a function of b1F1 þ b2F2 with b1 ¼ 1:4
[deduced from (a)], F2 ¼ �gR2 H2

� , and b2 ¼ 2:9. The straight

line has a slope of 1.
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Textures can also be asymmetric, and it was shown
by Linke et al. that Leidenfrost drops on asymmetric teeth
get self-propelled (Fig. 6) [6]. Using this observation,
Goldstein et al. were recently able to design traps made
of concentric teeth [10]. Self-propelled drops can reach
terminal velocities of approximately 10 cm=s [6,11], re-
sulting from the balance between a production of vapor and
friction. We saw here that friction might arise from the
steps on which the liquid bumps impact. For typical values
of the teeth height and length (see Fig. 6), we expect from
Eq. (1) friction forces on the order of 10 �N in agreement
with observations [7].

According to our scenario in which the dissipation is due
to the liquid hitting the crenel, asymmetric teeth should
provide an anisotropic friction. We measured the friction
on ratchets (H ¼ 0:2 mm and � ¼ 1:5 mm), following the
experiment sketched in Fig. 3. The tilting angle was taken
large enough (� 10�) to neglect the self-propulsion force.
For each tilting angle, we measured two drag coefficients
C ¼ F=ð�V2R2Þ, corresponding to the directions 1 and 2
defined in Fig. 6. We found C1 ¼ 0:09� 0:02 and
C2 ¼ 0:05� 0:01, respectively: The loss of kinetic energy
is larger when the drop hits the sharp edge of the step than
when it follows the smooth slope, as expected from our
dissipation mechanism. For this ratchet, the two drag
coefficients differ by a factor of 2 (strong anisotropy):
Linke’s drops self-propel in the direction of the
larger friction, which raises the question of the optimal
design to be given to a ratchet to get the fastest
self-propulsion.

Hence, submillimetric textures were found to deeply
affect the friction of levitating drops, as they do for marbles
running down rough substrates [12]. This makes it possible
to slow down and even trap efficiently these ultramobile
drops, which we characterized by a trapping length, a
function of the texture design. It would be interesting to
study whether these ideas also apply on superhydrophobic
surfaces decorated with similar patterns. For instance,
butterfly wings and man-made ratchets were observed to
show anisotropic wetting properties [13,14]. As discussed
in this Letter, these materials might also exhibit an aniso-
tropic friction, when water drops run on them.
We thank Guillaume Clermont for his help in manufac-

turing the surfaces and Guillaume Lagubeau for many
discussions.
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FIG. 6. Linke’s device: A Leidenfrost drop made of water or
ethanol on a hot surface with asymmetric teeth self-propels in
direction (1). The teeth are 1.5 mm wide and 200 �m high, and
the surface temperature is 350 �C. After accelerating for a few
centimeters, the drop reaches a constant velocity V ¼ 14 cm=s,
fixed by the friction in direction (2) [7].
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