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The acoustic field generated by the synchronized vortex street in self-excited hot
subsonic jets is investigated via direct numerical simulation of the compressible
equations of motion in an axisymmetric geometry. The simulation simultaneously
resolves both the aerodynamic near field and the acoustic far field. Self-sustained
near-field oscillations in the present flow configurations have been described as
nonlinear global modes in an earlier study. The associated acoustic far field is
found to be that of a compact dipole, emanating from the location of vortex
roll-up. A far-field solution of the axisymmetric Lighthill equation is derived,
on the basis of the source term formulation of Lilley (AGARD-CP , vol. 131,
1974, pp. 13.1–13.12). With the near-field source distributions obtained from the
direct numerical simulations, the Lighthill solution is in good agreement with the
far-field simulation results. Fluctuations of the enthalpy flux within the jet are
identified as the dominant aeroacoustic source. Superdirective effects are found to be
negligible.

1. Introduction
Subsonic jets, if they are sufficiently hot compared with the ambient air, may

bifurcate to a regime of intrinsic self-sustained oscillations that give rise to a street
of highly regular ring vortices. This oscillator-type behaviour in hot jets has first
been observed experimentally by Monkewitz et al. (1990). Recent numerical studies
(Lesshafft et al. 2006; Lesshafft, Huerre & Sagaut 2007) have demonstrated that these
oscillations are due to an absolute instability of the jet profile near the nozzle and
that they may be described theoretically as a nonlinear global mode.

The present study examines the acoustic far field that is radiated from the
self-sustained vortex street in globally unstable hot jets. The thick-shear-layer
configurations treated in Lesshafft et al. (2006), with the ambient-to-jet temperature
ratios S =0.1, 0.2 and 0.3, are chosen for this investigation. Although only the
aerodynamic near-field dynamics have been addressed in our previous publications,
the computational domain of the direct numerical simulation (DNS) already
encompassed a large portion of the acoustic far field. These far-field results are now
used to analyse the directivity pattern and the physical sound generation mechanisms
that dominate the acoustic radiation from the global mode in a hot jet.

† Email address for correspondence: lutz.lesshafft@ladhyx.polytechnique.fr
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Numerical simulations in which the acoustic field is computed from first principles
have become known as direct noise calculations (DNC). Mitchell, Lele & Moin (1999)
were the first to apply this approach to the jet noise problem. Their study focused on
the sound generated by the pairing of large-scale vortices in forced isothermal jets.
As in the present paper, the simulations of Mitchell et al. (1999) were carried out
in an axisymmetric setting, which hindered the onset of turbulence and thus allowed
a study of the isolated aeroacoustic behaviour of large-scale near-field dynamics.
Freund (2001) performed direct numerical simulations resolving the acoustic field
of a three-dimensional turbulent isothermal jet at low Reynolds number, which
gave results in good agreement with experimental measurements. The low-Reynolds-
number restriction was relaxed by Bogey, Bailly & Juvé (2003) through the use
of large-eddy simulation (LES) subgrid modelling. In subsequent papers (Bogey &
Bailly 2004, 2005), these authors investigated the influence of numerical boundary
conditions and various subgrid models, as well as Mach and Reynolds number
effects. A list of further LES studies that have directly resolved the acoustic field
of turbulent jets is given in Bodony & Lele (2006). Only few among these include
the effect of jet heating: the simulations of Andersson, Eriksson & Davidson (2005)
successfully reproduced experimental acoustic measurements of Jordan et al. (2002)
in a subsonic hot jet when the nozzle geometry was included. Shur, Spalart & Strelets
(2005) achieved good agreement with the reference experiments of Tanna (1977)
and Viswanathan (2004) in hot-jet simulations in both subsonic and supersonic
settings.

The large majority of numerical jet noise studies, as reviewed by Wang, Freund &
Lele (2006), relies on hybrid methods. Based on jet near-field data obtained
from Reynolds-averaged Navier–Stokes or LES calculations, the acoustic far field
is calculated according to an acoustic analogy. The common objective of these
investigations is to validate the predictive capabilities of acoustic analogies or
boundary integral methods, by comparison with available acoustic data from
experiments or direct calculations. In some instances, computed near-field data
have also been used to investigate the acoustic source mechanisms underlying
the far-field spectrum and directivity pattern: Mitchell et al. (1999) compared the
relative importance of individual source terms, in the sense of Lighthill’s equation,
in forced laminar jets. Their results demonstrated that streamwise variations of
the source strength, even in regions of very low amplitude, greatly influence
the far-field sound directivity. The analysis of Freund (2001) of DNS data
for a turbulent unheated jet identified large-scale structures as the dominant
noise sources. The spatial distribution of the structures takes the form of a
wave packet, similar to what the instability theory would predict for a laminar
setting.

The numerical analysis of acoustic source mechanisms in hot jets, despite their
practical importance, has received little attention in the recent literature. Fortuné &
Gervais (1999) proposed a prediction scheme for temperature-related turbulence
noise, on the basis of the k-ε model. In LES studies by Bodony & Lele (2005)
of hot turbulent jets in the high subsonic and supersonic regime, the sound field
was computed directly. In the framework of Lighthill’s acoustic analogy, cancellation
effects between Reynolds stress and so-called entropy contributions were documented.
Similar cancellation effects at a high subsonic Mach number were reported by Lew,
Blaisdell & Lyrintzis (2007), by means of a hybrid numerical approach. Lew et al.
(2007) concluded from their results that the sound field of a hot jet at low Mach
number is strongly dominated by radiation from entropy-related sources.
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The present study investigates sound generation mechanisms due to large-scale
instability structures (global modes) in self-excited hot jets at low Mach number.
The numerical approach is similar to that of Mitchell et al. (1999): the axisymmetric
equations of motion are resolved directly in the near and far fields. This axisymmetric
restriction prevents the development of small-scale turbulence; it is justified by the
experimental observations of Monkewitz et al. (1990). Lighthill’s equation is used
not to predict the far-field sound, but as an analytical tool, in order to identify
dominant source mechanisms. To this end, the aeroacoustic source terms of the
Lighthill equation are recast in the formulation proposed by Lilley (1974, 1996).
Lighthill’s original formulation includes one monopole source term that is commonly
linked to entropy fluctuations in the near field, although it is known to contain both
isentropic and non-isentropic components (see for instance A. Michalke’s note in
Lilley 1974). This source term will be referred to as the ‘excess density’ (Dowling
1992) in the following. Lilley’s formulation decomposes the excess-density term into
explicit monopole and dipole sources, and it allows for a less ambiguous interpretation
of the sound-producing physical mechanisms, as will be demonstrated in the current
paper. Freund (2003) achieved an improved interpretation of his 2001 simulation
results based on Lilley’s source decomposition. Similarly, Bodony & Lele (2008) used
Lilley’s formalism for a refined analysis of some of their earlier results (Bodony &
Lele 2005), including one case of a transonic hot jet.

Laufer & Yen (1983) measured the acoustic radiation due to regular vortex pairing
events in forced isothermal jets at low Mach number. The acoustic field was found to
exhibit a ‘superdirective’ beaming pattern, with maximum intensity I at the radiation
angle ϑ = 0 in the downstream direction of the jet:

I (ϑ) ∝ exp
[
−A(1 − Macv cos ϑ)2

]
, A = 45, (1.1)

where the Mach number Macv is formed with the vortex convection velocity. This
result has been confirmed in only one experimental configuration by Fleury, Bailly &
Juvé (2005). According to the discussion of Laufer & Yen (1983), such strong beaming
behaviour seemed unlikely to arise from an acoustically compact source region: the
near-field fluctuation amplitudes associated with vortex pairing were measured to
vary as a Gauß function in the streamwise direction, with a half-width an order of
magnitude smaller than the acoustic wavelength. However, the theoretical analyses of
Huerre & Crighton (1983) and Crighton & Huerre (1990) have demonstrated that a
perfectly Gaussian shape of the near-field wave packet indeed results in an antenna
factor of the form (1.1). More generally, these authors surmised that any extended
wave packet, depending on its precise envelope shape, may emit a superdirective
sound field. The nonlinear global modes in hot jets described in Lesshafft et al. (2006,
2007) may be represented as such extended wave packets. As their spatial amplitude
and phase modulations are precisely known from the numerical simulations, the
approach of Huerre & Crighton (1983) will be applied in the present study to
the case of a globally unstable hot jet. It is hoped that this analysis will further
elucidate the conditions for superdirective sound radiation from low-Mach-number
jets.

The paper is organized as follows. The flow parameters are defined, and the
numerical methods used in the direct computations are outlined in § 2.1. Simulation
results in the acoustic far field are presented in § 2.2. In § 3, the solution procedure
for the Lighthill equation is laid out. This formalism is then applied to three hot-jet
configurations in § 4, and the main conclusions are summarized in § 5.
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2. Direct noise computation of a hot jet
2.1. Flow configuration and numerical method

The flow model and the numerical solution techniques employed in the simulation
have been presented in Lesshafft et al. (2006) and are documented in full detail
in Lesshafft (2006): the problem is formulated in axisymmetric coordinates x and
r; the conservative flow variables q = (ρ, ρu, ρv, ρE) are decomposed into a steady
baseflow component qb and an unsteady perturbation component q ′. The symbol
ρ denotes density; u and v are the axial and radial velocity components; E is
the total energy. The baseflow qb(x, r) is obtained by numerical integration of the
compressible boundary layer equations, starting from an analytical jet velocity profile
(‘profile 2’ of Michalke 1984) at the upstream boundary x = 0 of the computational
domain. The temporal evolution of perturbations q ′(x, r, t) within this baseflow is
then computed according to the compressible equations of continuity, momentum
and energy, closed by the equation of state for a perfect gas (note that there is a
typographical error in equation 2.4b of Lesshafft et al. 2006, which has been corrected
in Lesshafft 2006).

All quantities are made non-dimensional with respect to the jet radius R and the jet
centreline values of density ρc, velocity Uc and temperature Tc in the potential core.
The three flow configurations investigated in this study are defined by the following
parameters:

R/θ = 10, S = 0.1, 0.2, 0.3,

Re = 1000, Mac = 0.1,

Pr = 1, γ = 1.4.

⎫⎬
⎭ (2.1)

As defined in Lesshafft et al. (2006), Re, Mac and Pr are the Reynolds, Mach and
Prandtl numbers; θ is the momentum shear layer thickness of the inlet velocity
profile; S = T∞/Tc is the ambient-to-jet temperature ratio; and γ is the ratio of
specific heats. Note that the Mach number Mac is defined with respect to the speed
of sound on the centreline. It is easily converted to the more conventional definition
Ma∞ = Uc/c∞ = S−1/2Mac. The three temperature ratios S =0.1, 0.2 and 0.3 then yield
Mach numbers Ma∞ = 0.32, 0.22 and 0.18.

Among the three jet configurations (2.1), the S = 0.3 case will be discussed in full
detail because it is trusted to be the least affected by inaccuracies due to the numerical
boundary treatment. Results for the two other cases, S = 0.1 and 0.2, are summarized
in § 4.2 in order to test the validity of the main conclusions for a range of globally
unstable temperature ratios and Mach numbers. In the following, through to the end
of § 4.1, the discussion will focus on the S = 0.3 case.

The long-time response of a jet to an initial pulse perturbation is computed on an
orthogonal grid that discretizes the physical domain 0 � r � 46 and 0 � x � 80 into
349 × 801 grid points. Outside this region, all perturbations are attenuated by artificial
damping and strong grid stretching in sponge zones extending over 46 <r � 200 and
80 <x � 105. First-order characteristic boundary conditions given by Giles (1990) are
applied at the upstream numerical boundary in order to minimize acoustic reflections
and spurious coupling of acoustic and vortical waves in the jet shear layer. Inside
the physical region of the computational domain, spatial derivatives in the governing
equations are evaluated using a sixth-order explicit finite-difference scheme, and the
solution is time advanced via a third-order Runge–Kutta algorithm.

2.2. Direct numerical simulation results

As discussed in § 5 of Lesshafft et al. (2006), the near-field dynamics of jets with
parameters (2.1) are characterized by self-sustained oscillations that give rise to a
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highly regular roll-up of the jet shear layer into evenly spaced ring vortices. In
theoretical terms, this periodic flow state is described as a nonlinear global mode. The
global frequency of vortex roll-up at S = 0.3 has been determined to be ωg = 0.728 in
the numerical simulations (‘mode 1’ in Lesshafft et al. 2006). It has been discussed
that the S = 0.3 configuration represents the critical case for the marginal onset of
global instability and that the asymptotic approach of the final oscillating state is
extremely slow as a consequence. For the present investigation, the computations have
been continued over an additional number of approximately 30 oscillation periods,
and the global frequency has further converged to a value of ωg = 0.722.

Only configurations with R/θ = 10 are chosen for the present investigation because
the observed global mode structure is unaffected by vortex pairing; in simulations
with thinner initial shear layers R/θ > 10 (Lesshafft et al. 2007), a secondary instability
of the vortex street leads to regular ‘leap-frogging’ of neighbouring vortices. These
events modify the spatial envelope of the fundamental global mode oscillations and
at the same time radiate a subharmonic sound field. An investigation of sound
generation mechanisms due to vortex pairing is not the subject of the current paper.
The restriction to globally unstable configurations without vortex pairing further
limits the parameter regime to low values of the Mach number and temperature ratio
(see figure 10 of Lesshafft & Huerre 2007).

In the present flow examples, the acoustic field may be regarded as monochromatic:
the near field is free of random fluctuations, and as in the low-Mach-number cases
of Mitchell et al. (1999), harmonic components in the far field are negligible when
compared with the fundamental sound component (ωg = 0.722 for S =0.3). The
acoustic wavelength is then λa =2πc∞/ωg =47.7, which approximately corresponds
to the radial extent of the physical domain in the simulation. In the following, the
acoustic field is investigated in terms of the temporal Fourier coefficient of pressure
fluctuations, defined as

p̂(x; ω) =

∫
p′(x, t) eiωt dt. (2.2)

The isocontours of |p̂(x; ωg)| are shown in figure 1: the acoustic field is composed
of two lobes, with an extinction angle at about 90◦ from the jet axis. The apparent
source location at x = 9 corresponds to the streamwise station of vortex roll-up
(compare with figure 7a of Lesshafft et al. 2006). The decibel levels in figure 1 are
scaled with respect to the maximum near-field pressure amplitude. Because of weak
reflections from the downstream sponge region, the isocontours in the acoustic field
at x > 60 are slightly distorted and are not shown in figure 1. For a quantitative
examination of the acoustic directivity pattern, values of |p̂| are interpolated along
an arc of radius ξ = 30 around the apparent source location. Figure 2 reveals that the
directivity pattern observed in the numerical simulation closely corresponds to that
of a compact dipole p̂ ∝ cosϑ , with the radiation angle ϑ being measured relative
to the downstream jet axis (see figure 1).

The isocontour diagram in figure 1 suggests that the transition from the
aerodynamic near field to the acoustic far field takes place over a length scale
much shorter than the acoustic wavelength. This observation is confirmed in figure 3,
which displays the variation of |p̂|, measured at an angle ϑ = 60◦, as a function of
distance ξ from the apparent sound source location. Outside the near field of the jet,
for ξ � 8, the slope of the pressure amplitude quickly adjusts to the characteristic
decay rate |p̂| ∝ ξ−1 of the acoustic far field.
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Figure 1. The isocontours of the pressure amplitude |p̂(r, x; ωg)| in the acoustic far field of a
jet with S = 0.3. The apparent sound source on the jet axis is located at x = 9. The directivity
pattern in figures 2 and 5 is extracted along the black arc of radius 30.
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Figure 2. The dots denote pressure amplitude as a function of radiation angle ϑ , interpolated
along the arc indicated in figure 1; the line denotes directivity of a compact dipole p̂ ∝ cos ϑ .
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Figure 3. The solid line denotes pressure amplitude |p̂| as a function of observer distance ξ ,
measured along the radiation angle ϑ = 60◦. The dashed line denotes algebraic decay ∝ ξ−1

as expected in the acoustic far field.
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3. Integration of the Lighthill equation
3.1. Source term decompositions of Lighthill (1952) and Lilley (1974)

Lighthill (1952) derived an exact inhomogeneous wave equation for acoustic
fluctuations by combining the continuity and momentum equations. In Cartesian
coordinates xi , the Lighthill equation for pressure fluctuations reads (see for instance
Crighton 1975)

1

c2
∞

∂2p′

∂t2
− ∂2p′

∂x2
i

=
∂2Sij

∂xi∂xj

− ∂2ρe

∂t2
, (3.1)

where c∞ denotes the speed of sound in the far field. The stress tensor

Sij = ρuiuj − τij (3.2)

is composed of Reynolds stresses and viscous terms, while the excess density

ρe = ρ ′ − p′/c2
∞ (3.3)

is related to thermodynamic fluctuations. Primes in the above-given equations denote
fluctuations around a steady flow state (see § 2.1).

One possible way to proceed is to solve for the acoustic pressure p′ via numerical
time integration of (3.1), simultaneously with a DNS of the near field, from which
the right-hand-side terms are evaluated at each time step. The individual contribution
of each source term to the acoustic far field can then be examined separately.
This strategy has been applied, for instance, by Freund (2001) and Boersma (2005).
Alternatively, a solution for the acoustic pressure field can be sought in terms of a
Green’s function to the wave operator, which is to be evaluated for the source terms
of the Lighthill equation (3.1). The latter approach has been applied to the present
jet configuration in a preliminary study (chapter 5 in Lesshafft 2006). The results
clearly identify the excess density as the dominant acoustic source, and the sound
field computed from this source term satisfactorily reproduces the directivity pattern
displayed in figure 2.

However, the interpretation of the results in Lesshafft (2006) remains inconclusive.
First, the analysis shows that the excess density formally produces a monopole source
distribution. The overall dipole character of the directly computed far field can still be
retrieved, but the process requires a very accurate representation of phase variations in
the source distribution, and therefore it is quite susceptible to numerical imprecisions.
As a result, the extinction angle (near ϑ =90◦ in figure 2) in the Lighthill analysis of
Lesshafft (2006) is shifted by 15◦ when compared with the simulation results. Second,
it is difficult to interpret the physical nature of the sound-generating mechanisms
represented by the excess density. Formally, ρe = ρ ′ − p′/c2

∞ appears to represent
non-isentropic fluctuations, but this interpretation does not apply to flows with
variable speed of sound, such as hot jets. For a better characterization of the relevant
acoustic source mechanism in the case on hand, the observed sound radiation must
be associated with a component of the excess density that explicitly produces a dipole
field.

The following investigation will be based on an alternative formulation of (3.1),
derived by Lilley (1974, 1996). By combining the momentum and energy equations
(instead of using the momentum and continuity equations, as done by Lighthill 1952),
Lilley obtained a wave equation for pressure fluctuations, equivalent to (3.1), where
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the excess-density source term is replaced by

∂2ρe

∂t2
=

1

c2
∞

∂2

∂t2
K(x, t) − 1

c∞

∂2

∂t∂xi

Hi(x, t) − 1

c∞

∂2

∂t∂xi

Di(x, t). (3.4)

Note that this is not what is commonly known as ‘Lilley’s equation’ (derived in
the same 1974 publication), which involves third-order derivatives and provides an
improved separation of sound generation and propagation effects. The individual
source terms in (3.4) are

K(x, t) =
γ − 1

2
ρ|u|2, (3.5)

Hi(x, t) =
γ − 1

c∞
ρui(h∞ − hs), (3.6)

Di(x, t) =
γ − 1

c∞
(τijuj − qi). (3.7)

The first two components, K and Hi , represent fluctuations of the kinetic energy and
of the total enthalpy flux, respectively. All diffusive effects, associated with τ and the
heat flux q = − ∇T/[(γ − 1)Ma2

cReP r], are contained in Di . The stagnation enthalpy
is defined as hs = h + |u|2/2, with the local enthalpy h (see Lilley 1996). The far-field
enthalpy is found as h∞ = c2

∞/(γ − 1). In terms of conservative variables, as used in
the present simulations (see § 2.1), expression (3.6) can be rewritten as

Hi(x, t) = c∞ρui − γ − 1

c∞
(ρE + p) ui. (3.8)

The spatial derivatives in (3.4) characterize the kinetic energy term as a monopole
source, whereas the enthalpy- and diffusion-related terms are dipole sources. With
respect to generalized acoustic analogy formulations in the recent literature, the dipole
sources in (3.4) may be recovered as special cases of the source terms identified by
Goldstein (2003, the η′

i term in 3.5 in his work) and by Morfey & Wright (2007, the
pij term in 3.22 in their work).

3.2. Far-field solution

The Lighthill equation (3.1) as well as Lilley’s decomposition (3.4) follow from exact
manipulations of the governing flow equations. An approximate solution for pressure
fluctuations in the far field is given by Lilley (1996) and may be rewritten in our
notation as

p′(ξ , t) =
1

4πξc2
∞

ξiξj

ξ 2

∂2

∂t2

∫
Sij (x, t ′)d3x − 1

4πξc2
∞

∂2

∂t2

∫
K(x, t ′)d3x

− 1

4πξc2
∞

ξi

ξ

∂2

∂t2

∫
Hi(x, t ′)d3x − 1

4πξc2
∞

ξi

ξ

∂2

∂t2

∫
Di(x, t ′)d3x. (3.9)

The acoustic signal observed at the far-field location ξ at time t has been emitted
from location x in the source region at the retarded time

t ′ = t − |x − ξ |
c∞

≈ t − ξ

c∞
+

x · ξ
ξc∞

. (3.10)

With approximation (3.10), and with the temporal and spatio-temporal Fourier
transforms defined as

f̂ (x, ω) =

∫
f (x, t) eiωtdt, f̃ (k, ω) =

∫∫
f (x, t) ei(ωt−k · x)d3x dt, (3.11)
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the temporal Fourier-transformed acoustic pressure is found to be

p̂(ξ , ω) =
k2

a

4πξ
eikaξ

∫ {
−ξiξj

ξ 2
Ŝij (x, ω) + K̂(x, ω) +

ξi

ξ
Ĥi(x, ω) +

ξi

ξ
D̂i(x, ω)

}
e−ika · x d3x

(3.12)

=
k2

a

4πξ
eikaξ

[
−ξiξj

ξ 2
Ŝij (ka, ω) + K̃(ka, ω) +

ξi

ξ
H̃i(ka, ω) +

ξi

ξ
D̃i(ka, ω)

]
. (3.13)

The acoustic wave vector is defined as ka = ω/c∞ eξ , oriented in the observer direction.
As pointed out by Crighton (1975), the acoustic radiation observed at a given far-field
location ξ is caused by a single spectral component of the source distribution, namely
a plane wave of wavenumber ka , travelling in the radiation direction.

3.3. Axisymmetric and radially compact sources

3.3.1. Axial symmetry

Under the assumption of an axisymmetric source term distribution consisting only
of Sij , (3.13) has been rewritten by Huerre & Crighton (1983) for the particular case
of a Gaussian envelope function Sij (r, x) ∝ exp(−x2/σ 2). Fleury (2006) gives a more
general formulation, valid for arbitrary envelope shapes, and the excess-density source
term (3.1) has been included in Lesshafft (2006).

In order to evaluate the spatial Fourier integrals in (3.12), source locations x
are expressed in cylindrical coordinates (x, r, ϕ), while the observer location ξ in
the axisymmetric far field is characterized by its spherical coordinates (ξ, ϑ). The
resulting integral can be solved numerically in all three (x, r, ϕ) directions, as done
by Mitchell et al. (1999). However, Huerre & Crighton (1983) have noted that the
azimuthal integration admits closed-form solutions in terms of Bessel functions. After
integration in ϕ, (3.13) becomes

p̂(ξ, ϑ, ω) =
k2

a

2ξ
eikaξ

∫∫
D(x, r, ϑ, ω) e−ikax cos ϑ r dr dx, (3.14)

with the integrand given by

D(x, r, ϑ, ω) = ISxx + ISrx + ISrr + ISϕϕ + IK + IHx + IHr + IDx + IDr, (3.15)

ISxx = −J0(αr) cos2 ϑ Ŝxx(x, r, ω), (3.16)

ISrx = −i2J1(αr) sin ϑ cos ϑ Ŝrx(x, r, ω), (3.17)

ISrr = −0.5 [J0(αr) − J2(αr)] sin2 ϑ Ŝrr (x, r, ω), (3.18)

ISϕϕ = −0.5 [J0(αr) + J2(αr)] sin2 ϑ Ŝϕϕ(x, r, ω), (3.19)

IK = J0(αr) K̂(x, r, ω), (3.20)

IHx = J0(αr) cosϑ Ĥx(x, r, ω), (3.21)

IHr = iJ1(αr) sinϑ Ĥr (x, r, ω), (3.22)

IDx = J0(αr) cosϑ D̂x(x, r, ω), (3.23)

IDr = iJ1(αr) sinϑ D̂r (x, r, ω). (3.24)

The argument of the Bessel functions Ji is αr = − kar sinϑ . Equation (3.14) explicitly
gives the far-field pressure in terms of a spatial phase, a radial decay ∝ ξ−1 and a
ϑ-dependent far-field directivity function. The Bessel functions represent the effect
of azimuthal interference, whereas factors composed of cos ϑ and sinϑ produce
quadrupole or dipole directivities. Each source term contains an ‘antenna factor’, which
depends on the spatial distribution Ŝxx(r, x, ω), . . . , D̂r (r, x, ω) of the source strength.
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The influence of the antenna factor on the directivity pattern is commonly referred to
as the superdirective effect, following the interpretation given by Crighton & Huerre
(1990) of the experimental results of Laufer & Yen (1983, see § 1). For an analysis
of the acoustic radiation from the present jet configuration, discussed in § 2.2, the
distributions Ŝxx(r, x, ω), . . . , D̂r (r, x, ω) may be obtained directly from the numerical
simulation.

3.3.2. Radial compactness

Following the approach of Huerre & Crighton (1983), the aeroacoustic source
distributions in a jet may be assumed to be compact in the radial direction but not
necessarily so in the axial direction. For the present analysis, the source terms are
modelled as being concentrated in the centre of the shear layer at r = 1 such that for
instance

Ŝij (x, r, ω) = Ŝx
ij (x, ω) δ(r − 1), (3.25)

and therefore

Ŝx
ij (x, ω) =

∫ ∞

0

Ŝij (x, r, ω) r dr, (3.26)

S̃x
ij (k, ω) =

∫ ∞

−∞
Ŝx

ij (x, ω) e−ikx dx. (3.27)

These integrals must be solved numerically. Radially compact representations of all
other source terms and their Fourier transforms, marked by the superscript x in the
following, are obtained accordingly.

Under the assumption of radial compactness of all aeroacoustic sources, (3.14)
simplifies to

p̂(ξ, ϑ, ω) =
k2

a

2ξ
eikaξ Dx(ϑ, ω) , (3.28)

with

Dx(ϑ, ω) = I x
Sxx + I x

Srx + I x
Srr + I x

Sϕϕ + I x
K + I x

Hx + I x
Hr + I x

Dx + I x
Dr, (3.29)

I x
Sxx = −J0(α) cos2 ϑ S̃x

xx(ka cosϑ, ω), (3.30)

I x
Srx = −i2J1(α) sinϑ cosϑ S̃x

rx(ka cosϑ, ω), (3.31)

I x
Srr = −0.5 [J0(α) − J2(α)] sin2 ϑ S̃x

rr (ka cosϑ, ω), (3.32)

I x
Sϕϕ = −0.5 [J0(α) + J2(α)] sin2 ϑ S̃x

ϕϕ(ka cos ϑ, ω), (3.33)

I x
K = J0(α) K̃x(ka cos ϑ, ω), (3.34)

I x
Hx = J0(α) cosϑ H̃ x

x (ka cosϑ, ω), (3.35)

I x
Hr = iJ1(α) sin ϑ H̃ x

r (ka cos ϑ, ω), (3.36)

I x
Dx = J0(α) cosϑ D̃x

x (ka cos ϑ, ω), (3.37)

I x
Dr = iJ1(α) sin ϑ D̃x

r (ka cosϑ, ω). (3.38)

The Bessel functions now take the argument α = − ka sinϑ . At low Mach numbers,
where ka � 1, variations of the Bessel functions are negligible. A factor J0(α) ≈ 1 is
associated with source terms that are nearly unaffected by azimuthal interference,
whereas a factor J1(α) ≈ 0 signifies almost complete cancellation of a source with its
image across the jet axis. The antenna factor owing to each source term distribution is
given explicitly by its one-dimensional Fourier transform along x. From the argument
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Figure 4. (a) Jet with S = 0.3: amplitude of the radially compact enthalpy-flux source term

|Ĥ x
x | as a function of x. The solid line denotes original DNS data; the dashed line denotes

extrapolated exponential decay over the interval 40 � x � 400. (b) Corresponding discrete
Fourier spectra near k = 0; the white circles are based on original DNS data; the black dots
are based on the extrapolated amplitude envelope. The dashed lines indicate the acoustically
relevant interval −ka � k � ka .

k = ka cos ϑ , it is seen again that only the interval −ka � k � ka of the spectrum radiates
sound into the far field.

4. Acoustic source term analysis for hot jets
4.1. Marginal globally unstable case S = 0.3

The far-field pressure solution (3.28) is first evaluated for the jet configuration with
S = 0.3. All source term distributions Ŝij , K̂ , Ĥi and D̂i , as defined in (3.2), (3.5)–
(3.7) and (3.11), are extracted from the DNS as functions of r and x. The temporal
Fourier transform (3.11) of all sources is evaluated for ω = ωg during runtime over
one cycle period. Under the assumption of radial compactness, the one-dimensional
distributions Ŝx

ij , K̂x , Ĥ x
i and D̂x

i are obtained according to (3.26) by numerical
integration in r . Evaluation of the far-field pressure solution (3.28) then involves a
discrete Fourier transform in x.

As an example, the streamwise variation of the enthalpy-flux source envelope
|Ĥ x

x (x, ωg)| is presented in figure 4(a) as a solid line. It displays a sharp front
near the upstream boundary and a slow decay downstream of the vortex roll-up
location around x = 9. Accelerated decay is observed near the end of the numerical
domain, but the source amplitude at the downstream end x = 80 is still two orders
of magnitude larger than at the upstream boundary. As a result, the truncation of
the spatial domain may produce significant errors in the spatial Fourier transform.
The corresponding discrete spectrum |H̃ x

x (k, ωg)| near k =0 is displayed in figure 4(b)
as the white circles. Its peak, not shown in the diagram, is found at kmax = 1.28,
with a value of |H̃ x

x (kmax , ωg)| = 2.5 × 106. Since the streamwise physical extent of the
numerical domain, 0 � x � 80, is less than twice the acoustic wavelength, only three
points of the spectrum can be obtained within the radiating interval −ka � k � ka . A
discussion of the directivity pattern based on only three data points is unsatisfactory;
it is therefore desirable to first achieve a higher spectral resolution of the spatial
Fourier transform.
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Figure 5. Jet with S = 0.3: directivity of the acoustic far field, comparison between DNS and
Lighthill solution; , directly computed sound; �, Lighthill solution owing to Hx

x without
streamwise extrapolation. The Lighthill solution from extrapolated sources: , enthalpy-flux
term Hx

x alone; - - -, combined radiation from all other terms.

Mitchell et al. (1999) faced the same problem in their computations of the acoustic
field in forced isothermal jets. These authors suggested to extrapolate the source
term distributions, prior to evaluating the Lighthill solution, over a sufficiently long
downstream region beyond the end of the computational domain. Following this idea,
the source terms in the present calculations are taken to develop exponentially as

f (x) = f (x0) eikx (x−x0) with kx = −i
f ′(x0)

f (x0)
, (4.1)

from x0 = 40 down to x = 400. The extrapolated source envelope |Ĥ x
x (x, ωg)| is shown

as a dashed line in figure 4(a). Over the interval 20 � x � 50, the amplitude decay of
the original distribution may indeed be well approximated by an exponential function.
The black dots in figure 4(b) represent the discrete Fourier spectrum |H̃ x

x (k, ωg)| of the
extrapolated source distribution. They align well with the previously obtained data
points (white circles) in the vicinity of the radiating interval, which now is resolved by
17 points. In particular, the extrapolation procedure is found to appropriately correct
the apparent error, due to domain truncation, in the k =0 component of the original
spectrum.

The Lighthill solution obtained from extrapolated source distributions in the
S = 0.3 jet, according to (3.28), is compared with the DNS results in figure 5. The
thick line represents directly computed sound pressure levels, measured along the
arc in figure 1. At angles less than 18◦, the arc crosses the hydrodynamic near
field. The thin line interpolates the Lighthill solution owing to the extrapolated
Hx

x term, whereas results based on the non-extrapolated Hx
x distribution are shown

as the white circles. The combined acoustic radiation from all other source terms,
as obtained from (3.28), is represented by a dashed line. Sound pressure levels
are computed as SPL = 20 log10(ξ |p̂|/pref ), thereby eliminating the ξ−1 decay of
the acoustic pressure amplitude. The decibel scaling takes the near-field pressure
maximum pref = maxx |p̂(x, ωg)| as a common reference value for all curves.

Figure 5 demonstrates that the dipole strength of the directly computed acoustic
field is very well retrieved by the Lighthill prediction for dipole radiation due to the
axial enthalpy-flux term Hx

x . Over the interval 20◦ � ϑ � 60◦, both curves coincide
within 0.5 dB accuracy. Without source extrapolation, the one point obtained within
the downstream lobe, at ϑ = 54◦, matches the simulation result with a precision of
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Figure 6. Jet with S = 0.3: individual far-field contributions from all source terms except Hx
x .

(a) Excess-density components: —, Hx
r ; - - -, Kx; - · -, Dx

x ; · · · , Dx
r . (b) Reynolds and viscous

stresses: —, Sx
xx; - - -, Sx

rr ; - · -, Sx
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0.1 dB. Furthermore, the separation of individual source term contributions clearly
indicates that the radiation due to Hx

x strongly dominates the acoustic field in the
present jet configuration: the combined radiation from all other aeroacoustic sources
together does not exceed −68 dB at any angle. Near ϑ = 90◦, where this low-level
radiation may in principle be detected, the far-field simulation results are likely to
be affected by spurious numerical effects, most notably due to unphysical acoustic
reflections at the domain boundaries.

The results presented in figure 5 are quite robust with respect to details of the
extrapolation (4.1). A choice of x0 anywhere in the interval 20 � x � 60 locally changes
the SPL values associated with Hx

x by not more than 0.5 dB.
Individual contributions of all other source terms are documented in figure 6.

Acoustic emission from dissipative effects (Dx
x and Dx

r , the dash-dotted and dotted
lines in figure 6a) scales with the Reynolds number, and in the present case it is
found to be negligible even when compared with the low-level radiation from the
radial enthalpy flux Hx

r and the kinetic energy fluctuations Kx . While the fluctuation
amplitude of Hx

r in the jet is comparable to that of the axial enthalpy flux Hx
x , its

acoustic radiation is much less significant in an axisymmetric setting, because of the
azimuthal interference given by J1(α) in (3.36). Acoustic radiation from Reynolds
stresses Sx

xx and Sx
rr (the solid and dashed lines in figure 6b) is similar in strength

to that from Hx
r and Kx , while the effects of Sx

rx and Sx
ϕϕ are negligible. Although

viscous stresses are included in the Sij terms (3.2), their contribution is found to be
insignificant.

The Lighthill solution in figure 5 indicates a difference of only 3 dB between the
upstream and downstream acoustic amplitudes. This difference characterizes the weak
superdirective quality of the acoustic field; it is caused by the antenna factor, i.e. by
the variation of spectral density H̃ x

x between −ka and +ka . In comparison with the
beam-like directivity pattern (1.1) measured by Laufer & Yen (1983), superdirectivity
in the present configuration can be said to be negligible.

According to Crighton & Huerre (1990), superdirective radiation in the particular
form of (1.1) would occur if the spectrum in figure 4(b) took the shape of a narrow
Gauß function, centred at the carrier wavenumber kmax = 1.28 and extending down to
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Figure 7. Supercritically hot jets with (a) S = 0.1, (b) S = 0.2. Directivity of the acoustic far
field and comparison between DNS and the Lighthill solution: directly computed sound ( );
Lighthill solution owing to enthalpy flux source term Hx

x without extrapolation (�) and with
extrapolation ( ). Other sources are negligible (see the text).

the acoustic range |k| <ka . In the low-Mach-number limit (kmax 	 ka), this assumption
indeed necessitates a perfectly Gaussian source distribution (∝exp(x2)) in physical
space over a large streamwise interval. Instead, it has been found that the source
amplitude in the present configuration decays exponentially (∝exp(x)), as in the
isothermal jet simulations of Mitchell et al. (1999). Crighton & Huerre (1990) have
demonstrated that an exponential source envelope cannot give rise to a superdirective
factor as measured by Laufer & Yen (1983).

A recent study by Obrist (forthcoming) has generalized the analysis of Crighton &
Huerre (1990) to two-dimensional wavepackets that are non-compact in both spatial
directions. It is found that a finite cross-stream extent of the acoustic source region
may strengthen the superdirective character of the far field. Whether the assumption
of radial compactness is valid in the present context may be assessed by solving
(3.14) with the two-dimensional source distribution Ĥx(r, x, ωg). It is difficult to define
a consistent extrapolation procedure in two dimensions; therefore the non-compact
solution may only be computed for radiation angles ϑ = 54◦ and 126◦. At both angles,
the results are found to match the compact solution (the white circles in figure 5)
within 0.005 dB accuracy.

4.2. Supercritically heated jets: S = 0.1 and S= 0.2

The analysis carried out for the S = 0.3 jet in the preceding section is now applied to
the configurations with S = 0.1 and 0.2 (see § 2.1). The global frequencies, as reported
in Lesshafft et al. (2006), are ωg =0.493 and 0.658, respectively, and the acoustic
wavelengths therefore are λa = 40.3 and 42.7. The main results of the analysis are
shown in figure 7: the thick lines trace the acoustic directivity measured in the far field
of the direct numerical simulations, and the thin lines and the circles represent the
Lighthill solution owing to the axial enthalpy flux source term Hx

x with and without
streamwise extrapolation. As in the S =0.3 jet, acoustic emission from all other source
terms is found to be negligible in comparison. Their combined radiation, not shown
in figure 7, is below −45 dB (S = 0.1) and −64 dB (S = 0.2). Sound pressure levels in
both cases are again scaled with the respective maximum values of |p̂(x, ωg)| in the
near field.
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Agreement between the directly computed acoustic field and the Lighthill solution
for these two configurations is less accurate than in the S =0.3 case. In both parts of
figure 7, simulation and prediction results are separated by almost 2 dB at ϑ = 20◦

and 5 dB at ϑ = 60◦. However, the overall dipole character is well retrieved in both
cases, and the agreement may be regarded as sufficiently close in order to allow
for a qualitative discussion. It can therefore be concluded that axial enthalpy flux
fluctuations are the dominant acoustic source mechanism in globally unstable hot
jets also at temperature ratios S = 0.1 and 0.2. The resulting acoustic field is that
of a dipole, with maximum intensity in the upstream and downstream directions.
Amplitude modulations due to the axial non-compactness of the source distribution
are found to be moderately small, and the apparent source location corresponds to
the region of vortex roll-up (x = 3 for S =0.1 and x = 4 for S =0.2). It is noted again
that the acoustic radiation due to vortex pairing, as a secondary instability of the
global mode structure, is not considered in the present study.

DNS results for the supercritical cases S = 0.1 and 0.2 are much more affected by
numerical inaccuracies than the marginally unstable case S =0.3. These inaccuracies
stem primarily from the numerical treatment of the upstream boundary conditions
(see § 2.1). As discussed in Lesshafft et al. (2006, 2007), the location of vortex roll-
up moves closer to the upstream domain boundary as the flow becomes more
supercritical with decreasing values of S. This results in stronger spurious reflections
because the acoustic waves now propagate almost parallel to the upstream boundary,
whereas the numerical treatment assumes nearly perpendicular incidence of acoustic
waves. Spurious reflections increase the acoustic energy contained in the numerical
domain. Unphysical interaction between acoustic and vortical perturbations at the
upstream boundary must also be expected to increase as perturbation amplitudes
reach nonlinear levels close to the inlet. It has been noted in Lesshafft et al. (2006,
2007) that the influence of the numerical boundary treatment on the near-field
dynamics is stronger for low values of S.

5. Conclusion
The near and far fields of three globally unstable hot jets have been resolved in

direct numerical simulations of the axisymmetric Navier–Stokes equations. The three
configurations have temperature ratios S =0.1, 0.2 and 0.3 and associated Mach
number values Ma∞ = 0.32, 0.22 and 0.18. Results have been discussed in depth for
the marginally unstable configuration with temperature ratio S = 0.3: the nonlinear
global mode in the near field, described by Lesshafft et al. (2006), radiates into
the far field as a compact acoustic dipole, with maximum amplitude along the jet
axis. A solution to the Lighthill equation, including source terms associated with the
fluctuations of enthalpy flux, kinetic energy, Reynolds stresses and dissipative effects
(Lilley 1974, 1996), has been formulated for an axisymmetric geometry, with and
without the assumption of radially compact source distributions. In order to retrieve
the directly computed far-field directivity pattern, the source distributions used in
the Lighthill analysis have been extrapolated far beyond the downstream boundary
of the computational domain used in the simulation. For the reference configuration
with temperature ratio S = 0.3, the resulting Lighthill solution matches the directly
computed acoustic field within 0.5 dB accuracy over a large range of the radiation
angle. The decomposition of source terms has demonstrated that the global mode
acoustic field is strongly dominated by dipole radiation due to axial enthalpy flux
fluctuations.
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The Lighthill analysis has been extended to the supercritical regime of strongly
heated jets, with temperature ratios S = 0.1 and 0.2. Although the numerical simulation
data obtained for these two configurations are not of the same high quality as in the
S = 0.3 case, and the agreement with the Lighthill solution for the acoustic field is less
accurate as a consequence, the analysis supports the same principal conclusion: the
source mechanism related to the axial enthalpy flux strongly dominates the overall
acoustic radiation, giving rise to a dipole directivity in the far field. Comparison
between figures 5 and 7 demonstrates that the acoustic intensity increases with
stronger heating.

Antenna effects, which could potentially yield a superdirective radiation pattern,
are not found to be significant in the present configurations. At S = 0.3, the antenna
factor only causes a 3 dB difference between the ϑ = 0◦ and ϑ = 180◦ directions.
The absence of superdirectivity is due to the spatial shape of the global mode wave
packet: its k-spectrum is very different from a Gaussian shape (see figure 4b), and
it presents only weak variations over the radiating interval −ka � k � ka . Higher
values of the Mach number will probably favour superdirectivity; if Ma is increased,
the radiating window is enlarged and may contain regions of large variations in
spectral density. An extension of the present study to externally forced jets in the
high-subsonic-Mach-number regime will be the focus of future investigations.

It is a pleasure to dedicate this study to Steve Davis in recognition of his many
fundamental contributions to fluid mechanics. Steve is a source of inspiration to all
of us, from both a scientific and a personal point of view. We are very grateful
to Professor Marvin Goldstein for his suggestion to employ Lilley’s source term
decomposition in the present study. Financial support for this work was provided by
ONERA and by the EADS Foundation.
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