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We compute the optimal response of the turbulent Couette mean flow to initial
conditions, harmonic and stochastic forcing at Re =750. The equations for the
coherent perturbations are linearized near the turbulent mean flow and include
the associated eddy viscosity. The mean flow is found to be linearly stable but it has
the potential to amplify steamwise streaks from streamwise vortices. The most
amplified structures are streamwise uniform and the largest amplifications of the
energy of initial conditions and of the variance of stochastic forcing are realized
by large-scale streaks having spanwise wavelengths of 4.4h and 5.2h respectively.
These spanwise scales compare well with the ones of the coherent large-scale streaks
observed in experimental realizations and direct numerical simulations of the turbulent
Couette flow. The optimal response to the harmonic forcing, related to the sensitivity
to boundary conditions and artificial forcing, can be very large and is obtained with
steady forcing of structures with larger spanwise wavelength (7.7h). The optimal
large-scale streaks are furthermore found proportional to the mean turbulent profile
in the viscous sublayer and up to the buffer layer.

Key words: large-scale structures, optimal perturbations, streaks, turbulent flows

1. Introduction
Streamwise streaks, i.e. narrow regions where the streamwise velocity is larger or

smaller than the average, are ubiquitous in wall-bounded turbulent flows. Kline et al.
(1967) observed them in the near-wall region of turbulent boundary layers where they
have a characteristic spanwise spacing of about one hundred wall units (Moin & Kim
1982; Smith & Metzler 1983). These streaks are now understood as a part of self-
sustained processes playing a key role in the production of near-wall turbulence and
skin friction (Jang, Benney & Gran 1986; Jiménez & Moin 1991; Hamilton, Kim &
Waleffe 1995; Waleffe 1995; Schoppa & Hussain 2002). Further investigations have
revealed the existence of coherent large-scale streaks extending in the outer layer and
scaling with outer units. The turbulent Couette flow is one of the first cases where
these large-scale streaks have been observed. Lee & Kim (1991) found large-scale
quasi-steady coherent streaks in the direct numerical simulation (DNS) of the fully
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developed turbulent Couette flow at Re = 3000 (where Re is based on the channel
half-width h and half of the velocity difference between the walls). These streaks, of
spanwise wavelength λz ≈ 4h, occupied half of the spanwise size (Lz =8πh/3) of the
computational domain and its whole streamwise extension (Lx = 4πh). The existence
of these large-scale streaks was then confirmed by the experiments of Tillmark &
Alfredsson (1994). In order to understand whether the characteristics of these large-
scale structures were affected by the size of the computational box, Komminaho,
Lundbladh & Johansson (1996) repeated the computations in a large domain
(Lx = 28π/h and Lz =8πh) at Re = 750. They found large-scale coherent streaks
with the same spanwise wavelength ( ≈ 4 h) of those of Lee & Kim (1991) but more
unsteady and extending more than 30h in the streamwise direction. They also found
that resolving these large-scale structures is essential to obtain accurate turbulent
statistics. Kitoh, Nakabayashi & Nishimura (2005), Tsukahara, Kawamura & Shingai
(2006), Tsukahara, Iwamoto & Kawamura (2007) and Kitoh & Umeki (2008) also
found large-scale streaky structures at higher Reynolds numbers with typical size
λz ≈ 4.2h–5h. Large-scale coherent streaks have also been observed in the turbulent

pipe (Kim & Adrian 1999), in the turbulent plane Poiseuille flow (del Álamo &
Jiménez 2003) and in the turbulent boundary layer (Tomkins & Adrian 2003, 2005;
Hutchins & Marusic 2007a). At high Reynolds numbers, these large-scale structures
dominate the streamwise turbulent kinetic energy throughout the logarithmic region
(Tomkins & Adrian 2003, 2005), and modulate the cycles of near-wall structures
(Hutchins & Marusic 2007b).

In free shear layers, the appearance of large-scale coherent structures has been
related to the linear inflectional instability of the turbulent mean profile (Ho &
Huerre 1984). This explanation is, however, not applicable to the large-scale coherent
streaks observed in wall-bounded turbulent shear flows, such as the Couette, Poiseuille
and boundary layer flows, because the mean velocity profiles of these flows are all
linearly stable. For all these flows, the related mechanism observed in the laminar case
is the ‘lift-up’ effect (Moffatt 1967; Ellingsen & Palm 1975; Landahl 1980, 1990), by
which low-energy streamwise vortices are converted into high-energy streaks in the
presence of shear. The growth of the streaks by lift-up is algebraic and unbounded in
inviscid flows, but is only transient in viscous flows (Gustavsson 1991). The streaks
transient growth is related to the non-normality of the Navier–Stokes operator and
can be maximized by using optimal vortices as initial conditions (see e.g. Trefethen
et al. 1993; Farrell & Ioannou 1996; Schmid & Henningson 2001). Streaks of large
enough amplitude undergo inflectional instabilities (Waleffe 1995; Reddy et al. 1998;
Andersson et al. 2001) playing a crucial role in subcritical transition to turbulence. The
optimal perturbations leading to the largest growth of streaks have been computed for
virtually all canonical laminar shear flows such as the Couette, Poiseuille or Blasius
solutions (Butler & Farrell 1992; Reddy & Henningson 1993; Trefethen et al. 1993;
Schmid & Henningson 1994).

Butler & Farrell (1993) transposed the computation of optimal perturbations to
turbulent flows using the turbulent mean flow profile as base flow and the molecular
viscosity in the equations for the perturbations. For the turbulent Poiseuille flow, they
found an optimal spanwise wavelength λz = 3h close to the one found in the laminar
case. They were able to retrieve the optimal spanwise wavelength λ+

z ≈ 100 typical
of the near-wall streaks by constraining the optimization time to an appropriate
value. The use of the molecular viscosity and the subsequent necessary enforcement
of characteristic time scales also appear in the investigations of the response to
stochastic forcing by Farrell & Ioannou (1993a, 1998). Later, del Álamo & Jiménez
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(2006) and Pujals et al. (2009) have recomputed the optimal growths sustained by
the turbulent Poiseuille flow including an effective turbulent viscosity in the linearized
equation according to the approach used by Reynolds & Hussain (1972). Without
any additional constraint on the optimization time, they find that at sufficiently high
Reynolds numbers two locally optimal spanwise wavelengths exist respectively scaling
with outer and inner units. The maximum growth was obtained for λz = 4 h, in good
agreement with the observations of large-scale streaks. The secondary maximum of
the growth was found to scale in inner units and it was reached for λ+

z =92, which
corresponds well to the spanwise spacing of the near-wall streaks. These findings
suggest that a strong relation exists between the large-scale streaks patterns selected
by the optimal transient energy growth and those observed in turbulent wall-bounded
shear flows. Considering turbulent boundary layer profiles, Cossu, Pujals & Depardon
(2009) have also found the two peaks of energy amplification respectively related to
near-wall and large-scale streaks. However, in that case the spanwise wavelength
optimizing the energy growth of large-scale streaks was found to be larger than the
one of the large-scale coherent streaks actually observed.

No investigation of the optimal energy amplifications sustained by the turbulent
Couette flow is currently available, even if the presence of large-scale coherent
streaks with a spanwise spacing of 4h–5h is a well-established feature of this flow.
Furthermore, del Álamo & Jiménez (2006), Cossu et al. (2009) and Pujals et al.
(2009) have only considered the optimal temporal energy growth whereas the optimal
response to harmonic and stochastic forcing may be equally relevant and their
computation is now routine for the canonical laminar flows (Farrell & Ioannou
1993a ,b; Bamieh & Dahleh 2001; Jovanović & Bamieh 2005; Fontane, Brancher &
Fabre 2008). In this respect, some relevant questions are still unanswered: What are
the streamwise and spanwise scales most amplified by the turbulent Couette flow in
the initial value and in the harmonic and stochastic forcing problems? How do they
compare between them and with analogous results found in laminar flows? What
is the shape of the corresponding optimal perturbations? How do these structures
relate to the large-scale coherent structures observed in experiments and DNS?
Do their spanwise scales relate well to the most energetic ones, as found in the
turbulent Poiseuille flow, or are they larger, as found in the turbulent boundary
layer?

In order to answer these questions, we have conducted an input–output analysis
of the turbulent Couette mean flow by considering its optimal response to an initial
condition and to harmonic forcing, and its response to stochastic forcing. In the latter
case, the structures that contribute most to the variance of the response have also
been computed. The turbulent mean flow is computed by DNS. Our results have been
obtained at the low Reynolds number Re = 750 corresponding to Reτ ≈ 52, which is
a well-documented case with respect to both the large scale structures characteristics
and the convergence of the mean profile with respect to the size of the computational
box. Well converged, but less documented, results from DNS are currently only
available for Reτ � 200, which is well below the regime (Reτ � 500 according to
Pujals et al. 2009) where the primary and secondary peaks begin to be well separated
and where well-defined asymptotic scalings in Reτ can be obtained. There is therefore
not great advantage in considering slightly larger Reynolds numbers.

The paper is organized as follows: In § 2, we briefly introduce the mathematical
problem to be solved and describe the tools used to numerically solve it. The main
results are reported and compared with previous findings in § 3. A summary of the
main findings and a discussion of their implications are given in § 4.
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2. Background
2.1. Turbulent mean flow and eddy viscosity

We consider the plane Couette flow of a viscous fluid of kinematic viscosity ν and
constant density ρ between two parallel plates located at y = ±h, where we denote
by x, y and z the streamwise, wall-normal and spanwise coordinates respectively.
The plates move in opposite directions with velocity (±Uw, 0, 0). For sufficiently high
values of the Reynolds number Re =hUw/ν, the flow is turbulent. DNS is used to
compute the turbulent mean velocity profile U (y) that is obtained by averaging the
instantaneous fields in space (over horizontal planes in the computational box) and
in time. Once that U (y) is known, it is straightforward to compute the mean shear
stress at the wall τw/ρ = νdU/dy|w , the friction velocity uτ =

√
τw/ρ and the friction

Reynolds number Reτ = uτh/ν. Since the mean pressure gradient is zero in the Couette
flow, the mean shear stress τ = −ρu′v′ +ρνdU/dy (where u′ and v′ are the streamwise
and the wall-normal velocity fluctuations, respectively) is constant and equal to its
value at the wall τw . By introducing the eddy viscosity νt (y) = −u′v′/(dU/dy), it is
found that [

νt (y)

ν
+ 1

]
d(U/uτ )

d(y/h)
= Reτ . (2.1)

The (total) effective viscosity is then defined as νT = νt + ν.

2.2. Generalized Orr–Sommerfeld–Squire equations

Following the approach of Reynolds & Hussain (1972), del Álamo & Jiménez (2006),
Cossu et al. (2009) and Pujals et al. (2009), we consider the linearized equations
satisfied by small coherent perturbations in the presence of the associated effective
viscosity νT (y):

∇ · u = 0, (2.2a)

∂u
∂t

+ ∇u · U + ∇U · u = − 1

ρ
∇p + ∇ · [νT (∇u + ∇uT )] + f , (2.2b)

where U = (U, 0, 0) and u = (u, v, w) are the mean and the perturbation velocities
respectively, p is the perturbation pressure and f = (fu, fv, fw) is a forcing term. The
streamwise and spanwise homogeneity of the problem allow to consider separately

each in-plane Fourier mode û(y, t; α, β)ei(αx+βz) and f̂ (y, t; α, β)ei(αx+βz), where α

and β are the streamwise and spanwise wavenumbers respectively. The following
generalized Orr–Sommerfeld–Squire system is obtained from (2.2):

∂

∂t

[
v̂

η̂

]
=

[
	−1LOS 0

−iβU ′ LSQ

]
︸ ︷︷ ︸

A

[
v̂

η̂

]

+

[
−iα	−1D −k2	−1 −iβ	−1D

iβ 0 −iα

]
︸ ︷︷ ︸

B

⎡
⎢⎢⎣

f̂u

f̂v

f̂w

⎤
⎥⎥⎦ , (2.3a)

with the generalized Orr–Sommerfeld–Squire operators, given by (e.g. Reynolds &
Hussain 1972; Cossu et al. 2009; Pujals et al. 2009):

LOS = −iα(U	 − U ′′) + νT 	2 + 2ν ′
T 	D + ν ′′

T (D2 + k2),

LSQ = −iαU + νT 	 + ν ′
T D. (2.3b)
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Here, D and ′ denote ∂/∂y, 	= D2 − k2, k2 = α2 + β2 and η̂ is the wall-normal
vorticity Fourier mode. The system is completed by the initial condition û|t = 0 = û0

and homogeneous boundary conditions for the velocity perturbations on the walls,
which result in v̂(y = ±h) = 0, Dv̂(±h) = 0 and η̂(±h) = 0. The velocity components
can be retrieved from the wall-normal variables with⎡

⎢⎣
û

v̂

ŵ

⎤
⎥⎦ =

1

k2

⎡
⎢⎣

iαD −iβ

k2 0

iβD iα

⎤
⎥⎦

︸ ︷︷ ︸
C

[
v̂

η̂

]
. (2.4)

2.3. Optimal perturbations

We consider the optimal response of the system (2.3) to initial conditions, harmonic
forcing and stochastic forcing. The definition of these optimals, briefly recalled below,
is quite standard and can be found, for example, in the monographs by Farrell &
Ioannou (1996) and Schmid & Henningson (2001). The optimal temporal energy
growth of (α, β) modes is found by optimizing over the shape of the initial condition
the ratio of the energy of the response at a given time t to the energy of the initial
condition:

G(t; α, β) ≡ max
û0 �=0

‖û(t; α, β)‖2

‖û0(α, β)‖2
, (2.5)

where ‖û‖2 =
∫ h

−h
ûH û dy =

∫ h

−h
|û|2+|v̂|2+|ŵ|2dy. The maximum growth is defined by

further maximizing in time Gmax(α, β) ≡ maxt G(t; α, β) and it is attained at t = tmax .

When harmonic forcing f̂ (y, t) = f̃ (y)e−iωf t is applied with frequency ωf , the
response û(y, t) = ũ(y)e−iωf t is observed after the switch-on transients have decayed,
assuming that the system is stable. In this case, the optimal response is the one
having the maximum ratio of the energy of the response to the energy of the
forcing:

R(ωf ; α, β) = max
f̃ �=0

‖ũ(ωf ; α, β)‖2

‖ f̃ (ωf ; α, β)‖2
. (2.6)

The optimal response R(ωf ) is given by the norm of the resolvent operator along
the imaginary axis ζ = − iωf (e.g. Trefethen et al. 1993). The maximum response
Rmax(α, β) = maxωf

R(ωf ; α, β) is obtained with ωf,max , and is also referred to as H∞
norm of the transfer function relating the forcing to the response (Zhou, Doyle &
Glover 1996).

The response to the stochastic forcing f̂ (t, y) ei(αx+βz) with Gaussian probability

distribution and zero mean value 〈 f̂ 〉 = 0 is finally considered. The forcing is assumed

to be delta-correlated in time: 〈 f̂ (y, t)⊗ f̂ ∗(y ′, t ′)〉 = Rδ(t−t ′) where ∗ denotes complex
conjugation and δ(t) is the Dirac’s delta function. We also assume, without loss of
generality, that R = I . The variance of the response, V (α, β) = 〈‖û‖2〉, also referred
to as H2 norm of the transfer function relating the forcing to the output (Zhou et al.
1996), is given by

V (α, β) = trace(C X∞C†), (2.7)

where the superscript † denotes the adjoint with respect to the standard inner product
(after discretization C† would simply be the Hermitian of C). X∞ is the solution of
the following algebraic Lyapunov equation:

AX∞ + X∞ A† + B B† = 0. (2.8)
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Since C X∞C† is a self-adjoint operator, it has real eigenvalues σj and a set of mutually
orthogonal eigenfunctions that are usually referred to as ‘empirical orthogonal
functions’ (EOF) or Karhunen–Loève (KL) or ‘proper orthogonal decomposition’
(POD) modes. The variance being V =

∑
σj , the ratio σj/V represents the

contribution of the j th mode to the (total) variance. The mode corresponding to
the largest σj is the optimal one in the sense that it contributes most to the total
variance of the system. The part of the stochastic forcing accounting for that optimal
mode is computed by solving the dual Lyapunov problem. For further details, the
interested reader is referred to the papers by Farrell & Ioannou (1993a,b), Zhou et al.
(1996), Bamieh & Dahleh (2001) and Jovanović & Bamieh (2005) and Schmid (2007).

2.4. Numerical tools

The DNS of the turbulent channel flow, necessary to compute the mean flow, has been
performed using the channelflow code (Gibson, Halcrow & Cvitanovic 2008) that
integrates the incompressible Navier–Stokes equation using a spectral method based
on the Fourier–Galerkin discretization in the streamwise and spanwise directions,
and the Chebyshev-tau discretization in the wall-normal direction. The solution is
advanced in time using a third-order semi-implicit time-stepping. Dealiasing with the
2/3 rule is implemented in the streamwise and spanwise directions.

The generalized Orr–Sommerfeld–Squire system (2.3) is discretized using a
Chebyshev-collocation method with Ny collocation points in the wall-normal
direction. The differentiation operators are discretized using the Chebyshev
differentiation matrices of Weideman & Reddy (2000) that include the appropriate
boundary conditions for v̂ and η̂. The optimal transient growth and the
optimal harmonic response are computed using standard methods described, for
example, in Schmid & Henningson (2001) which are implemented in the well
validated code used in the channel and boundary layer computations of Pujals
et al. (2009) and Cossu et al. (2009). The Lyapunov equation (2.8), discretized by the
same method, was solved using the lyap function in matlab. The algorithms used
to compute the optimal harmonic and stochastic responses have been validated by
comparing the results obtained for laminar Couette and Poiseulle flows with those of
Reddy & Henningson (1993), Schmid & Henningson (2001) and Jovanović & Bamieh
(2005). The results in the present study are obtained with Ny = 257. We have verified,
for some selected case, that the results do not change in any appreciable way if the
number of collocation points is doubled to Ny = 513.

3. Results
3.1. Turbulent mean flow and the Reynolds stress

The turbulent mean flow and the associated Reynolds shear stress computed by
DNS at Re = 750 are reported in figure 1. To obtain well-converged results we have
used the same computational box (Lx × Ly × Lz = 28πh × 2h × 8πh) and resolution
(Nx × Ny × Nz = 340 × 55 × 170 after dealiasing) used by Komminaho et al. (1996).
The turbulent flow is allowed to develop up to t = 800h/Uw and then the mean
quantities are obtained by averaging in the symmetric horizontal planes ±y and
in time for t ∈ [800, 1500]h/Uw . Reτ converges to the same Reτ = 52 found by
Komminaho et al. (1996) and shows also good agreement with the experimental
value Reτ = 50 reported by Kitoh et al. (2005). The mean shear rate at the centreline
d(U/Uw)/d(y/h)|y =0 = 0.1865 is also in good accordance with the 0.18 value found
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Figure 1. Turbulent mean velocity profile and shear stress from DNS. (a) Mean velocity
profile expressed in outer units: present DNS ( ) compared with the profiles found
by Komminaho et al. (1996) ( ) and Tsukahara et al. (2006) ( ); the curves are
almost undistinguishable. (b) Same profile from the DNS ( ) expressed in inner units
U+ ≡ (U + Uw)/uτ and y+ = (y + h)uτ /ν and compared to the curves U+ = y+ ( ) and
U+ = (1/0.4) log y++4.5 ( ). (c) Turbulent mean shear stress −u′v′/uτ

2 from the present
DNS ( ) and from the data of Komminaho et al. (1996) ( ) and Tsukahara et al.
(2006) ( ); the curves are almost undistinguishable.

by Komminaho et al. (1996) and the experimental value of 0.2 (Tillmark 1995; Kitoh
et al. 2005). As shown in figure 1, the computed mean flow and the associated
Reynolds shear stress are almost undistinguishable from from the ones computed by
Komminaho et al. (1996) and by Tsukahara et al. (2006).

3.2. Optimal response to initial conditions, harmonic and stochastic forcing

As a preliminary step, the eigenvalues of the Orr–Sommerfeld–Squire operator
equation (2.3) have been computed and found to be stable. The optimal response to
initial condition, harmonic and stochastic forcing have then been computed for a set
of wavenumbers α and β ranging from 0 to 5/h and from 0 to 20/h respectively. The
optimal temporal energy growths G(t, α, β) are computed up to t =100h/Uw with
the resolution 	t = 0.05h/Uw allowing the extraction of the respective Gmax(α, β)
reported in figure 2. Only elongated structures, roughly the ones with α <β , are
significantly amplified, the most amplified ones being streamwise uniform (α =0
i.e. λx = ∞). The energy growths Gmax are not very large, attaining a maximum
value of 6.49. For streamwise uniform perturbations, the most amplified spanwise
wavenumber is β = 1.43/h corresponding to the spanwise wavelength λz =4.4h. As
α increases, the most amplified β slightly increases: e.g. β =1.46/h (λz = 4.3h) for
α = 0.1/h (λx = 63h), β = 1.57/h (λz =4.0h) for α = 0.25/h (λx = 25h) and β = 1.75/h

(λz =3.6h) for α =0.5/h (λx = 12.5h).
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Figure 2. Dependence of the maximum temporal energy growth Gmax on the dimensionless
spanwise wavenumber βh for selected streamwise wavenumbers (top to bottom: αh =
0, 0.1, 0.25, 0.5, 1, 2).
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Figure 3. (a) Dependence of the maximum energy amplification of harmonic forcing Rmax on
the dimensionless spanwise wavenumber βh for selected streamwise wavenumbers α (top to
bottom: αh = 0, 0.1, 0.25, 0.5, 1, 2). (b) Dependence of the optimal energy amplification R on
the dimensionless harmonic forcing frequency ωf h/Uw for the optimal wavenumbers (α = 0,
βh =0.82).

The optimal response to harmonic forcing R(ωf , α, β) is computed for the same
set of wavenumbers. A set of forcing frequencies ωf ranging from −10Uw/h to
10Uw/h with resolution 	ωf = 0.1Uw/h is considered, and the maximum response
Rmax(α, β) extracted from these data is reported in figure 3(a). Similarly to the
optimal transient growth, only elongated structures are appreciably amplified. For
streamwise uniform structures, the largest response (Rmax = 40269) is obtained for
β = 0.82/h (corresponding to λz = 7.7h). The dependence of the optimal response on
the forcing frequency is shown in figure 3(a) for the most amplified wavenumbers
(α = 0, β = 0.82/h). From this figure it is seen that the largest response is obtained
when the forcing is steady (ωf,max =0) and that the frequency response is strongly
concentrated near ωf =0. This indicates that the system behaves like a strongly
selective low-pass frequency filter.

Finally, the variance V (α, β) of the response maintained by the stochastic forcing
is computed, always for the same set of wavenumbers and it is shown in figure 4(a).
The selection of elongated structures appears also in this case. The maximum
amplification of the variance (V =377) is obtained with streamwise uniform structures
and the spanwise wavenumber β =1.21/h (corresponding to λzmax = 5.2h). The
structures with the largest contribution to the variance are then identified using the
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Optimal λz/h

Flow Gmax Rmax V Re

Turbulent Couette 4.4(∗) 7.7(∗) 5.2(∗) 750
Laminar Couette 3.9(a) 5.3(a) 4.5(b) Re � 1
Turbulent Poiseulle 4.0(c) − − Re � 1
Laminar Poiseulle 3.1(a) 3.9(a) 3.5(b) Re � 1

Table 1. Optimal spanwise wavenumbers of the maximum responses to initial perturbation,
harmonic forcing, and stochastic excitation. Results from: (*) the present investigation,
(a) Trefethen et al. (1993), (b) Jovanović & Bamieh (2005) and (c) Pujals et al. (2009).
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Figure 4. (a) Dependence of the variance V of the response to stochastic forcing on the
dimensionless spanwise wavenumber βh for selected streamwise wavenumbers α (same values
as in figures 2 and 3: top to bottom αh = 0, 0.1, 0.25, 0.5, 1, 2). (b) Contribution of the leading
20 Karhunen–Loève modes to the total variance.

Karhunen–Loève decomposition. The twenty largest ratios σj/V , representing the
contribution of the j th mode to the total variance, are reported in figure 4(b) for
the wavenumbers associated to the largest variance (α = 0, β = 1.21/h). We find that
the most energetic mode contributes to 85 % of the total maintained energy variance,
implying that a unique coherent structure strongly dominates the stochastic response
in this case.

3.3. Comparison with previous results

The fact that for all the three types of response, the maximum energy amplification
is obtained by streamwise uniform structures (α = 0) is in accordance with the similar
analyses of other turbulent and laminar flows except possibly only the maximum
temporal growth of the laminar Couette flow that is obtained with perturbations
non-streamwise uniform, but having a very large streamwise wavelength (λx = 180h).
The most amplified spanwise wavelength is not the same for the different types
of problem: The largest (λz =7.7h) is found for the harmonic forcing whereas the
shortest (λz = 4.4h) is found for the initial value problem, the stochastic forcing
one being located in between (λz = 5.2h). The same ordering of spanwise optimal
wavelengths is observed for the laminar Couette and Poiseuille flows (see table 1).
Moreover, the spanwise wavelength maximizing Gmax in the turbulent Couette case is
slightly larger than the one found for the laminar case. This is also in accordance with
what is observed, for example, for the turbulent Poiseuille flow (as reported in table 1).

At the very low Reynolds number considered here (Reτ =52), the small temporal
energy growths that we find (Gmax � 6.5) are not surprising if compared, for example,
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Figure 5. Cross-stream (y–z plane) view of the optimal input (a, c, e) and output (b, d, f )
perturbation fields of the initial value problem (a, b), the response to harmonic (c, d)
and stochastic (e, f ) forcing problems. Each field corresponds to the respective optimal
wavenumbers α = 0 and βh =1.43 (λz = 4.4h) for the initial value problem βh =0.82 (λz = 7.7h)
for the response to harmonic forcing, and βh =1.21 (λz = 5.2h) for the response to stochastic
forcing. In all the plots the solid and dashed contours denote respectively positive and negative
values of the streamwise component (with increment of 0.1 the maximum value of the output)
while the cross-stream components are represented as vectors (same scales in input and output
plots).

to the turbulent Poiseulle flow case where a maximum growth of the order of 10 is
observed for Reτ = 500 (Pujals et al. 2009). The low Reynolds number also explains
that the Gmax curves do not show any sign of the secondary peak associated with
near-wall structures with λ+

z ≈ 90 − 100, contrary to what is found by del Álamo &
Jiménez (2006) and Pujals et al. (2009) for the plane Poiseuille flow. In these studies,
the secondary peak appeared separated from the primary peak only for sufficiently
large Reynolds numbers (typically Reτ larger than ≈ 500), i.e. when the inner and
outer scales are sufficiently separated. The two scales are not separated in the present
case (Reτ = 52) where the expected inner peak value λ+

z ≈ 100 corresponds to λz ≈ 2h,
which is well in the range of the primary peak.

3.4. Spatial structure of the optimal input and output perturbations

The optimal inputs and outputs respectively associated to the maximum energy
amplification in time and to the maximum response to harmonic and stochastic
forcing are shown in figure 5. The optimals displayed are all uniform in the streamwise
direction but their spanwise wavelength is not the same. The physical meaning of
each input or output is also different. For the case of the optimal temporal energy
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growth the input (figure 5a) is the optimal initial condition (it is a velocity field) given
at t = 0 and the optimal output (figure 5b) is the velocity field of maximum energy
obtained at tmax (here tmax = 22.8h/Uw). For the harmonic forcing problem, the input
(figure 5c) is the optimal harmonic forcing term f while the output (figure 5d ) is the
velocity field of the corresponding harmonic response at the same frequency in the
permanent regime. As here the optimal frequency is ωf = 0, only a plot of the input
and of the output is needed, as they do not change in time. Finally, for the stochastic
forcing problem, the optimal input (figure 5e) and output (figure 5f ) are respectively
the forcing term and the associated response corresponding to the most energetic
Karhunen–Loève mode representing 85 % of total variance of the stochastically
forced system. What is however similar in these three different cases is that for all
the considered outputs most of the energy lies in the streamwise velocity component
while for all the input fields most of the energy is in the cross-stream components.
This implies that the dominant physical mechanism at work in the three cases is
the lift-up effect by which streamwise vortices efficiently induce streamwise streaks.
This is also in accordance with previous results such as, e.g. the ones of Gustavsson
(1991) and Butler & Farrell (1992) for the optimal temporal response, Trefethen et al.
(1993) and Reddy & Henningson (1993) for the optimal harmonic response (including
complex frequencies) and Farrell & Ioannou (1993b) and Jovanović & Bamieh (2005)
for the optimal stochastic response of laminar channel flows (see also e.g. Schmid &
Henningson 2001; Schmid 2007, for a review), and the results of del Álamo & Jiménez
(2006) and Pujals et al. (2009) for the optimal temporal response of the turbulent
Poiseuille flow.

The wall-normal Fourier components (v̂ and f̂ v) of the optimal inputs and the
streamwise Fourier component (û) of the optimal outputs shown in figure 5 are
reported in figures 6(a) and 6(b) respectively. The wall-normal components of
the optimal inputs have almost the same shape (figure 6a). The streak shapes
of the corresponding optimal outputs show two maxima at y/h = ±0.72 for the
optimal temporal response, y/h= ±0.68 for the leading KL mode while the streaks
corresponding to the (deterministic) harmonic forcing are almost uniform in the bulk
region (|y/h| � 0.5).

In the case of the turbulent Poiseuille and boundary layer flows, Pujals et al. (2009)
and Cossu et al. (2009) have found that the optimal streaks (output) of the initial
value problem are proportional to the mean velocity profile U+(y+) in the near-wall
region up to the overlap region (y+ � 100) for large Reynolds numbers (typically
larger than Reτ = 500 for the turbulent Poiseuille flow). In the present study, this
extension to the outer layer cannot be observed due to the low Reynolds number
considered here Reτ =52 (the channel centreline corresponds to y+ = 52). We anyway
replot in inner units (in figure 6c) the profile of the optimal streaks of the temporal
problem but also those of the harmonic and stochastic forcing problems already
reported in figure 6(b). All the optimal output streaks profiles are proportional to the
mean velocity profile U up to the buffer layer (y+ � 8 − 10). This partially extends
to the optimal large-scale streaks of the forced problems the similitude observed for
optimal large-scale streaks of the initial value problem.

4. Summary and discussion
In the present study, we have computed the optimal energy amplifications of

coherent structures sustained by the turbulent Couette mean flow at Re = 750. The
turbulent mean flow has been obtained by DNS and the dynamics of the coherent
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Figure 6. Wall-normal dependence of (a) the wall-normal Fourier component v̂(y/h), f̂y(y/h)
corresponding to the optimal input fields (figure 5a,c,e) and of (b) the streamwise Fourier
component û(y/h) corresponding to the optimal output velocity fields (figure 5b,d,f ). (c) Same
as in (a) but in wall units: Cû+(y+) with the constant C chosen so as to match the mean
velocity field U+(y+) reported in the same figure ( ). In (a) and (b), the maximum values
have been normalized to 1 to allow for comparison. Data from the initial value problem
( ) and from the stochastic ( ) and harmonic ( ) forcing problems.

perturbations has been modelled with the Orr–Sommerfeld–Squire system generalized
to include the variable eddy viscosity following Reynolds & Hussain (1972), del
Álamo & Jiménez (2006), Pujals et al. (2009) and Cossu et al. (2009). The main
results are as follows:

(a) The computed turbulent mean flow at Re = 750 is well converged for averaging
times of the order of 700h/Uw where it displays Reτ = 52. The mean velocity profile
and the associated turbulent shear stress show good agreement with previous results
of Komminaho et al. (1996) and Kitoh et al. (2005).

(b) The turbulent mean flow is asymptotically stable (it has stable eigenvalues).
(c) The maximum temporal energy growth is small (less than 6.5 at this low

Reynolds number) but the responses to the external forcing are larger. The energy
amplification of the optimal deterministic forcing is two orders of magnitude larger
than the maximum amplification of the variance induced by stochastic forcing.

(d) In the case of stochastic forcing with the wavenumbers inducing maximum
variance, almost 85 % of the variance is due to the first Karhunen–Loève mode.

(e) Only structures elongated in the streamwise direction are significantly amplified,
and the most amplified ones are streamwise uniform (α = 0, λx = ∞).

(f) For streamwise uniform perturbations, the spanwise wavelength maximizing
the temporal energy growth is λz = 4.4h, the one maximizing the amplification of
the variance of stochastic forcing is λz =5.2h while the maximum amplification of
harmonic forcing is obtained for the larger spanwise wavelength λz = 7.7h and with
steady forcing (ωf = 0).
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(g) For all the three types of input–output problems, the optimal output velocity
fields have a dominant streamwise component (streaks) while the input has dominant
cross-stream components (streamwise vortices).

(h) The wall-normal profile of the wall-normal component of the three considered
optimal inputs is essentially the same, even if the physical significance of each input
is different from the others.

(i) The profiles of the optimal (output) large-scale streaks pertaining to the three
considered problems are proportional to the turbulent mean profile up to buffer layer
(y+ � 8 − 10 for this very low Reynolds number).

These results are consistent with previous input–output analyses of laminar and
turbulent wall-bounded flows. In particular: (i) the maximum growths Gmax sustained
by the turbulent mean flow are small compared to the ones sustained by the laminar
flow at the same Re; the associated optimal λz in the turbulent case is larger than
the optimal value in the laminar case. (ii) Only streamwise elongated structures
are amplified with the optimal output given by streaks and the optimal input by
streamwise vortices indicating that in all three cases (initial value problem, stochastic
and harmonic forcing) a ‘mean’ lift-up mechanism is responsible for the energy
amplifications. (iii) The ordering of the optimal spanwise wavelengths (the largest
optimal corresponding to harmonic forcing, the shortest to the initial value problem
with the one corresponding to the stochastic forcing lying in between) is also consistent
with previous findings in laminar flows (no result is currently available for any other
turbulent flow). (iv) The proportionality of the optimal large-scale streak profiles to
the mean velocity profile near the wall is consistent with previous findings for the
initial value problem in the turbulent Poiseuille and boundary layer flows. We prove
that this feature also extends to the responses to harmonic and stochastic forcing.

The scales of the optimal streamwise uniform structures having the largest response
to initial conditions (λz = 4.4h) and stochastic forcing (λz = 5.2h) show good agreement
with those of the most energetic coherent structures observed in the numerical
simulations of Komminaho et al. (1996) (λz = 4.2h and λx > 30h at Re =750),
Tsukahara et al. (2006) (λz = 4.2 − 5h and λx ≈ 42 − 64h at Re = 750 and 2150)
and in the experiments of Tillmark & Alfredsson (1994), Tillmark (1995) (λz ≈ 4 − 5h

and λx > 30h at Re = 3300) and Kitoh & Umeki (2008) (λz =4h and λx ≈ 40 − 60h

at Re = 3750). Furthermore, Tsukahara et al. (2006) have found that at Re = 750
the most energetic POD modes have scales λz = 4.2 − 5.1h and λx ≈ 45h. These most
energetic POD modes show a striking resemblance with the most energetic mode of
the response to stochastic forcing reported in our figure 6(f ); the position of the peak
in the u response, at y+ = 15 − 20, is also similar. In all these cases, the observed
coherent streaks were not artificially forced, so that it is not surprising that the
relevant scales come from the response to stochastic forcing and to initial conditions
if one assumes that the effect of the nonlinear terms and of the small-scale fluctuations
can be treated either as a stochastic forcing or as random initial conditions.

From the viewpoint of flow control and sensitivity to boundary conditions, where
the forcing is deterministic and correlated over all times, then, the relevant scales
should come from the harmonic forcing analysis. In this case, the present results
indicate that the optimal response is obtained with the spanwise spacing λz = 7.7h,
larger than the one arising in the (unforced) observed large-scale coherent streak
(λz =4h–5h). Furthermore, the very large response to harmonic forcing indicates
good controllability of the large-scale structures even at low Reynolds numbers.
This extreme sensitivity of the turbulent Couette flow to steady forcing has also
been reported by Kitoh et al. (2005) and confirmed by Kitoh & Umeki (2008) who
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artificially forced the large-scale streaks using vortex generators. If such a strong
sensitivity of large-scale streaks to deterministic forcing is confirmed, then one could
imagine to use them to modify the mean flow properties with specific targets. This
kind of approach has already proven successful in the laminar boundary layer where
optimal laminar streaks have been used to stabilize Tollmien–Schlichting waves and
delay transition (Cossu & Brandt 2002; Fransson et al. 2006).

Our results confirm the strong relation between the optimally amplified streaks
and the large-scale coherent streaks measured in experiments and in DNS already
reported for the turbulent Poiseuille flow (del Álamo & Jiménez 2006; Pujals et al.
2009). The reasons of this strong correlation might however be more complex than
they appear. In fact, the optimal perturbation approach provides a measure of the
maximum amplification of streaks with given streamwise and spanwise scales but this
amplification is only part of more complicated processes leading to the ‘refuelling’
of the vortices that induce the streaks. Mechanisms like the secondary instability
of the streaks (Waleffe 1995; Reddy et al. 1998) or the transient amplification of
streak bending (Schoppa & Hussain 2002) are primordial to generate streamwise
non-uniform perturbations leading to the refuelling of the quasi-streamwise vortices
in the models of self-sustained turbulent cycles. These additional processes select
particular streamwise and spanwise scales in the flow. The self-sustained scales that
are actually observed, are therefore selected by the different mechanisms embedded
in the self-sustained process. The correspondence, observed in the turbulent Couette
and Poiseuille flows, of the scales of the large-scale streaks in the actual turbulent
flows with the scales most amplified by the mean lift-up probably means that the
scale selection from the additional processes is weak. It is important to remind that
this situation could be not general. For instance, Cossu et al. (2009) found that in
the turbulent boundary layers the optimal scale (λz ≈ 8δ) selected by the initial value
problem is larger than the scale (λz ≈ δ) actually observed for the coherent large-scale
streaks (e.g. Jiménez et al. 2007). The search for self-sustained cycles of the large-
scale coherent structures in turbulent wall-bounded flows and the investigation of the
mechanisms selecting their scales are the subject of current intensive investigation.

Y. Hwang acknowledges funding from the French Ministry of Foreign Affairs
through a Blaise Pascal Scholarship. Partial support of DGA the use of
the channelflow code (see http://www.channelflow.org) are also gratefully
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