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A possible fundamental physical mechanism by which instability modes generate
sound waves in subsonic jets is presented in the present paper. It involves a wavepacket
of a pair of helical instability modes with nearly the same frequencies but opposite
azimuthal wavenumbers. As the wavepacket undergoes simultaneous spatial–temporal
development in a circular jet, the mutual interaction between the helical modes
generates a strong three-dimensional, slowly modulating ‘mean-flow distortion’. It
is demonstrated that this ‘mean field’ radiates sound waves to the far field. The
emitted sound is of very low frequency, with characteristic time and length scales
being comparable with those of the envelope of the wavepacket, which acts as a non-
compact source. A matched-asymptotic-expansion approach is used to determine, in
a self-consistent manner, the acoustic field in terms of the envelope of the wavepacket
and a transfer factor characterizing the refraction effect of the background base flow.
For realistic jet spreading rates, the nonlinear development of the wavepacket is found
to be influenced simultaneously by non-parallelism and non-equilibrium effects, and
so a composite modulation equation including both effects is constructed in order
to describe the entire growth–attenuation–decay cycle. Parametric studies pertaining
to relevant experimental conditions indicate that the acoustic field is characterized
by a single-lobed directivity pattern beamed at an angle about 45◦–60◦ to the jet
axis and a broadband spectrum centred at a Strouhal number St ≈ 0.07–0.2. As the
nonlinear effect increases, the radiation becomes more efficient and the noise spectrum
broadens, but the gross features of the acoustic field remain robust, and are broadly
in agreement with experimental observations.

1. Introduction
The idea that instability waves in transitional flows, or, more broadly, large-scale

coherent structures in fully turbulent flows, could be an important source of noise has
attracted a great deal of interest. It was first proposed by Bishop, Ffowcs Williams
& Smith (1971) and Tam (1971), among others, in order to explain some distinctive
features of supersonic jet noise. Following the discovery of orderly structures in
subsonic jets (Bradshaw, Ferriss & Johnson 1964; Crow & Champagne 1971), it
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was soon suggested that these structures might be related to sound emission in the
subsonic regime as well (Crow 1972).

The physical mechanisms by which instability modes radiate sound are by no
means obvious. The reason is that shear flows (e.g. jets and boundary layers) act as
waveguides so that instability modes propagate primarily in the streamwise direction,
while in the transverse direction they attenuate rapidly. The energy carried by
instability waves thus remains ‘trapped’ in the shear layer, with little or no radiation
into the far field.

In supersonic flows such as jets or mixing layers, there exist the so-called supersonic
instability modes when the free-stream Mach number exceeds unity by a sufficient
amount. The propagation velocity of these modes relative to the free stream is greater
than the ambient sound speed. In the majority of the flow field, the eigenfunction
of a supersonic mode decays exponentially in the transverse direction. However,
in the vicinity of its neutral position, the eigenfunction remains finite or decays
algebraically, and part of its energy radiates into the far field in the form of Mach
waves. This mechanism can easily be understood in terms of the ‘wavy-wall analogy’,
which explains the ‘phase’ propagation of the radiated Mach waves (Tam 1995). In
reality, however, instability waves are usually modulated in space rather than purely
sinusoidal, and the radiated Mach waves then appear as beams, a feature that cannot
be explained by the usual wavy-wall analogy. Tam & Burton (1984) formulated an
asymptotic theory to calculate the sound emitted by a linearly evolving supersonic
mode. Wu (2005) recently considered Mach-wave radiation by nonlinearly evolving
supersonic waves or wavetrains. By taking advantage of the fact that the time and
length scales of the phase and envelope of a Mach wave are asymptotically distinct,
Wu was able to express the acoustic field explicitly in terms of the amplitude of the
instability mode. This solution represents an ‘extended wavy-wall analogy’, as it shows
how the ‘envelope’ of a wavepacket propagates to form a distinct Mach-wave beam. In
the high-Mach-number regime in which supersonic modes are dominant, instability
waves may indeed act as a dominant source of noise, and Mach-wave radiation
by supersonically propagating large-scale structures, as a fundamental mechanism,
underpins much of our current understanding of noise generation by turbulent jets
(see the review by Tam 1995).

Almost all commercial aircraft currently in service however operate in the subsonic
or moderate supersonic regime, in which relevant instability modes are subsonic;
i.e. they propagate subsonically relative to the ambient stream. Their role in noise
generation remains a topic of debate. The eigenfunction of a subsonic mode evolving
linearly in a parallel flow exhibits exponential decay in the transverse direction
everywhere, including at the neutral position, and a purely sinusoidal mode thus
emits no sound wave. However, under the combined effects of nonlinearity and
mean-flow spreading, instability waves actually undergo amplification followed by
saturation and decay over a long length scale. Such a spatially modulated wave
contains a supersonic Fourier component and hence emits a sound wave with the
same frequency as that of the instability mode. This mechanism, which may be termed
‘direct radiation’, was demonstrated by Tam & Morris (1980) in the case of a subsonic
jet and by Crighton & Huerre (1990) in a somewhat abstract setting. The latter work
revealed some delicate dependence of the radiated sound on the envelope shape of
the instability wave. Acoustic emission of wavepackets modulated in both time and
space was analysed by Akylas & Toplosky (1986) and Haj-Hariri & Akylas (1986).

The intensity of the sound waves generated via the direct-radiation mechanism by
a subsonic mode modulated over a length scale much longer than its wavelength
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is typically exponentially small (with respect to the ratio of these scales). Strong
radiation occurs when a wavetrain experiences a rapid change in the sense that its
amplitude varies over a length scale comparable with its own wavelength. Abrupt
adjustments of this kind often arise due to externally imposed geometric features, such
as sharp edges (e.g. the trailing edge of an aerofoil) and isolated surface roughness. As
an instability mode propagates through such a region, part of its energy is scattered
into sound waves. Such a sound generation process has been investigated theoretically
by Wu & Hogg (2006) using a model problem, where a Tollmien–Schlichting wave
interacts with a local surface roughness.

Abrupt changes may also occur due to the intrinsic dynamics of the flow. For jets
and mixing layers, a particular case of interest is vortex pairing, which causes a sudden
thickening of the local shear-layer width. Emission of sound from this process has
been studied experimentally (Kibens 1980; Laufer & Yen 1983; Bridges & Hussain
1992) and by means of direct numerical simulation (DNS; e.g. Mitchell, Lele & Moin
1999). A theoretical model was proposed by Goldstein (1984), but this calculation
suggests the emission is not strong enough to explain the experimental findings.

Experimental studies conducted since the early 1960s have accumulated a vast
collection of data for subsonic jet noise (e.g. Mollo-Christensen, Kolpin & Martuccelli
1964; Lush 1971; Ahuja et al. 1982; Bogey et al. 2007). In the following, we highlight
some of the key features which cannot be explained by existing mechanisms. The most
striking one is the disparity between the time scales of the dominant hydrodynamic
and acoustic fluctuations within the jet and in the far field respectively. The spectral
peak of the far-field noise is centred at Strouhal number St ≡ f ∗D/UJ ≈ 0.2, where
f ∗ is the dimensional frequency and D and U denote the nozzle diameter and exit
velocity respectively. The peak frequency of hydrodynamic fluctuations in the noise
production region, which may extend up to 20 diameters from the jet nozzle up to
the end of the potential core, is a decreasing function of the downstream distance:
the corresponding characteristic Strouhal number decreases continuously from St ≈ 4
near the nozzle to St ≈ 0.5 towards the end of potential core. This disparity of the
time scales suggests that the most energetic fluctuations within the jet do not ‘directly’
emit dominant noise. Generation of noise must involve an ‘inverse-cascade’ process,
through which the energy in relatively high-frequency components is transferred to
low-frequency ones before being radiated in the form of sound. The overall noise,
while less directional than the supersonic counterpart, appears to concentrate along
the direction that makes an angle about 30◦ to the jet axis.

A particularly interesting and curious behaviour of subsonic jets is ‘noise
amplification’ by tonal excitation, a phenomenon in which exciting a jet at a pure
tone leads to significant enhancement of broadband far-field noise. This was first
observed by Bechert & Pfizenmaier (1975) and Moore (1979) for axisymmetric modes.
Subsequently, Bechert & Pfizenmaier (1977) and Ahuja et al. (1982) found that exciting
helical modes had a similar effect. Further investigations (Hussain & Hasan 1985;
Zaman 1985) showed that exciting a relatively high-frequency shear-layer mode may
‘suppress’ broadband noise instead.

Considerable efforts have been devoted to identifying and characterizing vortical
structures which might be relevant for noise generation. Large-scale, coherent
structures were found to dominate the noise-producing region in both natural
unexcited (Bradshaw et al. 1964; Moore 1977; Zaman & Hussain 1984) and excited
(Crow & Champagne 1971; Chan 1974; Zaman & Hussain 1980) jets. They exhibit
the characteristics of wavepackets undergoing amplification, saturation and decay in
the axial direction. A remarkable fact is that even though the jet is fully turbulent,
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the wavelengths, propagation speeds and radial distributions of these structures are
quite well described by local linear instability modes supported by the background
mean flow (e.g. Michalke 1971; Suzuki & Colonius 2006). Their axial development
is significantly influenced by nonlinear effects in typical laboratory and practical
conditions; only the evolution of a small-amplitude disturbance may be predicted
approximately by a linear non-parallel theory, which accounts for the slow divergence
of the jet (Crighton & Gaster 1976).

Recently, proper orthogonal decomposition (POD) has been applied to extract
dominant structures from experimental data. By performing POD analysis of the
hydrodynamic pressure signal measured at the outer edge of the shear layer, Arndt,
Long & Glauser (1997) found axisymmetric and helical modes with azimuthal
wavenumber m = ±1 to be the most energetic components in the near field. Among
these, high-frequency components saturate earlier than low-frequency ones, and as a
result, the frequency of the dominant structure decreases in the axial direction. The
POD analysis of the streamwise velocity showed that in addition to the axisymmetric
and first helical modes, modes with m up to ±6 are present in the near field
(Citriniti & George 2000; Jung, Gamard & George 2004; Iqbal & Thomas 2007).
The axisymmetric mode and helical modes with |m| > 2 gradually diminish as x

increases, while the first helical modes (m = ±1) remain dominant. These results
are fully consistent with the linear stability properties of axisymmetric jets (cf.
Strange & Crighton 1983; Cohen & Wygnanski 1987). Indeed, the temporal and
spatial properties of the extracted POD modes closely resemble those of inviscid
unstable modes, although a single POD mode does not always represent the entire
evolution of an instability wave (Suzuki & Colonius 2006). The most interesting
finding is that beyond the end of the potential core, near-zero-frequency modes with
m = ±2 and m =0 acquire significant amplitudes (Gamard, Jung & George 2004).
We believe that these components are not linear eigenmodes; rather they represent
the ‘mean-flow distortion’ driven by the nonlinear interaction between two slightly
detuned helical m = ±1 modes. Such a nonlinear generation of exceptionally large
azimuthally dependent mean flow was observed experimentally in laminar transitional
jets long time ago (Cohen & Wygnanski 1987b; Long & Petersen 1992). Gamard et al.
(2004) also cited some evidence which suggests that the near-zero-frequency m = ±2
modes may be linked to noise generation. Prompted by the above observations, in
the present paper we shall develop a mathematical theory to demonstrate how the
m = ±2 modes are produced by nonlinear interactions and, more importantly, how
they emit sound.

Measurements of both hydrodynamic motions within the jet and the far-field
acoustics have been made in order to seek a cause–effect relation. The experiment
of Stromberg, Mclaughlin & Troutt (1980) for a Mach number 0.9 jet at a low
Reynolds number is of particular interest because a laminar shear layer exists close
to the nozzle, where the fluctuations consist of a narrow band of instability waves
with frequencies centred at St = 0.44. The acoustic field, however, has a broadband
spectrum with a peak at St ≈ 0.22, which led the authors to suggest that the noise
was generated through vortex pairing. DNS pertaining to this low-Reynolds-number
condition (Freund 2001) shows that the peak radiating component of the source
coincides with neither the peak of the fully unfiltered source nor that of the kinetic
energy. Filtering out the non-radiating components of the full source at a single
frequency reveals the relevant source to be a non-compact, modulated wavepacket.
Measurements in a high-Reynolds-number turbulent jet (Zaman 1986) indicate that
the noise source of a given frequency is located at the position at which the
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axial-velocity spectral component at that frequency is maximum, but this does not
mean that the strongest fluctuation radiates the strongest sound. Hileman et al. (2005)
sought for the relation between coherent structures and noise generation in the time
domain, by detecting and comparing distinctive features of hydrodynamic events
during the relatively short noise generation and the prolonged quiet periods. Their
study lends further support to the earlier suggestion by Morrison & McLaughlin
(1979) that dominant noise is emitted when coherent structures disintegrate and
break down into small-scale motions.

Extensive research efforts in the past 40 years have provided an abundant collection
of data about the characteristics of subsonic jet noise and the dynamics of large-scale
structures and have thereby significantly improved our understanding of the relation
between them. However, much of this understanding stays at the level of intuitive
phenomenological descriptions. The assertion by Zaman (1986) that ‘the precise noise
production mechanism in terms of [the large-scale structure] dynamics still remains
largely unknown’ holds true to the present day. It may be stressed that understanding
this mechanism is especially important. This is because these quasi-deterministic
structures are known to be sensitive to ambient (naturally present or artificially
excited for control purpose) perturbations and therefore are unlikely to possess the
statistical universality implied in current popular engineering methodologies based
on unsteady Reynolds-averaged Navier–Stokes equations and acoustic analogy (e.g.
Khavaran & Bridges 2004). An improved prediction scheme may emerge if the noise
produced by these structures can be accounted for separately in a framework based on
their quasi-deterministic nature and the underlying physical mechanism of radiation.

In this paper, we shall describe a new physical mechanism by which an instability
wavepacket generates sound. A high-Reynolds-number asymptotic approach will be
taken to describe the nonlinear evolution of the wavepacket and to analyse and
predict the acoustic radiation on the basis of first principles. Strictly speaking, the
formulation is for a laminar jet undergoing transition, but given the connection
between coherent structures in turbulent flows and instability waves as presented
above, the basic mechanism identified in this paper is expected to operate in turbulent
jets. On the basis of this, theoretical predictions will be related to experimental results
for turbulent jets. Alternatively, one might view the present analysis as being applied
to the averaged profile of a turbulent flow, with the direct influence of small-scale
turbulence (i.e. fluctuations which are on scales much smaller than the integral length
scale of the turbulence) on coherent structures being neglected; this issue will be
discussed further at the end of this paper.

The rest of the paper is organized as follows. In § 2, the problem is formulated.
The disturbance is assumed to be a wavepacket consisting of a pair of helical modes,
which is modulated simultaneously in both time and space on an axisymmetric jet.
Its nonlinear development in the non-equilibrium critical-layer regime is considered
first in § 3.1. The evolution equation for the amplitude function is deduced, by a
minor modification, from the one given by Wu, Lee & Cowley (1993) for oblique
modes in a plane shear layer. The nonlinear interaction between the helical modes
within the critical layer generates a mean-flow distortion, which is modulated in
space but also slowly ‘breathes’ in time, as will be shown in § 3.2. By analysing
the asymptotic behaviour of this spatially and temporally modulated ‘mean field’
far away from the jet axis, we show that it emits low-frequency sound waves. The
characteristics of these waves are determined by an asymptotic approach in § 3.3. In
§ 4, we consider the evolution in the equilibrium critical-layer regime in which the
non-parallel effect is included. Finally, a composite amplitude equation accounting for
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non-equilibrium, nonlinearity and non-parallelism is formed. Results of parametric
studies are presented in § 5. A summary and concluding remarks are given in § 6.

2. Formulation
We consider a circular jet, for which it is natural to use cylindric polar coordinates

(x, r, φ). The velocity components in the axial, radial and azimuthal directions are
denoted by (u, v, w). The nozzle radius RJ and the exit speed UJ will be taken as
reference length and velocity so that the reference time is RJ /UJ . The density ρ

(temperature θ) is non-dimensionalized by the jet density ρJ (temperature ΘJ ) and
the pressure p by ρJ U 2

J . The Mach number and Reynolds number are defined as

M = UJ /cJ , R = UJ RJ /νJ , (2.1)

where cJ is the sound speed and νJ the kinematic viscosity at the jet exit. Note that
the present R is half the usual Reynolds number RD based on the diameter D. We
assume that M = O(1) and R is asymptotically large, i.e. R � 1. The velocity profile
of the shear flow is given by

(U (x3, r), R−1V (x3, r)) with x3 = x/R.

The disturbance of interest is a wavepacket consisting of a pair of helical modes with
nearly the same streamwise wavenumber α and frequency ωc but opposite azimuthal
wavenumbers ±m. As the disturbance propagates downstream, it will amplify until
approaching its neutral position, say xn, after which it starts to decay if its amplitude
is sufficiently small. However, if a certain threshold order of magnitude is reached
before approaching xn, the disturbance then evolves into a nonlinear stage because of
the emergence of a critical layer, i.e. a thin region surrounding the level at which the
velocity of the basic flow equals the phase speed of the instability modes. Nonlinearity
becomes significant in this layer because the disturbance attains its largest amplitude.
The continued development can be described by nonlinear critical-layer theory. The
reader is referred to Goldstein (1995) and Cowley & Wu (1995) for reviews.

Depending on the initial amplitude, two nonlinear regimes are possible in principle,
the so-called non-equilibrium parallel regime and the equilibrium non-parallel regime.
These will be considered in turn. Eventually, a composite solution will be constructed
to unify both regimes.

3. The non-equilibrium critical-layer regime
3.1. Instability modes

The nonlinear evolution of a pair of interacting helical modes on a circular jet is
similar to that of a pair of oblique modes in a planar shear layer, considered by
Goldstein & Choi (1989) and Wu et al. (1993). The nonlinear regime that the helical
modes can enter depends on ε, their magnitude in the main part of shear flow. When
ε ∼ R−1, the nonlinear interaction occurs in the so-called non-equilibrium viscous
critical-layer regime, taking place at

x3 ≈ xn + R−1/3
,

where 
= O(1). The growth rate has diminished to O(R−1/3) so that the appropriate
slow space and time variables to describe the ensuing nonlinear evolution are

x̃ = R−1/3(x − x0) ≡ R2/3(x3 − (xn + R−1/3
)), t̃ = R−1/3t, (3.1)



Sound radiated by a wavepacket of helical modes on a subsonic circular jet 179

where the origin of x̃ is shifted in order to facilitate the discussion of non-parallelism
later. In view of the threshold amplitude stated earlier, we may set

ε = R−1.

The velocity and temperature profiles of the base flow can be approximated, to the
required order, by

(Ū (r, x3), T̄ (r, x3)) ≈ (Ū (r, xn), T̄ (r, xn)) + R−1/3(Ū1(r), T̄1(r))(
 + R−1/3x̃). (3.2)

In the following, unless otherwise stated, Ū and T̄ are to be understood to stand for
Ū (r, xn) and T̄ (r, xn) respectively.

In the main part of the jet, the disturbance expands as (cf. Wu et al. 1993)

(u, v, w, p, θ, ρ) = εÃ(x̃, t̃ )(u0, v0, w0, p0, θ0, ρ0)E cos mφ

+ ε(um, R−1/3vm, R−1/3wm, R−2/3pm, θm, ρm) cos(2mφ)

+ εR−1/3(u1, v1, w1, p1, θ1, ρ1)E cosmφ + c.c. + . . . ; (3.3)

here ε measures the magnitude of the helical modes, which for simplicity are assumed
to have a common envelope function Ã(x̃, t̃ ). The dependence on suitable slow space
and time variables, x̃ and t̃ , is introduced to account for simultaneous temporal–
spatial modulation, which is crucial for acoustic radiation. For convenience, we have
set

E = ei(αx−ωct) .

In expansion (3.3), the variables with subscripts 0, 1 and m represent, respectively,
the eigenfunction of the neutral helical modes, the deviation of the disturbance from
the neutrality and the nonlinearly generated slowly modulated mean-flow distortion.
The disparity between the scales of the carrier waves and their envelope determines
the order-of-magnitude relation in expansion (3.3).

The governing equations, at leading order, are

iα(Ū − c)ρ0 + R̄′v0 + R̄

(
iαu0 +

∂v0

∂r
+

v0

r
+

m

r
w0

)
= 0,

iα(Ū − c)u0 + Ū ′v0 = −iαT̄ p0,

iα(Ū − c)v0 = −T̄
∂p0

∂r
,

iα(Ū − c)w0 =
T̄ m

r
p0,

iα(Ū − c)θ0 + T̄ ′v0 = −iαM2(γ − 1)(Ū − c)p0,

where c = ωc/α is the phase speed. On eliminating u0, v0, w0, ρ0 and θ0 in favour of
the pressure, we obtain{

∂2

∂r2
+

1

r

∂

∂r
+

(
T̄ ′

T̄
− 2Ū ′

Ū − c

)
∂

∂r
+

(
α2M2

T̄
(Ū − c)2 − α2 − m2

r2

)}
p0 = 0. (3.4)

In the vicinity of the critical level rc, where Ū (rc)−c = 0, p0 has the local asymptotic
solution (cf. Leib 1991; Wu 2005)

p0 ∼ Ū ′
c

T̄c

{
ᾱ2

3
a±φa + φb +

ᾱ2

3
k̂ ln |η|φa

}
, (3.5)
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where η ≡ r − rc 
 1 and

φa = η3 − 3
4
χaη

4 + . . . , φb = 1 − 1
2
ᾱ2η2 + χbη

4 + . . . , (3.6)

with χb being given by (5.7) in Wu (2005), and

ᾱ =
(
α2 + m2/r2

c

)1/2
, k̂ =

(
T̄ ′

c

T̄c

− Ū ′′
c

Ū ′
c

+
1

rc

)
− 2m2

ᾱ2r3
c

, χa =
T̄ ′

c

T̄c

− Ū ′′
c

Ū ′
c

+
1

rc

.

Although our main focus will be on subsonic modes, for which k̂ = 0, the analysis will
cover supersonic modes as well. The nonlinear evolution equation and the formulae
for the low-frequency acoustic field apply equally to supersonic modes. Evidence that
the same low-frequency radiation mechanism may operate in supersonic jets may be
found in Hileman et al. (2005), where a strong correlation was found to exist between
the far-field sound and the low-frequency density fluctuations.

For helical modes, the streamwise and spanwise velocity components both exhibit
a singularity of a single-pole type at the critical level, i.e.

u0 ∼
(

m2

α2r2
c

)
1

η
, w0 ∼ −

(
im

αrc

)
1

η
. (3.7)

Consideration of (u1, v1, w1, p1, θ1) shows that p1 satisfies an inhomogeneous
Rayleigh equation, for which the solvability condition is derived as (Wu 2005)

− rc

Ū ′
c

{
3(c+ − c−) −

[2iᾱ2

αT̄c

(
∂A

∂t̃
+c

∂A

∂x̃

)
χa − ᾱ2d

]
(a+ − a−)

}
=

2i

α

[
cI2

∂A

∂x̃
+ I3

∂A

∂t̃

]
,

(3.8)

where I2 and I3 are given in Wu (2005); d(x̃, t̃ ) is an unknown function; and the
jumps (a+ − a−) and (c+ − c−) have to be determined by analysing the critical-layer
dynamics.

The singularity in the outer solution is to be smoothed out by reintroducing the non-
equilibrium and viscous effects within the critical layer. As noted for example by Wu
(2005), this thin region is locally flat because the radial variation is much more rapid
than the azimuthal variation, and the dynamics is thus similar to (incompressible)
planar shear layers considered in Wu et al. (1993). For the interaction of pairs of helical
(oblique) modes, the critical layer is also minimally influenced by compressibility
because although the temperature fluctuation acquires a large amplitude, it remains
fairly passive in that its nonlinear effect on the amplitude evolution (Leib & Lee
1995) is O(R−1/3) weaker than the dominant contribution by the velocity fluctuations
– although in the case of a single helical/oblique or axisymmetric/planar mode, the
temperature fluctuation would contribute the leading-order nonlinear effect (Goldstein
& Leib 1989; Leib 1991; Churilov & Shukhman 1994). It therefore suffices to give
an outline of the theory, highlighting only the key aspects that are relevant for the
generation of sound.

The appropriate local transverse coordinate is

Y = (r − rc)/R
−1/3,
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and the solution for the disturbance expands as

u = εR1/3U1(Y, x̃, t̃ )E cosmφ + εUm(Y, x̃, t̃ ) cos mφ + . . . ,

w = εR1/3W1(Y, x̃, t̃ )E sinmφ + εR−1/3Wm(Y, x̃, t̃ ) sin 2mφ + . . . ,

θ = εR1/3Θ1(Y, x̃, t̃)E cos mφ + εΘm(Y, x̃, t̃) cos 2mφ + . . . ,

v = ε(iᾱ2/α)ηAE cos mφ + εR−1/3Vm(Y, x̃, t̃ ) cos 2mφ + . . . ,

p = ε
Ū ′

c

T̄c

AE cos mφ + εR−2/3
(
pm(x̃, t̃) + R−1/3Pm(Y, x̃, t̃)

)
cos 2mφ + . . . ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.9)

where we have put ᾱ = (α2 + m2/r2
c )

1/2. The leading-order solution for v and p is
just the trivial continuation of the outer expansion, but the streamwise and spanwise
velocities as well as the temperature/density acquire a magnitude larger by a factor
R1/3 than that outside the critical layer. They are governed by equations

L(U1, W1, Θ1) =

(
im2Ū ′

c

αr2
c

,
mŪ ′

c

rc

,
iᾱ2T̄ ′

c

α

)
Ã, (3.10)

where

L =
∂

∂t̃
+ c

∂

∂x̃
+ iŪcY

∂

∂x
− μcTc

∂2

∂Y 2
. (3.11)

The solution is (cf. Wu et al. 1993; Leib & Lee 1995)

(U1, W1, Θ1) =

(
im2Ū ′

c

αcr2
c

,
mŪ ′

c

crc

,
iᾱ2T̄ ′

c

αc

)∫ ∞

0

e−sξ3−i(αŪ ′
c/c)Yξ Ã(x̃ − ξ, t̃ − ξ/c)dξ, (3.12)

where

s = 1
3
α2Ū ′2

c (Tcμc/c
3).

The mutual interaction between the helical pair induces an azimuthally dependent
mean-flow distortion, (Um, Vm, Wm, Θm), among which the axial velocity

Um = − ᾱ2Ū ′2
c

αc3

(
m

rc

)2 ∫ ∞

0

∫ ∞

0

e−iŪ ′
cY ξ/(2c) sin[Ū ′

cY ξ/(2c)]

ξ
Iu(ξ, η; s)Ã∗(x̃−η, t̃−η/c)

× Ã(x̃ − η − ξ, t̃ − η/c − ξ/c) dξ dη + c.c. + Dm(x̃, t̃), (3.13)

where Dm will have to be determined by matching with the global outer solution (see
§ 5.2). It can be shown that as Y → ∞ (cf. (3.49) in Wu et al. 1993),

Um → ± 1
2
Ju(x̃, t̃ ) + Dm, (3.14)

where we have put

Ju(x̃, t̃) = −16πŪ ′2
c (m/rc)

4/(αc3)

∫ ∞

0

Ku(η)|Ã(x̃ − η, t̃ − η/c)|2dη, (3.15)

with

Ku(η) =

∫ η

0

(η − ζ ) e−2sζ 3

dζ.

Clearly, Ju(x̃, t̃) represents a streamwise velocity jump, Ju(x̃, t̃) ≡ um(r+
c , x̃, t̃) −

um(r−
c , x̃, t̃), through which an O(ε) ‘mean’ streamwise velocity um is generated in the

main part of the jet (cf. Goldstein & Choi 1989). A similar large ‘mean temperature’
is also induced (cf. Leib & Lee 1995).
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The analysis of the critical layer (Wu 2005) shows that

a+ − a− = −k̂πi, (3.16)

c+ − c− = − ᾱ2

3T̄c

[
i

α

(
∂Ã

∂t̃
+ c

∂Ã

∂x̃

)]
j πi − ᾱ2

3
k̂dπi + JN. (3.17)

It may be noted that (a+ − a−) and the linear part of (c+ − c−) correspond to the
familiar (−π) phase jump in the logarithmic singularity in the outer solution for
p0 and p1 respectively. The nonlinear part of (c+ − c−), JN, can be inferred from
(3.84) in Wu et al. (1993), by identifying the spanwise wavenumber β with m/rc,
or sin θ = m/(ᾱrc). The resulting jump is inserted into (3.8) to obtain the amplitude
equation

∂Ã

∂x̃
+ c−1

g

∂Ã

∂t̃
= σ
Ã + l

∫ ∞

0

∫ ∞

0

K(ξ, η; s)Ã(x̃ − ξ, t̃ − ξ/c)

× Ã(x̃−ξ −η, t̃−ξ/c−η/c)Ã∗(x̃−2ξ −η, t̃ −2ξ/c−η/c) dξ dη, (3.18)

where the coefficients of the linear terms, cg and σ , are given by (5.31) and (5.32) in
Wu (2005). The coefficient for the nonlinear term is

l = −iα rc

[
παŪ ′

c|Ū ′
c|3

T̄cc5

(
α2 +

m2

r2
c

)2
m2

r2
c

]
/(cŪ ′

cG), (3.19)

with G being given on page 143 of Wu (2005). The kernel function K is given by
(3.85) of Wu et al. (1993).

Equation (3.18) is to be solved subject to an initial condition

Ã → ã0 eσ
x̃ Ãl(x̃ − cgt̃ ), (3.20)

where ã0 is the scaled amplitude of the disturbance at x̃ = 0, i.e. at x3 = xn + R−1/3
.
The parameters ã0 and 
 are not independent because 
 (which measures the scaled
distance to the neutral position) has so far only been loosely defined. In order to
specify the latter precisely, let a0 denote the unscaled nominal amplitude exactly at
the neutral position that the disturbance would have attained via its linear growth.
Then a0 and ã0 are related by the relation

a0 = R−1ã0 exp

{
R

∫ x3

x3+R−1/3


α(x̃3) dx̃3

}
= R−1ã0 exp

{
− 1

2
σR1/3
2

}
, (3.21)

where α is approximated by its Taylor expansion about xn =0. We can then take
ã0 = 1 by choosing 
 to satisfy

a0 = R−1 exp
{

− 1
2
σR1/3
2

}
, (3.22)

which gives a precise definition of 
. Strictly speaking, a0 represents the ‘saturation
amplitude’ projected on the basis of linear growth but will be referred to as ‘initial
amplitude’ in view of (3.21).

Our principal interest is in the sound that may be radiated by such an instability
wavepacket/wavetrain that undergoes amplification, followed by attenuation and
decay. If the modes are supersonic, their eigenfunction is oscillatory and decays
algebraically like r−1/2 rather than exponentially, and they emit sound directly in
the form of Mach waves (Tam & Burton 1984; Tam 1995; Wu 2005). The aim
of the present study is to demonstrate that an instability wavepacket modulated
simultaneously in time and space radiates low-frequency sound waves whose time
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and length scales are comparable with those of the envelope, regardless of whether
the modes are supersonic or subsonic.

3.2. The nonlinearly generated slowly breathing mean field

An important feature of the nonlinear interaction between a pair of helical modes is
that it generates a large three-dimensional mean-flow distortion, with the magnitude
of the streamwise velocity and the temperature and density components all being
comparable with that of the fundamental modes (cf. Goldstein & Choi 1989; Leib &
Lee 1995). Unlike the steady distortion in these paper, the nonlinearly induced mean
field in the present study is slowly breathing in time due to the temporal modulation
of the wavepacket. This unsteadiness is of course crucial for generation of sound. The
mean field is governed by the equations

R̄

{
∂um

∂x̃
+

∂vm

∂r
+

vm

r
+

2m

r
wm

}
+

∂ρm

∂t̃
+ Ū

∂ρm

∂x̃
= 0, (3.23)

{
∂um

∂t̃
+ Ū

∂um

∂x̃

}
+ Ū ′vm = 0, (3.24)

R̄

{
∂vm

∂t̃
+ Ū

∂vm

∂x̃

}
= −∂pm

∂r
, (3.25)

R̄

{
∂wm

∂t̃
+ Ū

∂wm

∂x̃

}
=

2m

r
pm, (3.26){

∂θm

∂t̃
+ Ū

∂θm

∂x̃

}
+ T̄ ′vm = 0, (3.27)

supplemented by the state equation

R̄θm + T̄ ρm = 0. (3.28)

These are homogeneous equations. The forcing comes from the critical layer through
the velocity jump across the critical layer, which can easily be inferred from the planar
case, i.e. (3.49) in (Wu et al. 1993), by replacing β by m/rc.

Eliminating um, vm, wm, θm and ρm in favour of pm, we obtain{
∂

∂t̃
+ Ū

∂

∂x̃

}{
∂2

∂r2
+

1

r

∂

∂r
− 4m2

r2
+

T̄ ′

T̄

∂

∂r

}
pm − 2Ū ′ ∂

2pm

∂x̃∂r
= 0. (3.29)

With the second-order derivative with respect to x̃ being absent, this is the long-
wavelength limit of the compressible Rayleigh equation. Across the critical layer,
the pressure pm is continuous, but it follows from (3.15), (3.24) and (3.25) that the
pressure gradient exhibits a jump

p ′
m(r+

c , x̃, t̃) − p ′
m(r−

c , x̃, t̃) = − R̄c

Ū ′
c

(
∂

∂t̃
+ c

∂

∂x̃

)2

Ju(x̃, t̃) ≡ Jp(x̃, t̃), (3.30)

where by integration by parts, we find that

Jp(x̃, t̃) = j0

∫ ∞

0

e−2sη3 |Ã(x̃ − η, t̃ − η/c)|2 dη, (3.31)

with j0 = 16πR̄cŪ
′
c(m/rc)

4/(αc). The jump Jp acts as a radially compact, low-
frequency ‘physical’ source embedded in a shear flow.
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As r → 0, Ū ′, T̄ ′ → 0 so that (3.29) reduces simply to the Laplace equation{
∂2

∂r2
+

1

r

∂

∂r
− 4m2

r2

}
pm = 0,

and the regularity requirement implies that

pm ∼ C0(x̃, t̃)r2m as r → 0. (3.32)

The same limiting equation holds for r � 1, and it follows that

pm ∼ B(x̃, t̃)

r2m
as r → ∞, (3.33)

where C0(x̃, t̃) and B(x̃, t̃) are functions to be determined numerically. Obviously,
helical modes with azimuthal wavenumbers m ± 1 are most efficient in radiating
sound.

As will become clear later, it is the Fourier transform of B(x̃, t̃) that is needed for
the purpose of calculating the radiated sound. Thus we take the Fourier transform of
(3.29) and (3.30) with respect to both x̃ and t̃ to obtain{

∂2

∂r2
+

1

r

∂

∂r
− 4m2

r2
+

(
T̄ ′

T̄
− 2Ū ′

Ū + ω/k

)
∂

∂r

}
p̂m(k, ω) = 0, (3.34)

p̂ ′
m(r+

c , k, ω) − p̂ ′
m(r−

c , k, ω) = Ĵp(k, ω). (3.35)

Equation (3.34) has two linearly independent solutions, Y1(r) and Y2(r), say. Without
losing generality, we may require

Y1 ∼ r2m for r 
 1 and Y2 ∼ r−2m for r � 1, (3.36)

for convenience. Then the solution for p̂ can be expressed as a linear combination

p̂m = C
±
1 Y1(r) + C

±
2 Y2(r), (3.37)

where ± indicates that the constants C
±
1 and C

±
2 take different values depending on

r > rc or r < rc. Since Y1 ∼ r2m for r � 1 and Y2 ∼ r−2m for r 
 1, one has to set C+
1 = 0

and C−
2 = 0 to render p̂m bounded at infinity and r = 0. Now applying the continuity

of p̂m and the jump condition, we have

C+
2 Y2(rc) = C−

1 Y1(rc), C+
2 Y ′

2(rc) − C−
1 Y ′

1(rc) = Ĵp(k, ω), (3.38)

from which it follows

B̂(k, ω) = C+
2 = Ĵp(k, ω)Y1(rc)/(Y1Y

′
2 − Y2Y

′
1). (3.39)

Functions Y1 and Y2 have to be found by numerically solving (3.34), which is
essentially the long-wavelength limit of the compressible Rayleigh equation. The
equation is singular at the radial position r̂c where Ū (r̂c) = − ω/k; here r̂c may
be referred to as the ‘envelope critical layer’ in order to distinguish it from the
usual (phase) critical layer rc. A critical layer of the former type appears in certain
generalized formulation of acoustic analogy (Goldstein & Leib 2008), where the
singularity has to be removed by reintroducing the weak non-parallel effect of the
base flow, since all other terms are predesignated as sources. In our study, the signature
pm is of hydrodynamic nature for r = O(1), and thus viscous effects are at our disposal
and can be used to smooth out the singularity. It turns out that for evaluating the
noise radiated from a subsonic jet, one only needs Y1 and Y2 for those values of k
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and ω for which an envelope critical layer does not arise. In this case, Y1 and Y2 can
be obtained by integrating (3.34) in a straightforward manner using the respective
asymptotes in (3.36) for small and large r as boundary conditions.

3.3. The acoustic far field

The long-wavelength Rayleigh equation (3.29) governing the slowly modulating mean
flow is no longer valid in the far field corresponding to r = O(R1/3), because the
transverse and streamwise length scales become comparable. We thus introduce the
radial variable

r̃ = R−1/3r. (3.40)

For r̃ = O(1), the instability modes and their harmonics all have completely diminished
owing to exponential transverse attenuation. In contrast, the slowly breathing mean
field, which decays algebraically, acquires the character of sound, and the solution
expands as

(u, v, w, p, θ, ρ) = εR−4/3(ũs, ṽs, w̃s, p̃s, θ̃s, ρ̃s) + . . . .

As expected, functions ũs , ṽs , etc. satisfy the standard linearized equations for an
acoustic perturbation in a uniform background flow Ū = 0 and T̄ = Ta . Specifically,
the governing equation for p̃s is

M2
a

∂2p̃s

∂ t̃2
−

{
∂2

∂r̃2
+

1

r̃

∂

∂r̃
− 4m2

r̃2
+

∂2

∂x̃2

}
p̃s = 0, (3.41)

where the acoustic Mach number Ma =M/T 1/2
a with Ta being the ambient air

temperature. For r̃ 
 1, p̃m ∼ B(x̃, t̃)/r̃2m in order to match with (3.33). This indicates
that B(x̃, t̃) acts as the ‘apparent’ acoustic source, which can be expressed via (3.39)
in terms of the physical source Jp . The source is non-compact in the axial direction
because its spatial extent is comparable with the wavelength of the emitted sound,
both being O(R1/3RJ ).

On taking the Fourier transform with respect to both x̃ and t̃ , (3.41) reduces to the
Helmholtz equation{

∂2

∂r̃2
+

1

r̃

∂

∂r̃
+

(
M2

aω
2 − k2 − 4m2

r̃2

)}
p̂s = 0, (3.42)

subject to the matching condition

p̂s → B̂(k, ω)

r̃2m
as r̃ → 0, (3.43)

with B̂(k, ω) denoting the Fourier transform of B(x̃, t̃).
The appropriate solution to (3.42) and (3.43) can be expressed as

p̂s = q(k, ω)H (1)
2m (Kr̃), (3.44)

where H
(1)
2m denotes the first-kind Hankel function of order 2m and

K(k, ω) =
(
M2

aω
2 − k2

)1/2
. (3.45)

By matching, the coefficient q(k, ω) is found to be

q(k, ω) =
22mπ

(2m)!
K2m(k, ω)B̂(k, ω). (3.46)
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The inversion of the Fourier transform then yields the acoustic pressure in physical
space,

p̃s =
22mπ

(2m)!

∫ ∞

−∞

∫ ∞

−∞
K2m(k, ω)B̂(k, ω)H (1)

2m (Kr̃) e−i(kx̃+ωt̃ ) dk dω. (3.47)

For r̃ � 1, we may approximate H
(1)
2m by its asymptotic expansion to obtain

p̃s ∼ 22mπ

(2m)!

(
2

πr̃

)1/2

e−i(mπ+π/4)

×
∫ ∞

−∞

∫ ∞

−∞
K2m−1/2(k, ω)B̂(k, ω) exp{−i(kx̃ − Kr̃) − iωt̃} dk dω. (3.48)

Of primary interest is the far field of the acoustic region, corresponding to

R̃ = (r̃2 + x̃2)1/2 � 1.

The acoustic pressure there can be approximated by using the stationary-phase
method. The phase of the integrand, φ(k) ≡ k cos θ − K(k, ω) sin θ , has a stationary
point at

k = ks = −Maω cos θ, (3.49)

where θ = tan−1(r̃/x̃). Thus the instantaneous pressure in the far field is given by

p̃s ∼ 22m+1π

(2m)!R̃
e−i(mπ+π/2)(sin θ)2m

∫ ∞

−∞
(Maω)2mB̂(−Maω cos θ, ω) eiω(MR̃−t̃) dω. (3.50)

To obtain B̂(−Maω cos θ, ω), one has to solve (3.34). Since the equation depends
on ω/ks , which is a function of θ but independent of ω, we may write

B̂(−Maω cos θ, ω) = T(θ)Ĵp(−Maω cos θ, ω), (3.51)

where T(θ) is determined by solving (3.34) with −ω/k = 1/(Ma cos θ), subjected to a
unit jump, namely{

∂2

∂r2
+

1

r

∂

∂r
− 4m2

r2
+

(
T̄ ′

T̄
− 2Ū ′

Ū − 1/(Ma cos θ)

)
∂

∂r

}
p̂m = 0,

p̂m(r+
c ) − p̂m(r−

c ) = 0, p̂ ′
m(r+

c ) − p̂ ′
m(r−

c ) = 1,

p̂ ∼ r2m as r̃ → 0, p̂ → T(θ)

r2m
as r → ∞.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.52)

There is no need to consider an envelope critical layer in a subsonic jet since

|ω/ks | = |1/(Ma cos θ)| > 1 � Ū . As T(θ) relates the forcing Ĵp to the output B̂,
it will be referred to as a ‘transfer function’. It is determined by the velocity and
temperature profiles of the basic flow and the critical level rc, which in turn depends
on the ‘carrier-wave frequency’ ωc. Clearly, T(θ) characterizes the basic-flow refraction
(shielding and amplification) effects (cf. Goldstein 1975), which are present despite
the fact that the characteristic wavelength is much larger than the width of the shear
layer.

The radiated sound is of broadband nature. It follows from (3.50) and (3.51) that its
normalized spectrum at an arbitrary point (R̃, θ) (polar coordinates) can be defined
as

I(ω; θ) = ω4m
∣∣Ĵp(−Maω cos θ, ω)

∣∣2. (3.53)
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The intensity of the acoustic pressure at an arbitrary point (R̃, θ) is then given by the
root-mean-square value √

p̃2
s =

22m+1π

(2m)!
M2m

a

D(θ)

R̃
, (3.54)

where the directivity function D(θ) is given by

D(θ) = T(θ)(sin θ)2m

[∫ ∞

−∞
ω4m

∣∣Ĵp(−Maω cos θ, ω)
∣∣2dω

]1/2

. (3.55)

Note that (3.41) remains invariant if x̃, r̃ and t̃ are rescaled by the same factor. This
means that while the results for the acoustic field are expressed in terms of the Fourier
transforms with respect to x̃ and t̃ , they would remain valid if the Fourier transforms
with respect to some simultaneously renormalized variables, e.g. x̄ and t̄ (see § 4 and
§ 5.4), are substituted in, with the only difference being some multiplicative factors.
This property will be used later.

In general, a numerical procedure is required to evaluate the directivity and
spectrum of the acoustic field radiated by a wavepacket. The analysis can be taken a
step further for a linear wavepacket with a Gaussian spectrum, as will be shown in
§ 5.4.

3.4. An appraisal of the mechanism

It is worth noting that the mathematical problem of the acoustic radiation is somewhat
similar to that of a multipolar source embedded in a shear flow (Balsa 1975; Goldstein
1975, 1976), in that the sources are radially compact and of low frequency. However,
the crucial differences are (a) that the physical source Jp in the present problem is
unambiguously identified by analysing the hydrodynamic field and (b) that the source
is non-compact in the axial direction and thus cannot be modelled appropriately by
acoustic multipoles.

Although the wavepacket is modulated over a length scale much longer than its
wavelength as in the theories of Tam & Morris (1980) and Crighton & Huerre (1990),
the present mechanism is fundamentally different from theirs. Firstly, the intensity of
the radiated sound waves is algebraically rather than exponentially small. Secondly,
the characteristic frequency of the sound emitted is comparable with the beating
frequencies, rather than the main frequency, of the instability modes. Thirdly, the
generation of sound waves involves an ‘inverse energy cascade’: the hydrodynamic
energy in relatively short-scale wave motions is first transferred to the unsteady
mean-flow distortion of large scale before being radiated. Since sound waves are
emitted through the streaming effect and the source is a functional of the envelope,
the mechanism may be referred to as ‘streaming acoustics’ or ‘envelope radiation’.
The latter is suggested here also because the general wave mechanics involved is quite
similar to the envelope-radiation mechanism proposed by Fritt (1982) and Chimonas
& Grant (1984) for the generation of gravity waves, where two Kelvin–Helmholtz
waves with short but similar wavelengths interact to generate a difference-wavenumber
mode of long wavelength, which radiates as a gravity wave (Scinocca & Ford 2000). An
interaction of this kind between two two-dimensional temporally evolving instability
modes on a subsonic planar jet was recently explored in the framework of the acoustic
analogy by Sandham, Morfey & Hu (2006) and was found to be able to explain certain
features of sound generation. In a more recent paper, Sandham & Salgado (2008)
further investigated the role of difference-frequency modes arising from interactions
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between spatially developing axisymmetric and helical modes on a circular jet (see
further discussion below).

As a matter of fact, the interpretation of the upper-scale or inverse energy transfer
in terms of the interaction of two purely sinusoidal eigenmodes is too simplistic
because the Reynolds stresses produced often do not consist of significant supersonic
components (see e.g. figure 6b of Sandham & Salgado 2008). It follows that the
resulting beating mode, with a difference wavenumber or frequency, is not a radiating
component and thus acoustically behaves more or less like the original eigenmodes
(see further discussion below). In order to produce a radiating response, the interacting
modes must be strongly modulated in both time and space over the beating time and
length scales. Their interaction generates an unsteady slowly breathing mean field,
and the inverse cascade is achieved via a streaming process. It should be pointed out
that the inverse cascade is a hydrodynamic process in general. In our problem, it takes
place within the critical layer (Wu et al. 1993) and so is influenced by both viscous and
non-equilibrium effects at leading order. These effects are reflected respectively by the
exponential kernel and the convolution in the resulting physical source, the pressure
gradient jump Jp (see (3.30) and (3.31)). Since the physical source is embedded
within the shear layer, the generation of sound is further influenced by the mean-flow
refraction, the effect of which is properly characterized by a transfer function T
(3.51).

It is interesting to contrast the present asymptotic approach with the acoustic
analogy. When the latter is applied to the present problem, one may evaluate the
so-called nonlinear source, i.e. the Reynolds stresses contributed by the wave–wave
interaction, using the available solution for the instability mode and then solve (i)
Lighthill’s wave equation or (ii) Lilley’s equation, to predict the acoustic field. Either
version of the acoustic analogy involves an inverse cascade of energy from the
relatively high-frequency instability modes to the lower-frequency sound waves, but
the fact that the calculation is based on a wave or wave-like equation implies that the
inverse cascade is treated as an acoustic as opposed to a full hydrodynamic process.
Obviously, method (i) ignores both the viscous and mean-flow refraction effects,
while method (ii) includes the latter but neglects viscosity. Consequently, even if our
analytical solution for the instability waves is used to compute the ‘nonlinear source’,
the acoustic field predicted by method (i) or (ii) would differ at least quantitatively
from the first-principles solution given in the present paper. Another example in which
viscous effects play a leading-order role in the upper-scale energy transfer leading to
sound radiation was described by Wu & Hogg (2006). These observations suggest
that conventional descriptions of the inverse cascade by ‘nonlinear forcing’ acting on
Lighthill’s wave equation, or on Lilley’s equation, may not always be adequate.

Since both the present work and that of Sandham & Salgado (2008) address sound
radiation from relatively low-frequency components driven by nonlinear wave–wave
interactions, it is appropriate to comment on the relation between them. In the paper
by Sandham & Salgado (2008), Lilley’s equation was employed to compute far-field
sound waves radiated from the interactions between two axisymmetric modes, one
axisymmetric mode and one helical mode and between two helical modes both with
m =1. In each case, the forcing (or ‘source’) was taken to be the so-called streamwise
quadrupole, which was further assumed to be located at the inflection point. None
of these approximations can be justified in the context of acoustic analogy approach;
it is not clear a priori that the combinations of modes chosen are most relevant
or why only the steamwise quadrupole was retained and why it concentrates at the
inflection point. In contrast, the present asymptotic approach, which is based on a
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detailed analysis of the hydrodynamic field and its radiating property, shows that the
interaction between the helical pair (m = ±1) is most efficient in the sense that it leads
to an exceptionally large radiating ‘mean distortion’; the forcing (or physical source)
comes from the critical layer locally because dominant interactions take place there.
Moreover, the contribution to the dominant streaming is not from the ‘streamwise
quadrupole’ but from the ‘spanwise quadrupole’. This can be deduced by noting that
the jump (3.14) in this paper is essentially (3.49) of Wu et al. (1993), and the latter
comes from V̂

(0,2)
2,Y ∼ Ŵ (0,2) in (3.45), which is driven by the ‘spanwise quadrupole’ (see

(3.32)), while the ‘streamwise quadrupole’ S
(0,2)
11 in (3.45) does not contribute to jump

(3.49).
Sandham & Salgado (2008) found that for the combinations considered the

streamwise quadrupole turned out to be strongest for the difference mode with
St ≈ 0.2, apparently in agreement with the acoustic spectral peak observed in
experiments. Unfortunately, the significance of this result is undermined by two
facts: (a) the spanwise quadrupole, which may be just as and even more important
(see the discussion above), was neglected, and (b) the streamwise quadrupole, which
is modulated in space only, consists principally of subsonic components (see figure 6b
of Sandham & Salgado). As the authors realized, the radiation efficiency is actually
determined by small-amplitude supersonic components in its spectral tail (rather than
by the overall strength of the quadrupole). In order to elaborate this point a little
further, suppose that the instability modes have frequencies ω1 and ω2 (ω1 >ω2)
and streamwise wavenumbers α1 and α2. Then the ‘nonlinear source’ and hence the
difference-frequency mode can be represented in the form

D(X)φd(r) ei(α1−α2)x−i(ω1−ω2)t + c.c., (3.56)

where the dependence on the azimuthal coordinate is suppressed. The functions φd(r)
and D(X) characterize respectively the radial variation and axial modulation over a
slow variable X ≡ ε̃x, where ε̃ 
 1. Since the carrier wave has a subsonic phase speed
(ω1 − ω2)/(α1 − α2) < 1/Ma , radiating supersonic components may arise only when

the spatial modulation D(X) is considered. Let D̂(k) be the Fourier transform of

D(X) with respect to X. Typically, D̂(k) is of order one for k =O(1), but D̂(k) 
 1 for

large k � O(1). The Fourier transform of (3.56) can be written as D̂(k − (α1 − α2)/ε̃).
A component with wavenumber k is radiating if its phase speed (ω1 − ω2)/(ε̃k) is

supersonic, i.e. if |(ω1 − ω2)/(ε̃k)| > 1/Ma; the corresponding amplitude is D̂(ks), with
ks = k − (α1 − α2)/ε̃ in the interval

−[Ma(ω1 − ω2) + (α1 − α2)]/ε̃ < ks < [Ma(ω1 − ω2) − (α1 − α2)]/ε̃ < 0.

Obviously, D̂(ks) must be very small, since ks = O(1/ε̃) � 1 is in the spectral tail of
D. The result shows that although the difference-frequency mode (3.56) may emit
somewhat more efficiently than the original instability waves, the radiation might be
viewed as being essentially due to the mechanism described by Crighton & Huerre
(1990) for a subsonically propagating spatially modulated wavetrain, which (3.56)
is. In contrast, the slowly breathing mean distortion resulting from our streaming
mechanism is modulated simultaneously in both time t̄ and space x̄ and decays
algebraically in the radial direction (3.33). When it is Fourier transformed with
respect to the slow variables t̄ and x̄, dominant components concentrate in the
frequency–wavenumber domain (ω, k) in which ω = O(1) and k =O(1). The radiating
supersonic components (ω, k) = (ω, −Maω cos θ) (see (3.49)) are clearly within in
this prime energy-containing domain. These components occupy two fan-shaped
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sub-regions defined by |k| <Ma|ω|, implying that for Ma = O(1) the slowly breathing
mean distortion consists primarily of supersonic components.

4. Non-parallelism and the composite amplitude equation
4.1. Non-parallel-flow regime

In the non-equilibrium regime considered in § 3, the nonlinear evolution of the
instability modes takes place on a relatively short scale, for which non-parallelism
is negligible at leading order. If the initial amplitude is reduced, nonlinear evolution
would occur in an O(R−1/2) vicinity of the neutral position xn, i.e.

x3 = xn + R−1/2x̄ with x̄ = O(1). (4.1)

Non-parallelism then becomes a leading-order effect in the sense that the linear
growth rate of the modes varies over a length scale comparable with the length scale
over which the amplitude evolves. In the region specified by (4.1), the local basic
velocity and temperature profiles can be approximated, to the required order, by

(Ū (r, x3), T̄ (r, x3)) ≈ (Ū (r, xn), T̄ (r, xn)) + R−1/2(Ū1(r), T̄1(r))x̄.

Corresponding to the spatial variable x̄ (see (4.1)), the slow-time variable to describe
the simultaneous temporal modulation is

t̄ = R−1/2t.

The nonlinear evolution in this regime is considered in Wu (2005), where it is shown
that the threshold magnitude is

ε = O(R−7/6). (4.2)

The disturbance may be expressed at leading order as

(u, v, w, p, θ, ρ) = εĀ(x̄, t̄ )(p0, u0, v0, w0, θ0, ρ0)E cosmφ + c.c.

The evolution equation for Ā, which is related to Ã by Ā= R1/6Ã, is found to be

∂Ā

∂x̄
+ c−1

g

∂Ā

∂t̄
= σ x̄Ā + l̄Ā

∫ ∞

0

|Ā(x̄ − ξ, t̄ − ξ/c)|2dξ, (4.3)

where

l̄ = −iπrc/(c
2T̄cG)α−2/3|Ū ′

c|1/3(μcTc)
−4/3

(
2

3

)2/3

Γ

(
1

3

)(
α2 − m2

r2
c

)
m4

r4
c

.

The modulating mean flow in the main part of the jet remains unaltered, except
that the jump (3.30) simplifies to

Jp = 8π

(
2

3

)2/3

Γ

(
1

3

)
R̄cα

−5/3|Ū ′
c|1/3 sgn(Ū ′

c)(m/rc)
4(Tcμc)

−1/3|Ā(x̄, t̄ )|2. (4.4)

4.2. The composite amplitude equation

Equations (3.18) and (4.3) describe the nonlinear evolution in two distinguished
regimes respectively: the former includes the non-equilibrium effect but neglects non-
parallelism, while the latter does the opposite. It is desirable to construct a single
composite amplitude equation, which includes both effects, thereby unifying the two
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regimes. This can be achieved by observing that the operator governing the critical-
layer dynamics is

R−1/6

(
∂

∂t̄
+

∂

∂x̄

)
+ iαŪ ′

cY − μcTc

∂2

∂Y 2
.

In the derivation of (4.3), the O(R−1/6) non-equilibrium term was neglected, but it
had to be reintroduced in a diffusion layer governing the mean-flow distortion (Wu
et al. 1993). However, if this formally small term is retained within the critical layer,
then we arrive at the amplitude equation

∂Ā

∂x̄
+ c−1

g

∂Ā

∂t̄
= σ x̄Ā + lR2/3

∫ ∞

0

∫ ∞

0

K(ξ, η; s̄)Ā(x̄ − ξ, t̄ − ξ/c)

× Ā(x̄−ξ −η, t̄−ξ/c−η/c)Ā∗(x̄−2ξ −η, t̄− 2ξ/c −η/c) dξ dη, (4.5)

where l is the same as (3.19) and K is given by (3.85) of Wu et al. (1993) but
with s̄ = sR1/2. We shall assume that the disturbance upstream is of sufficiently small
amplitude such that nonlinearity is negligible. The appropriate initial condition then
is of the form

Ā → ā0 e(σ x̄−2)/2 Āl(x̄ − cgt̄ ) as x̄ → −∞, (4.6)

where Āl =O(1) and ā0 is the rescaled overall amplitude of the disturbance.
Alternatively, a composite amplitude equation can be obtained in the non-

equilibrium regime by retaining the O(R−2/3) term in (3.2), which was ignored in
deriving (3.18). The linear term in (3.18) is then modified to σ (
 + R−1/3x̃)Ã. The
resulting equation, when written in terms of x̄ by using the relation (see (3.1) and
(4.1))

x̄ = −R1/6
 + R−1/6x̃,

acquires the same form as (4.5). In the appendix, it is demonstrated that the evolution
problem ((4.5) and (4.6)) accommodates both regimes, each of which is realized for a
characteristic size of ā0.

It is informative, as well as convenient for computational purpose, to introduce
normalized variables

x̂ = |σr |1/2x, t̂ = |σr |1/2t, A = R−7/6Ā,

in terms of which, the amplitude equation (4.5) and initial condition (4.6) are rewritten
as

∂A

∂x̂
+ c−1

g

∂A

∂t̂
= σ̂ x̂A + l̂

∫ ∞

0

∫ ∞

0

K(ξ, η; ŝ)A(x̂−ξ, t̂−ξ/c)

× A(x̂−ξ −η, t̂−ξ/c−η/c)A∗(x̂−2ξ −η, t̂−2ξ/c−η/c) dξ dη, (4.7)

A → a0Al(x̂ − cgt̂) as x̂ → −∞, (4.8)

where

σ̂ = σ/|σr |, l̂ = R3l/|σr |3, ŝ = sR1/2/|σr |3/2.
Note that A= R−1Ã= R−7/6Ā is the unscaled amplitude, and the ‘initial condition’ a0

is measured by the projected ‘linear saturation amplitude’ at the neutral position (see
(3.21)).
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5. Results and discussions
In the numerical computation to be presented, the basic velocity profile is taken to

be

Ū =

⎧⎪⎨⎪⎩
1, r � h,

exp

{
−
(

r − h

b

)2}
, r > h,

(5.1)

which was suggested by Tam & Burton (1984) and has been used in a number of
papers including Wu (2005). Its applicability is restricted to the region before the end
of the potential core, after which the axial velocity decreases with the downstream
distance. For simplicity the Prandtl number is assumed to be unity so that the
temperature profile is given by Crocco’s relation

T̄ =

(
1 +

γ − 1

2
M2

)[
Ta + (1 − Ta)Ū

]
− γ − 1

2
M2Ū 2. (5.2)

The parameters h and b in (5.1) characterize the local centre and width of the shear
layer respectively and are related by (6.3) in Wu (2005) in order to conserve the
momentum. Both h and b are functions of x3, but a global relation is not needed
here, since the present analysis focuses on the vicinity of the neutral position xn. The
local variation is controlled by σs ≡ b′(xn), which is related to the usual spreading rate
of the ‘half-velocity width’ b′

1/2(xn) by the relation

σs = b′
1/2(xn)/(h

′(b) + ln
√

2). (5.3)

5.1. Characteristics of subsonic instability modes

The Rayleigh equation (3.4) is solved for three representative Mach numbers, M = 0.3,
0.5 and 0.9, by using a shooting method based on a fourth-order Runge–Kutta
integrator. For each value of b, the neutral wavenumber α, phase speed c and
hence frequency ω are obtained. For the convenience of comparing with experimental
results, the usual Strouhal number St = 2RJ f ∗/UJ = ω/π is introduced, where f ∗ is
the physical frequency in Hertz.

Figure 1(a, b) shows the predicted phase speeds and the wavenumbers for a range
of St . Also shown are the experimental data of Stromberg et al. (1980) and Suzuki
& Colonius (2006) for cold jets. The former experiment was performed at a low
Reynolds number R = 1800, for which the initial shear layer was laminar. The latter
was for a high-Reynolds-number (R = 3.5 × 105) turbulent jet. By assuming that the
flow signature at the outer edge of jet consists of predominantly linear instability
modes (an assumption well justified, since nonlinear effects are confined within the
critical layer), the phase and amplitude information of relevant modes was extracted by
projecting the measured pressure signal to the local eigenfunctions of the compressible
Rayleigh equation. The phase speed for each frequency shown was calculated from
the phase evolution at the saturation point and thus can be appropriately compared
with that of the neutral mode. A remarkably good agreement is noted. The Mach
number appears to have very little effect. The phase speed of relatively high-frequency
modes (St > 0.4) is almost independent of St .

The frequency of a neutral mode depends on the local shear-layer width b, which
is a monotonically increasing function of the streamwise location. Relatively low-
frequency modes are of jet-column type; they correspond to large b. As b decreases,
high-frequency modes arise, and their wavelengths become progressively shorter
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Figure 1. (a) Wavenumbers α, (b) phase speed c of neutral modes versus frequency St and (c)
Strouhal number Stb ≡ bSt versus b: dotted lines, M = 0.3; solid lines, M = 0.5; dashed lines,
M = 0.9; �, experiment of Suzuki & Colonius (2006) (M = 0.5); �, experiment of Stromberg
et al. (1980) (M = 0.9).

and eventually acquire the character of shear-layer modes, so called because they
concentrate in the thin shear layer centred at r = 1. This change of character is
demonstrated in figure 1(c), where Stb ≡ bSt is plotted against b. For b < 0.5, Stb is
almost independent of b, implying that the modes scale on the local shear-layer width
b. Figure 2 displays the eigenfunctions of neutral modes with St = 0.44 and St = 1.0;
the former features a jet-column mode, while the latter appears more like a shear-layer
mode. Subsonic modes attenuate exponentially, as opposed to the algebraic decay of
neutral supersonic modes (cf. Wu 2005).

5.2. The nonlinear development of pairs of helical modes

In order to assess the relative importance of non-parallelism, nonlinearity and non-
equilibrium effects, we first solve the composite amplitude equation (4.5) numerically
for the special case in which the temporal modulation is absent, i.e. A is independent
of t̂ . The spreading rate σs is a key parameter, and the regimes in which one or more
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Figure 2. Eigenfunctions of subsonic instability modes at M =0.9 with St = 1.0 (solid line)
and St = 0.44 (dashed line).
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Figure 3. Nonlinear development of a subsonic instability mode with St = 1 at M = 0.9 and
R = 1800 for an artificially small spreading rate σs =1.36 × 10−4. Curves (1)–(5) represent the
result for ‘initial amplitude’ a0 = 2.68 × 1021, 6.71 × 1016, 8.18 × 108, 5.10 × 102, 1.54 × 10−2.
The dashed lines in (a) and (b) represent the predictions by the non-equilibrium parallel
theory and equilibrium non-parallel theory respectively. The dashed–dotted line stands for the
linear evolution.

of the effects dominate can be readily delineated for small spreading rates. We take
σs = 1.36 × 10−4, equivalent to a half-width spreading rate b′

1/2 = 5.5 × 10−5, which
is about three orders of magnitude smaller than typical realistic values. Figure 3
shows the amplitude development for different values of a0. The predictions by the
composite equation (4.5) are compared with those by its limiting forms (3.18) and
(4.3).

Consistent with the result of Wu et al. (1993), in the parallel theory there exists
a critical threshold initial amplitude, above which the amplitude develops a finite-
distance singularity. The largest a0 shown in figure 3 (curve (1)) is close to but
slightly above the critical threshold, and so the singularity occurs in the solution
given by the parallel theory. With non-parallelism included, the amplitude remains
bounded. Although not shown here, it was found that as a0 is increased further,
the predictions by the two theories overlap to a great degree, and both feature a
singularity, indicating that a critical threshold ac exists also in the non-parallel theory.
For a0 <ac, nonlinearity is found to have a stabilizing effect, causing the amplitude to
attenuate at a location upstream of the linear neutral position. Overall, the larger the
initial amplitude is, the earlier the nonlinearity comes into play, with the evolution
occurring over a shorter scale. For these relatively large a0 values both theories yield
broadly similar results, suggesting that (3.18) is a valid leading-order approximation.
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Figure 4. Nonlinear development of subsonic instability modes on a jet at M = 0.9 and
R = 1800 with a realistic σs = 0.043. (a) St = 1 and the initial amplitude a0 = 1.77 × 10−2 (curve
(1)), 3.31 × 10−2 (curve (2)), 4.12 × 10−2 (curve (3)) and 5.16 × 10−2 (curve (4)). (b) St = 0.44
and a0 = 4.56 × 10−3 (curve (1)), 6.09 × 10−3 (curve (2)), 7.61 × 10−3 (curve (3)) and 9.13 × 10−3

(curve (4)). The dashed lines represent the linear evolution.

Non-parallelism nevertheless modifies the solution quantitatively; e.g. it increases
the critical threshold ac required for the solution to remain bounded. On the other
hand, as a0 decreases, one might expect the instability modes to enter the equilibrium
regime for which (4.3) holds. The prediction by the latter is displayed in figure 3(b).
The comparison with the composite theory indicates that for the σs considered, the
equilibrium theory gives qualitatively similar results, but the quantitative agreement
is rather poor: the attenuation occurs too early, and the maximum amplitude turns
out to be too small. In conclusion, for the present extremely small σs , one may
identify a parallel non-equilibrium regime (figure 3a) and non-parallel equilibrium
regime (figure 3b), the key features of which can be captured by simplified amplitude
equations (3.18) and (4.3), respectively. However, the composite evolution equation
(4.5) has to be used for quantitative predictions.

Figure 4(a, b) shows the nonlinear development of subsonic modes on a jet with
a realistic σs = 0.043, extracted from a half-width spreading rate b′

1/2 = 0.017, which
is typical of the experimental conditions (e.g. Iqbal & Thomas 2007). The Reynolds
number is R = 1800. As expected, there exists a critical ac such that for a0 > ac, the
amplitude terminates at a finite-distance singularity. Then it is necessary to construct a
uniformly valid solution for A by removing the singularity, which requires considering
fully nonlinear Euler equations (Goldstein & Choi 1989), before the emitted sound
can be calculated. Waves of such larger amplitude and faster modulation would
be a stronger source, but the radiation mechanism remains the same as elucidated
here. In what follows, we shall focus on a0 <ac, for which the amplitude remains
bounded. For σs values typical of experiments, it is no longer possible to identify any
limiting regime, and instead all three factors now operate simultaneously. With the
non-equilibrium effect included, nonlinearity has a slight stabilizing effect near the
peak amplitude, after which its role is destabilizing, causing the disturbance to decay
much more slowly than in the linear case. This differs even ‘qualitatively’ from the
equilibrium nonlinearity, which would have been entirely stabilizing, since the Landau
coefficient lr < 0. Such a slower-than-Gaussian decay was noted in the experiments
of Suzuki & Colonius (2006; see their figure 12a), and the overall growth, saturation
and decay predicted for moderate a0 are reminiscent of their measurements. The
oscillatory feature exhibited by the amplitude at relatively large a0, e.g. curve (3)
in figure 4(a) and curves (3) and (4) in figure 4(b), qualitatively resembles some
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Figure 5. The axial distribution of the peak density fluctuation R1 ≡ εR−1/3(−Θ1/T 2
c ) (solid

line) of a mode with St = 0.44 and a0 = 7.61 × 10−3 and comparison with the amplitude
development (dashed line). The axial coordinate is the distance to the jet exit normalized by
the diameter.

experimental observations made for helical modes in a turbulent jet, e.g. figure 5.26(b)
of Ahuja et al. (1982).

It should be pointed that while the amplitude A is proportional to the maximum
pressure fluctuation, it does not have such a simple relation with the axial velocity or
density fluctuations, which acquire their respective maximum magnitudes in the critical
layer. Due to the non-equilibrium effect, both depend on the history of A, as indicated
by (3.12). Figure 5 shows the axial development of the local maximum density
fluctuation, which is proportional to the maximum axial-velocity fluctuation according
to (3.12). The density evolution is contrasted with the amplitude A, renormalized such
that its maximum equals that of the density. Their shapes are quite similar, but the
density attenuates farther downstream, suggesting a strong non-equilibrium effect. It
may be noted that the density development appears quite similar to the experimental
result shown in figure 7 of Stromberg et al. (1980). Here for the convenience of
comparison, the axial coordinate is taken to be the distance to the nozzle by assuming
that the neutral position of the modes is located five diameters downstream.

In the absence of temporal modulation, the mean-flow distortion due to the mutual
interaction between a pair of helical modes induces a steady mean-flow distortion,
which is of interest in its own right and has been studied experimentally by several
authors (Cohen & Wygnanski 1987b; Long & Petersen 1992).

We can write

pm(x̃, r) = Jp(x̃)qm(r).

It follows from (3.29) that q(r) satisfies{
∂2

∂r2
+

1

r

∂

∂r
− 4m2

r2

}
qm +

(
T̄ ′

T̄
− 2Ū ′

Ū

)
∂qm

∂r
= 0,

qm(r+
c ) − qm(r−

c ) = 0, q ′
m(r+

c ) − q ′
m(r−

c ) = 1,

q ′
m → Ū 2 as r → ∞,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.4)

where the behaviour of qm for large r is derived by noting that for profile (5.1) and
(5.2), T̄ ′/T = 0 but Ū ′/Ū �= 0, at infinity.
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Figure 6. The normalized transfer function T(θ ; St)/T0 versus θ at (a) M = 0.5 and (b)
M = 0.9.

In terms of qm, the axial velocity um, which is of special interest, can be expressed
as

um(x̃, r) = c2/(T̄cŪc)Ju(x̃)
T̄ Ū ′

Ū 2
q ′

m(r).

Matching with the corresponding critical-layer solution (3.13) yields

Dm =

(
q ′

m

(
r+
c

)
− 1

2

)
Ju(x̃).

Using the multiplicative rule, we may construct a composite solution

U (c)
m =

⎧⎨⎩um(r)Um((r − rc)R
1/3, x̃, t̃ )/q ′

m(r+
c ) for r � rc,

um(r)Um((r − rc)R
1/3, x̃, t̃ )/q ′

m(r−
c ) for r < rc,

which is uniformly valid for all r . The distorted axial flow, (Ū + εU (c)
m cos 2mφ),

would become increasingly azimuthally dependent as it evolves downstream, and its
contours in the (r, φ) plane would appear elliptic as observed in experiments (Cohen
& Wygnanski 1987b; Long & Petersen 1992).

5.3. The transfer function T(θ; St)

The transfer function T(θ; St) is determined by solving (3.52). Its dependence on St

comes from the critical level rc, which is a function of ωc, the carrier-wave frequency
of the instability wavepacket. If we artificially set Ū ′ = T̄ ′ = 0, i.e. neglect the refraction
of the background shear flow, (3.52) can be easily solved analytically to obtain

T0 = −r2m+1
c /(4m),

which is independent of θ . The refraction effect can then be quantified by the transfer
function T normalized by T0.

Figure 6(a, b) shows the variation of |T(θ; St)/T0| with θ for M = 0.5 and M =0.9.
At moderate Mach number (e.g. M = 0.5), T is a monotonic decreasing function of θ

for carrier waves of relatively low frequencies. As St increases, a broad peak, centred
at θ ≈ π/3, starts to emerge. At M =0.9, T exhibits a peak for all St at an angle which
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increases with St . The peak becomes sharper at higher Mach numbers. An interesting
and important fact is that |T(θ; St)/T0| > 1 around the peak angle, indicating that
the background shear flow acts as a ‘soundboard’ to amplify the emission along
certain directions. Therefore, without taking into account the refraction effect, neither
the directivity nor the intensity can be predicted correctly.

5.4. The acoustic field of a linear wavepacket

It is instructive to consider first the case in which the amplitude of a wavepacket

is sufficiently small so that it remains linear during its entire evolution. Let Â(x̄, ω)

denote the Fourier transform of Ā(x̄, t̄). Then it follows that Â(x̄, ω) takes the form

Â(x̄, ω) = Â0(ω) exp

(
1

2
σ x̄2 − ic−1

g ωx̄

)
, (5.5)

where Â0(ω) is the upstream spectrum of the wave envelope. As an example, we
consider the special case in which A0 is Gaussian

Â0(ω) =
√

2πâ0 e− d ω2

;

here â0 measures the overall intensity and 1/
√

d characterizes the scaled spectral
bandwidth, of the oncoming wavepacket. The wavepacket envelope in physical space
is given by

Ā(x̄, t̄ ) =
â0√
2d

exp

(
1

2
σ x̄2 − (x̄/cg − t̄ )2/(4d)

)
, (5.6)

which is merely ‘quasi-Gaussian’, since its shape is deforming continuously when
propagating downstream due to a complex group velocity cg . Equation (5.6) indicates
that the wavepacket decays to zero as x̄ → ± ∞. The wave envelope itself has an
envelope,

Ā2 = â2
0

√
π

2d
exp

(
−1

2
qx̄2

)
, (5.7)

which is Gaussian, since

q = −(σ + σ ∗) + (1/cg − 1/c∗
g)

2/(4d) > 0

is real. The axial extent in which the wavepacket is significant is measured by 1/
√

q .
It can be shown further that

Ĵp(x̄, ω)

â2
0j0

=

√
π

2d

∫ ∞

0

exp

{
−1

2
[d ω2 + q(x̄ − η)2 + iω(1/cg + 1/c∗

g)

× (x̄ − η)] − i(ω/c)η − 2s̄η3

}
dη (5.8)

and that

Ĵp(k, ω)

â2
0j0

=
π√
qd

e−{d ω2+(k+ω(1/cg+1/c∗
g )/2)

2
/q}/2 C(k, ω),

where the factor C(k, ω), defined as

C(k, ω; s̄) =

∫ ∞

0

e−2s̄η3−i(k+ω/c)η dη, (5.9)
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represents the non-equilibrium effect. Inserting this into (3.53) yields the spectrum

I(ω; θ)/
(
â4

0j
2
0

)
= ω4m exp

{
−
[
d +

1

q

(
Ma cos θ − 1

2
(1/cg + 1/c∗

g)

)2]
ω2

}
× |C(−Maω cos θ, ω)|2. (5.10)

The directivity is given by

D(θ) = T(θ)(sinθ)2m

[∫ ∞

−∞
ω4m e

−
{

d+(Ma cos θ−(1/cg+1/c∗
g )/2)

2
/q

}
ω2

|C(−Maω cos θ, ω)|2 dω

]1/2

.

(5.11)

In the equilibrium regime (s̄ = sR1/2 � O(1)), C ≈ (1/3)(2s)−1/3Γ (1/3), independent of
ω, and so the expressions for I(ω; θ) and D(θ) reduce to

I(ω; θ)/
(
â4

0 j 2
0

)
= ω4m exp

{
−
[
d +

1

q

(
Ma cos θ − 1

2
(1/cg + 1/c∗

g)

)2
]

ω2

}
C2, (5.12)

D(θ) = T(θ)(sin θ)2m

{
d +

(
Ma cos θ − 1

2
(1/cg + 1/c∗

g)

)2

/q

}−(m+1/4)

C. (5.13)

These results indicate that the acoustic field depends on all three parameters
characterizing the envelope Ā and the physical source Jp: the group velocity cg ,

frequency bandwidth 1/
√

d and jet spreading rate σs . Since cg is complex, whose
imaginary part cgi is typically one fourth of the real part cgr , both Ā and Jp appear
to be convecting downstream at speed cgr . However, their profiles undergo continuous
deformation because of a non-zero cgi . As will be shown later, nonlinear effects cause
further distortion of the wave envelope. The discussion above suggests that even in
the present idealized situation, it would be too simplistic to characterize the source
by a simple convection velocity.

We first consider a wavepacket with Strouhal number St = 0.44, which is chosen
because it corresponds to the peak frequency of hydrodynamic fluctuations in the
region in which the jet is nearly fully developed. The Reynolds number R = 1800 is
taken to be the same as in the experiments of Stromberg et al. (1980). Instead of
1/

√
d , the unscaled frequency bandwidth


ω ≡ 1/
√

Rd

will be used as a parameter because the latter is easily related to the carrier-wave
frequency ωc = πSt . For example, for the wavepacket with St = 0.44 to be considered,
we take 
ω =0.3 and 0.5, which correspond to bandwidths of about ωc/5 and
ωc/4 respectively. Figure 7(a, b) displays the directivity of the emitted sound and its
spectrum at θ = 90◦, predicted by (5.11) and (5.10) respectively for 
ω =0.5. In order
to assess the non-equilibrium effect, the prediction by formulae (5.12) and (5.13) is
also included, which is a valid approximation when the critical layer is equilibrium, i.e.
when s � 1. At this low Reynolds number, the results are quantitatively similar. The
acoustic field features a single-lobed pattern, indicating that the sound concentrates
in a beam which makes an angle of about θp = 46◦ to the jet axis. It consists of a
band of low-frequency components. At 90◦, the spectrum peaks at Stp = 0.06 ∼ 0.08.
Nevertheless, neglecting the non-equilibrium effect leads to an appreciable over-
prediction of the sound intensity, as well as a slightly smaller inclination angle of the
beam. The difference becomes much more substantial for high Reynolds numbers in
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Figure 7. (a) The directivity and (b) the spectrum at θ = 90◦ of the acoustic field radiated by
a linear wavepacket with St = 0.44 and 
ω = 0.5. Solid lines: non-equilibrium result; dashed
lines: equilibrium result. Reynolds number R = 1800 and σs =0.043.

typical experiments (e.g. R =O(106)). In the following, only (5.10) and (5.11) will be
used.

Figure 8(a, b) shows the effects of σs (the jet spreading rate) and 
ω (the bandwidth
of the spectrum). When σs is halved, θp is reduced from 54◦ to 50◦, while Stp drops
from 0.07 to 0.053, and meanwhile the acoustic intensity is more than doubled.
Increasing 
ω (from 0.3 to 0.5) reduces θp (from 54◦ to 46◦), but its primary effect
is to enhance the acoustic field as expected, while the peak frequency Stp is hardly
altered. Also shown in the figure is the spectrum at θ = θp = 46◦. In comparison with
the 90◦ spectrum, a broader peak centred at a higher St is observed.

The Reynolds number influences the D(θ) and I(ω, π/2) spectra via s (see (5.9) and
(5.10)), and its effect is demonstrated in figure 9(a, b). At R = 5.4 × 105, the directivity
remains similar to that in the R = 1800 case albeit with a slightly smaller θp = 50◦. A
notable change is that the spectrum exhibits double peaks, and the acoustic energy
shifts to lower-frequency components.

The salient features of the acoustic field appear to be robust and are qualitatively
consistent with experimental measurements. There are however noticeable quantitative
differences: the predicted θp (about 60◦) is larger and Stp (about 0.07) is smaller the
than typical experimental data θp ≈ 30◦ and Stp ≈ 0.2. It should be noted that in
experiments θ is defined with the origin being taken at the nozzle, while in our theory
θ is defined with the origin taken to be at the neutral position of the instability mode
under consideration. On taking into account the fact that the latter is usually about
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Figure 8. The (a) directivity and (b) spectrum of the acoustic field radiated by a linear
wavepacket with St =0.44 at R = 1800. Solid lines: σs = 0.043 and 
ω = 0.3; solid lines with
symbols: σs = 0.0215 and 
ω = 0.3; dashed lines without symbols: σs = 0.043 and 
ω = 0.5. In
(b), the dashed line with symbols represents the spectrum at θ =46◦ (σs = 0.043 and 
ω = 0.5).

4–6D downstream of the nozzle, the experimental value (measured at a distance of
30D; Stromberg et al. 1980) is converted to θp ≈ 40o, which is somewhat closer to the
prediction, but appreciable difference remains.

While a wavepacket with St = 0.44 is representative of the most energetic
hydrodynamic fluctuations in the region towards the end of the potential core, it
does not necessarily contribute the dominant noise (Freund 2001). Next, we consider
the acoustic field radiated by a wavepacket with St = 1.0, as a representative of
relatively high-frequency components, which are likely to be present in the upstream
region before the end of the potential core.

In figure 10(a, b), the directivity and spectrum for selected values of σs and 
ω (0.5
and 0.8) are displayed; here 
= 0.5 and 0.8 correspond to bandwidths of about ωc/6
and ωc/4 respectively. The characteristics of the beam appears almost identical to
that in the St = 0.44 case (cf. figure 8). The spectral peak shifts to higher frequencies
as might be expected. It is worth noting that while θp =55◦ is larger than the
experimental value, the peak frequency in the spectrum in this direction is Stp = 0.22,
which is well within the range observed in experiments.

Increasing the Reynolds number to R =2.7 × 105 does not substantially alter the
qualitative features of the directivity and spectrum, as is shown in figure 11(a, b).
However, at high Reynolds numbers, a wavepacket with the same amplitude emits
much more intense sound than at low Reynolds numbers (cf. figures 10b and 11b).
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Figure 9. Effect of the Reynolds number on the (a) directivity and (b) spectrum of the
acoustic field radiated by a linear wavepacket with St = 0.44, 
ω = 0.3 and σs = 0.043. Solid
lines: R = 1800; dashed lines: R = 2.7 × 105.

5.5. The acoustic field of a nonlinear wavepacket

In order to compute the acoustic field of a nonlinear wavepacket, we solve the
amplitude equation (4.5) by taking the Fourier transform with respect to t̄ (cf. Wu
2005). The amplitude in spectral space is inverted to evaluate the nonlinear term
in physical space, which is then Fourier transformed back to spectral space. For
x̄ → −∞, the nonlinear term is negligible so that (5.5) can be used as the ‘initial
condition’, imposed at a large negative x0. An Adams–Moulton (implicit) method of
sixth-order accuracy was employed to march the solution downstream.

Figure 12(a) shows the envelope development of a wavepacket with St =1.0 for
three different values of initial amplitude a0. In the linear limit, the envelope follows
a Gaussian distribution (5.7). As a0 increases, the envelope deviates from this shape
due to the nonlinear effect. Interestingly, nonlinearity appears ‘dormant’ during the
growing phase of the wavepacket and asserts its influence only in the decaying phase,
causing the envelope to decay at a slower rate than that in the linear limit. Double
peaks appear for relatively large a0. The axial profiles overall look quite similar to
those in the non-modulated case (cf. figure 4).

The directivity D(θ) of the acoustic field emitted by the wavepacket is shown in
figure 12(b) for different sizes of initial amplitude a0 = R−7/6â0/

√
2d . As a0 increases,

the lobed beam is tilted slightly away from the jet axis, but its gross feature is not
significantly altered by nonlinearity. Since D(θ), or the distance of the tip of the lobe
to the origin, measures the ‘efficiency’ of emission, the increase of the overall lobe
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Figure 10. The (a) directivity and (b) spectrum of the acoustic field radiated by a linear
wavepacket with St = 1.0 at R = 1800. Solid lines: σs = 0.043 and 
ω = 0.5; solid lines with
symbols: σs = 0.0215 and 
ω = 0.5; dashed lines without symbols: σs = 0.043 and 
ω = 0.8. In
(b), the dashed line with symbols represents the spectrum at θ =55◦ (σs = 0.043 and 
ω = 0.8).

size with a0 indicates that as a wavepacket envelope is distorted by the nonlinear
effect, it emits stronger sound. Meanwhile, the spectrum of the acoustic field becomes
broader, as shown in figure 12(c). For the largest a0 considered, the frequency band
is approximately in the range 0.1–0.3, broadly consistent with the experimentally
observed range of the acoustic spectral peak. Though not shown here, a similar effect
of nonlinearity is observed for St = 0.44.

6. Conclusions and further discussions
In this paper, we have investigated sound waves emitted by a wavepacket consisting

of a pair of interacting helical instability waves with nearly identical frequencies. Based
on relevant previous theoretical work on nonlinear instability, a composite amplitude
equation, which takes into account the effects of non-equilibrium, nonlinearity and
nonparallelism, was proposed to describe the entire growth–attenuation–decay cycle
of the wavepacket. The streaming effect of the wave interaction generates a strong
slowly breathing, azimuthally dependent mean flow distortion. An analysis of its
far-field asymptotic behaviour shows that it acts as the dominant emitter of low-
frequency sound waves. The latter was determined by a matched-asymptotic expansion
procedure. Parametric studies pertaining to relevant experimental conditions indicate
that the acoustic field is characterized by a single-lobed directivity pattern beamed
at an angle of about 45◦–60◦ to the jet axis and a broadband spectrum centred at
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Figure 11. The (a) directivity and (b) spectrum of a linear wavepacket with St =1.0 at
Reynolds number R = 2.7 × 105. Solid lines: σs = 0.043 and 
ω = 0.5; solid lines with symbols:
σs = 0.0215 and 
ω = 0.5; dashed lines without symbols: σs = 0.043 and 
ω = 0.8. In (b), the
dashed line with symbols represents the spectrum at θp = 53◦ (σs =0.043 and 
ω = 0.8).

a Strouhal number St ≈ 0.07–0.2. A wavepacket evolving nonlinearly was found to
radiate more efficiently, and the spectrum of the noise broadens considerably while
its directivity remains almost unaltered.

In the present first-principles theory, the dominant noise ‘emitter’ (i.e. the streaming
induced ‘mean field’) is identified in an unambiguous manner by analysing the large-
distance behaviour of the hydrodynamic field, without making an ad hoc attribution
of source. The theory therefore describes the precise physical process of sound
generation, which is found to involve an ‘inverse energy cascade’, a non-compact
source and the refraction effect of the background shear flow. The streaming-acoustics
mechanism revealed here is likely to be of fundamental importance for understanding
noise generation in subsonic and moderate-Mach-number supersonic jets, just as the
Mach-wave radiation is for high-Mach-number jet noise, where dominant structures
propagate supersonically. In particular, the present mechanism provides a possible
explanation for the amplification of the low-frequency portion of noise by pure-tone
excitation, since forcing a jet at a single frequency induces a response in the form of
a narrowband wavepacket (e.g. Stromberg et al. 1980), which then emits broadband
low-frequency sound waves.

As was remarked earlier, the present theory was prompted by the observations
made by Gamard et al. (2004). Further evidence supporting the theory can be
inferred from the experiments of Panda & Seasholtz (2002), Panda, Seasholtz & Elam
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Figure 12. The nonlinear development of a wavepacket (with St = 1.0, 
ω = 0.5) and its

acoustic field. (a)
√

A2 versus x̂. (b) Directivity pattern. (c) Spectrum at θ = 90◦. Initial
amplitude a0 = 2.53 × 10−2 (curve (1)), a0 = 2.95 × 10−2 (curve (2)), a0 = 3.38 × 10−2 (curve (3)).
The dashed lines represent the result for a linear wavepacket with a0 = 2.53 × 10−2. Reynolds
number R = 1800 and σs =0.043.

(2005) and Panda (2007), who found that the far-field sound correlates strongly with
the low-frequency (St =0.05–0.2) components of the density fluctuation within the
jet, while there is little correlation with high-frequency (St > 0.4) components. The
low-frequency density fluctuation seems most likely to be the signature of the mean
density distortion ρm induced by the nonlinear interaction. Since ρm is proportional
to the axial-velocity distortion um (3.13) (Leib & Lee 1995), the strong correlation
with ρm implies therefore a strong correlation with um, which is of course entirely
consistent with, and indeed expected by, our theory.

Our theory was formulated and predictions were made for a well-defined
realizable disturbance, and so they can be validated by numerical simulations
and/or experiments in which the assumed instability modes (m = ±1) are excited
in a controlled manner. In the laminar case, direct calculations of the acoustic far
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field should be feasible, at least for relatively low Reynolds numbers. For high
Reynolds numbers, to reduce computational costs one might have to take a ‘two-
stage’ approach, in which the hydrodynamic near field is resolved first, and the
far field is subsequently predicted either (a) by using an acoustic analogy equation
forced by (distributed or concentrated) sources in the form of Reynolds stress or
quadrupoles or (b) by propagating the relevant element of the near field via solving
a linear acoustic equation. Approach (a), though most popular and successful in
many occasions, suffers from several well-acknowledged problems such as a rather
ambiguous distinction of the source and propagation effects and sensitivity to the
error in sources leading to spurious noise. To these, we would like to add a further note
of caution that this approach may not always adequately describe the ‘inverse energy
cascade’ as explained in § 3.4. In contrast, approach (b) would appear conceptually
clear and natural, and its implementation may be aided by the understanding gained
from the present study. Since the slowly modulated standing wave in the azimuthal
direction with m =2 has been identified as the emitter, one may extract this specific
flow signature from the hydrodynamic solution and then propagate it to the far field
to obtain the correct solution for the acoustics. Usually, this method requires the
computation domain to be sufficiently large so that the numerical solution at the
outer edge of the domain has acquired the large-radial-distance asymptotic behaviour.
This stringent requirement, however, may not be necessary in the present problem
because based on the fact that the emitter is driven locally within the critical layer,
the local solution in its immediate vicinity may be continued to the entire field by
solving a ‘homogeneous’ Lilley’s equation. Note that the forcing imposed is in terms
of the slowly breathing mean-flow distortion rather than in the form of Reynolds
stresses (or quadrupoles), and so the procedure described above is subtly different
from usual acoustic analogy (e.g. Sandham & Salgado 2008), in that Lilley’s equation
now merely governs propagation but is no longer relied upon for the inverse energy
cascade.

At low speeds, it was possible in laboratory to introduce helical modes with specified
frequencies and azimuthal wavenumbers and follow their nonlinear interaction
(Cohen & Wygnanski 1987b; Long & Petersen 1992; Corke & Kusek 1993).
A verification of the mechanism proposed in the present paper would require
extending these controlled excitation techniques to the compressible regime to generate
m = ±1 modes and to carry out simultaneous acoustic measurements. An additional
requirement is the capacity of appropriately modulating each mode, so as to control
the frequency content of the resulting breathing ‘mean flow’, which determines the
emitted acoustic field. Intriguingly, in the incompressible regime strong fluctuations in
the the low-frequency band (see e.g. figure 16 of Corke & Kusek 1993) were observed.
It would be interesting to examine the role of these components in noise generation
at high speeds and their possible connections with the mechanism presented here. We
hope that the present theoretical work would spur such experiments.

It is noted that while the gross features of the acoustic field predicted by the
present study mimic experimental observations qualitatively, considerable quantitative
differences exist: the angle between the direction of maximum emission and the jet
axis is too large, and the results cannot account for sound waves in the relatively
high-frequency (0.3 <St < 4) portion of the acoustic spectrum. The discrepancy and
inadequacy may be due in part to the fact that the analysis is for a wavepacket
consisting of just two modulated helical modes, which radiate sound waves with
azimuthal wavenumber m = ±2 only, while in reality noise is contributed by
broadband instability waves (and also by small-scale turbulence). Interaction of
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multiple modes is probably most significant close to the jet nozzle because coexisting
axisymmetric and helical shear-layer modes in that region have comparable growth
rates and magnitudes (e.g. Cohen & Wygnanski 1987a). An investigation of their
nonlinear development and the associated acoustic radiation is currently in progress.
In particular, the interaction of multiple modes can emit sound waves with azimuthal
numbers m = 0 and m = ±1, which tend to concentrate along the directions that make
shallow angles with the jet axis. Moreover, the shear-layer modes have much higher
frequencies (St ≈ 4), and so the beating interaction among them may contribute to
the medium-frequency (0.4 <St < 0.8, say) portion of the emitted noise. It may be
expected that once this extra contribution is accounted for, the discrepancies with
experiments would be reduced.

As we explained in the introduction, the present theory was primarily formulated
for a laminar jet. It was nevertheless found to capture some qualitative features of
turbulent jet noise. The demonstrated relevance is underpinned by two facts. Firstly,
the physical mechanism described is general and robust: provided that a wave–wave
interaction generates a breathing mean flow, low-frequency sound waves are emitted.
Secondly, coherent wave-like structures in turbulent jets closely resemble instability
modes, as suggested by overwhelming experimental measurements. In the literature
on coherent structures, analyses involving instabilities modes, such as the present one,
are sometimes viewed as being for the mean field of a turbulent flow. Unfortunately,
it is impossible to justify this viewpoint on a rigorous mathematical or a fundamental
physical footing, for the very notion of ‘instability of a turbulent flow’ is open
to serious question. Inevitably, at the current stage one has to approach coherent
structures on an empirical basis. Characterizing them in terms of instability modes,
thereby constructing noise prediction models, appears to be a potentially fruitful
empirical framework. Even at this the empirical level, a number of effects, unique
to turbulent flows, remain to be investigated. First, while it has been established
(Suzuki & Colonius 2006) that coherent structures are well approximated by linear
eigenmodes in an extensive radial region, the detailed dynamics in the nonlinear
region and its impact on the overall evolution is not understood. We believe that the
nonlinear critical-layer theory, developed for laminar flows, is broadly relevant. The
new factor to be considered for turbulent jets is the influence of small-scale turbulence
on coherent structures. If an eddy-viscosity type of model is used, the net effect
would be a decreased equivalent Reynolds number, and so the qualitative behaviour
would remain similar. Further theoretical and experimental work is needed to test
this speculation. Second, coherent structures in a turbulent flow have a continuum of
spectrum. It has been observed that a small number of low-order POD or eigenmodes
may capture a significant fraction of the ‘hydrodynamic’ kinetic energy. However, how
they interact and radiate sound is yet to be fully understood. Furthermore, since sound
emission depends sensitively on the flow field, it is not at all certain that the same set
of modes would form an adequate basis for predicting the majority of the ‘acoustic’
energy in the low-frequency portion of the spectrum. Thirdly, small-scale turbulence
is generally viewed as a distinctive source emitting relatively high-frequency noise, but
a first-principles description of the precise mechanism does not actually exist; despite
that acoustic analogy approach has been regarded by many as a general framework.
In summary, an ultimate model capable of quantitatively accurate predictions relies
on further progress on the identification of a (hopefully small) set of large-scale
modes responsible for noise generation, on parameterization of the effect of small-
scale turbulence on coherent modes, on quantitative descriptions of their nonlinear
interaction and the radiation process and finally on parameterization of the noise of
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small-scale turbulence (which may continue to rely upon acoustic analogy aided by
presumably universal statistic properties of small-scale motions).

The bulk of this work was carried out when XW was visiting the LadHyx, Ecole
Polytechnique Paris, during March–April, 2007. It is a pleasure to thank Professor
Jean-Marc Chomaz and Dr Joseph Nicholas for discussions and hospitality. Helpful
comments and suggestions from the anonymous referees are gratefully acknowledged.

Appendix. The limiting forms of (4.5) and (4.6)
Here we demonstrate that the composite evolution system (4.5) and (4.6) describes

both the non-parallel equilibrium and parallel non-equilibrium regimes in the sense
that it reduces to the respective limit forms for suitable sizes of ā0.

For ā0 = O(1), (4.5) can readily be reduced to (4.3) by the same procedure as in
appendix B of Wu et al. (1993), namely by performing the substitution ξ → R−1/4ξ

(and ζ → R−1/6ζ ) and taking the limit R � 1.
On the other hand, when ā0 � O(1) we write

x̄ = −
̄ + x†/
̄, t̄ = t†/
̄, Ā = 
̄A†, (A 1)

where 
̄> 0 is chosen to be


̄ e− 1
2 σr 
̄

2

= |ā0| (A 2)

so that 
̄ � 1. The above relation determines the location at which the disturbance
first enters the nonlinear regime in terms of the initial amplitude: the larger the
amplitude, the earlier the nonlinear evolution commences. Inserting (A 1) into (4.5)
shows that

∂A†

∂x† + c−1
g

∂A†

∂t† = σ (−1 + x†/
̄2)A†+ (l/
̄4)R2/3

∫ ∞

0

∫ ∞

0

K(ξ, η; s†)A†(x†−ξ, t†−ξ/c)

× A†(x†−ξ −η, t†−ξ/c−η/c)A†∗(x†−2ξ −η, t†−2ξ/c−η/c) dξ dη,

(A 3)

where s† = sR1/2/
̄3. This indicates that the non-equilibrium effect is of secondary
importance provided 
̄ 
 O(R1/6). The non-equilibrium regime corresponds to the
distinguished scaling 
̄ =R1/6
 with 
= O(1), which is realized for

|ā0| = R1/6 exp

(
−1

2
σr


2R1/3

)

.

On noting that x̃ = x†/
= O(1) and that the non-parallel effect x†/
̄2 
 O(1) is a
higher-order correction, (A 3) reduces to (3.18). The initial condition can be rewritten
as Ã → eσ
x̃ Ãl(x̃ − cgt̃ ), the same as (3.20).
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