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Twisted absolute instability in lifted flames
Joseph W. Nichols,a� Jean-Marc Chomaz, and Peter J. Schmid
Laboratoire d’Hydrodynamique (LadHyX), CNRS, École Polytechnique, 91128 Palaiseau cedex, France
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The theory of resonant modes is extended to finite length systems containing pinch points of
complex axial wavenumber k0 and frequency �0 with arbitrary �kk

0 =�2� /�k2. The quantity �kk
0 is

shown to be an important indicator of how streamwise boundary conditions modify the local
absolute mode at �k0 ,�0�. In particular, when Im��kk

0 ��0, the pinch point is twisted, and resonant
modes owing to streamwise boundary conditions may then have growth rates greater than that of the
unbounded absolute mode. In this case, global instability may occur while the flow is only
convectively unstable. The premixing zone between the nozzle and a lifted flame on a
variable-density jet is an example of a streamwise-confined system containing a twisted pinch point.
For this system, linear stability analysis is employed to locate resonant modes along a solution curve
in the complex k and � planes. The orientation of the solution curve predicts destabilization owing
to streamwise confinement as well as increasing global frequency with decreasing lift-off height as
observed in previous direct numerical simulations. The theory also suggests that low-frequency
fluctuations observed in the simulations may be explained by beating between two resonant modes
of slightly differing frequencies. © 2009 American Institute of Physics. �DOI: 10.1063/1.3068758�

I. INTRODUCTION

When the flow rate of a nonpremixed round fuel jet is
sufficiently large, a diffusion flame cannot be sustained in the
immediate vicinity of the nozzle. Instead, the flame lifts off
of the nozzle and stabilizes a distance H downstream �see
Fig. 1� at which point a kinematic balance is achieved be-
tween the velocity of the oncoming reactants and the flame
speed given by triple flame theory.1,2 In a previous study,3

numerical simulations of lifted flames on absolutely unstable
round fuel jets have shown that the flow is stabilized by
decreasing the flame lift-off height H below a critical value
Hc. Before stabilization, the global frequency �G of the lifted
flame is observed to increase as H decreases. Also, just on
the threshold of stabilization, a low-frequency fluctuation is
observed to arise in addition to the instability at �G.

The lifted flame may be considered as a streamwise con-
finement to the absolutely unstable jet upstream. In this case,
the jet is bounded by the nozzle and the sharp acceleration of
the flow through the flame base. This acceleration acts as an
internal Neumann boundary condition to perturbations in the
flow, whereas the perturbations may be assumed to vanish at
the inlet, as shown in Fig. 1�b� where u� denotes a general-
ized perturbation. Such boundary conditions are believed to
only be stabilizing when applied at upstream and down-
stream locations.4,5 Using a lifted flame with an above criti-
cal lift-off height as an example, however, we will show here
that streamwise confinement may also be destabilizing, con-
trary to previous results.

Recently, it has been shown that transverse confinement

of parallel flows enhances absolute instability for planar jets
and wakes,6 rotating boundary layers,7 and round jets.8 Fur-
thermore, transverse confinement may render an otherwise
convectively unstable flow globally unstable owing to
growth and propagation of disturbances in the cross-stream
direction.9,10 In this case, growth and propagation are repre-
sented by instability modes resembling “leaky” modes11,12

which grow exponentially in the transverse direction, and
thus were previously thought to be unphysical. In this paper,
we suggest that streamwise confinement may have a similar
destabilizing role. In the case of streamwise confinement,
however, we will show that the destabilization arises from
twisted pinch points �i.e., with Im��kk

0 ��0 at the pinch point�
rather than leaky modes. It is interesting to note, though, that
twisted pinch points, like leaky modes, are at first a seem-
ingly paradoxical source of destabilization since they are as-
sociated with linearized Ginzburg–Landau �LGL� equations
which are noncausal.

Indeed, local stability analysis of a variable-density jet13

reveals a pinch point with Im��kk
0 ��0, where k and � denote

axial wavenumber and frequency, respectively, and �kk
0 de-

notes �2� /�k2 evaluated at the pinch point. The condition
Im��kk

0 ��0, however, is forbidden in the context of the LGL
equation studied in Ref. 4, since the problem is then non-
causal, as discussed below. The purpose of this paper is to
revisit and extend the theory discussed in Refs. 4 and 5 to
systems with pinch points with arbitrary �kk

0 . In particular,
we will see that systems �such as the lifted flame� containing
a bounded region of absolute instability with Im��kk

0 ��0
may be destabilized by resonant modes with growth rates
larger than that of the unbounded absolute mode, i.e., they
may be globally unstable while locally convectively
unstable.a�Electronic mail: joseph.nichols@ladhyx.polytechnique.fr.
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II. LIFTED FLAMES

A. Flow configuration

Since a lifted flame on a round variable-density fuel jet
serves as an example system throughout this paper, we
briefly describe its configuration here. Figure 1�a� shows a
cross section through a stable, axisymmetric lifted flame, ob-
tained by direct numerical simulation �DNS�. For the simu-
lation, an identical formulation of governing equations was
used as that described in Ref. 3. Namely, the low-Mach-
number equations,14 together with a conserved scalar equa-
tion and a one-step Arrhenius reaction source term, were
solved. The equations were advanced in time until the steady
solution shown in Fig. 1�a� was obtained.

In this figure, the centerline is located along the bottom
of the figure and a fuel jet enters through a nozzle of radius
d /2=0.5 from the left. The fuel-to-air density ratio S
=� j /�0=0.143 and Reynolds number Re=� jujd /�=1000,
where � j, �0, uj, d, and � are the density of the jet, the
density of the surrounding air, the jet velocity at the nozzle
exit, the nozzle diameter, and the fluid viscosity, respectively.
The jet profiles considered here are exactly the same as those
used in Ref. 3, in brief, a version of Michalke’s profile num-
ber 2,15 with shear layer thickness d / �2��=12.5 where � is
the momentum thickness of the shear layer and 1% coflow so
that uc=0.01uj.

In Fig. 1�a�, color contours of reaction rate reveal a triple
flame structure at the flame base, similar to that observed
in laboratory experiments and other numerical
simulations.1,2,16,17 Important to the present investigation is
that there exists an axially extended region of length H �the
lift-off height� where the fuel jet does not react. This region,
outlined by the heavy black lines in Fig. 1�b�, is bounded
upstream by the nozzle and downstream by the lifted flame
base and is known as the premixing zone since the pure fuel
issuing from the nozzle may partially premix with surround-
ing air in this zone before encountering the flame. As shown
by the fluid streamlines in Fig. 1�a�, the flow in the premix-
ing zone is nearly parallel and, for small enough density ratio
S, absolutely unstable.18

B. Dispersion relation

Since the variable-density jet in the premixing zone is
nearly parallel, we apply the locally parallel assumption to
this region only and consider the dispersion relation of per-
turbations about the inlet profiles. Caution should be taken
when applying the locally parallel assumption to viscous,
and thus spatially developing, flows. In a previous study,13

however, it was shown that locally parallel stability analysis
of a variable-density jet at the same Reynolds number �Re
=1000� as considered in this paper was able to match the
natural frequency observed from a fully nonlinear DNS to
within 5%. A subsequent study3 showed that the axial devel-
opment of local stability characteristics in the premixing
zone of a lifted flame followed closely the slow axial devel-
opment of the same stability characteristics in a nonreacting
variable-density jet, except in a small region in the immedi-
ate vicinity of the flame base. Therefore, we expect the lo-
cally parallel assumption to be valid over most of the pre-
mixing zone. The sudden change in stability properties
encountered at the flame base, however, is modeled by en-
forcing a downstream boundary condition on the perturba-
tions about the parallel flow in the premixing zone.

The perturbation dispersion relation for the parallel flow
in the premixing zone is visualized in Fig. 2 by mapping grid
points from the complex � plane into the complex k plane.
�r varied over the interval ���r ,50��r� and �i varied over
�0,11��i� with the increments ��r=0.0425 and ��i

=0.0449 chosen so as to include the absolute frequency �0.
For each �, a spectrum of eigenvalues corresponding to spa-
tial modes was solved by means of a spectral method de-
scribed in Ref. 13. In the spectral method, the radial direction
was discretized by 150 Chebychev modes in the case of the
circles and 200 Chebychev modes in the case of the �s. A
bilinear map was used to place the spectral collocation points
on a stretched mesh, and a Dirichlet lateral boundary condi-
tion was implemented at Rmax=20d, a distance sufficiently
large so as to limit transverse confinement effects.

From our calculations, we find that modes with
kr�0.15 are well converged, i.e., they do not vary signifi-

FIG. 1. �Color� �a� An axial cross section taken from DNS data of a steady lifted flame near the critical lift-off height. The flame is axisymmetric about the
centerline along the bottom edge of the figure. Color contours of reaction rate are shown together with fluid streamlines �black�. �b� A schematic view of the
lifted flame. The stability analysis focuses on the region outlined by the heavy black lines, known as the premixing zone. In this region, the streamlines shown
in �a� are nearly parallel.
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cantly with resolution. On the other hand, convergence
breaks down as the ki axis is approached �the gray region in
Fig. 2�. For an unconfined jet, a continuous spectrum exists
along the ki axis, corresponding to modes which oscillate in
the free stream.13 In the limit r→�, the amplitude of the
freestream oscillations diminishes as 	�r���
 / �2krr�
�exp�−krr�.8,19 In the case of a confined jet �even a slightly
confined jet such as the present case�, the continuous spec-
trum is approximated by a series of k− /k− pinch points
aligned close to the axis.10 As Rmax increases, these pinch
points move even closer to the axis and become more
densely packed. In what follows, however, we consider only
well-converged modes outside of the gray region. Note, how-
ever, that the width of the gray region may be reduced sim-
ply by increasing the resolution at the expense of increasing
computation time.

The dispersion relation for the present locally parallel jet
contains a pinch point at k0=1.409–1.968i corresponding to
a frequency �0=1.063+0.269i. Since Im��0��0, the flow is
absolutely unstable. At the pinch point we measure �kk

0

=0.1681+0.0402i. The points in Fig. 2 were colored accord-
ing to �i with blue and red corresponding to small and large
values, respectively. The magenta curve thus follows a path
of steepest descent through the pinch point before intersect-
ing a contour of �i=0 on either side of the pinch point. This

curve forms a portion of the contour F of the impulse re-
sponse integral discussed in the next section. Finally, the
blue curve forms the locus of resonant mode solutions as
discussed below.

III. LINEARIZED GINZBURG–LANDAU MODEL

A. Twisted pinch points

A generic pinch point �k0 ,�0� satisfies both the disper-
sion relation D�k ,��=0 and the zero group velocity criterion
�� /�k=0. Therefore, the lowest order Taylor series expan-
sion of the dispersion relation about the point �k0 ,�0� is

� − �0 = 1
2�kk

0 �k − k0�2. �1�

Equation �1� describes a saddle in the complex k plane
where the quadratic term gives rise to two branches of solu-
tions. When the instability is convective, the F contour of the
impulse response integral

G�x,t� =
1

4
2�
L
�

F

exp�ikx − i�t�
D�k,��

dkd� �2�

may be deformed to pass through the point �k0 ,�0� so that
the L contour taken as the real � axis does not cross zeros of
D�k ,�� �see Ref. 20 for details�. Furthermore, the F contour

kr

ki

k+
1

k+
2

k+
3

k+
4

k−
1

k−
2

k−
3

k−
4

0 1 2 3 4 5 6 7
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

FIG. 2. �Color� Grid points of the complex � plane are mapped through the dispersion relation of a round variable-density jet into the complex k plane. The
colors indicate values of �i of the original points, where red and blue correspond to high and low values, respectively. The magenta line represents the contour
of steepest descent through the pinch point which then intersects the contour �i=0. The black circles are an example of a discrete set of perfectly reflecting
resonant modes which in general must lie on the blue solution curve. The red curve is the modification of this solution curve taking into account reflection
coefficients.
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must follow a path of steepest descent when �i�0 in order
to avoid oscillating terms in the integral.21

Figure 3 shows a schematic of the local behavior of the
dispersion relation about a generic pinch point for two dif-
ferent values of �kk

0 . The curves represent contours of con-
stant �i mapped into the complex k plane through Eq. �1�.
Assuming �i

0�0, the F contour follows the path of steepest
descent between these curves, separating the k plane into two
branches of upstream and downstream propagating modes,
labeled k− and k+, respectively. The separating contour F is
an important feature of a pinch point since in general there
may exist other saddle points satisfying the dispersion rela-
tion and the zero group velocity criterion but through which
F does not pass. In this case, these saddles are composed of
the coalescence of two upstream propagating k− modes or of
two downstream propagating k+ modes and thus do not con-
tribute to the integral.21

If the modulus of �kk
0 determines the curvature of the

saddle, its phase defines its orientation. Figure 3�a� depicts
the orientation of the saddle for the LGL equation used in
Ref. 4 with D�k ,� ;��=Uk+ i��−k2�−�. In this case, �kk

=−2i and the F contour reduces simply to the real k axis.
Figure 3�b� depicts the local behavior of the pinch point for
the variable-density jet. In this case, the saddle is rotated a
little more than 45° in the clockwise direction. In general, if
saddle 3�a� is rotated more than 45° in either direction,
Im��kk

0 � becomes positive, and the pinch point is said to be
twisted.

Note that if the twisted saddle 3�b� was extended over
the entire k plane, i.e., if �kk

0 were a constant as for the LGL
model, the F contour could not separate the k+ and k−

branches since F must start and end on the real k axis. In
other words, a LGL equation with Im��kk

0 ��0 would not
satisfy causality22 since G�x , t� would not be zero for t�0,
the response then preceding the impulsive cause at t=0. It
seems that we have arrived at a paradox because the disper-
sion relation of the physical variable-density jet appears to
contain a pinch point associated with a noncausal LGL equa-
tion. This paradox is resolved, however, by considering reso-
nant modes which incorporate the behavior of the dispersion
relation farther away from the pinch point.

B. Resonant modes

In a convectively unstable system of finite length, as
shown in Fig. 4, a downstream propagating wave k+ may be
reflected into an upstream propagating wave k− at the down-
stream boundary. The k− wave may then be reflected back

into the k+ wave at the upstream boundary, completing a
cycle. If the frequency �+ associated with the k+ wave
matches the frequency �− of the k− wave, then the waves
will resonate. The superposition of the resonating waves
forms a resonant mode with frequency �G=�+=�−,

f�x,t� = �exp�ik+x� − exp�ik−x��exp�− i�Gt� . �3�

Here, we have chosen the relative amplitudes of the two
waves so that a Dirichlet boundary condition is satisfied at
x=0 �i.e., f�0, t�=0�. In order to also satisfy a Dirichlet
boundary condition at x= l, the wavenumbers k+ and k− must
satisfy5

exp�i�k+ − k−�l� = 1. �4�

This leads to the following conditions necessary for a reso-
nant mode:

�+ = �−, Re�k+ − k−� =
2n


l
, Im�k+ − k−� = 0, �5�

where n is a nonzero integer. The third condition above is
also known as the Kulikovskii criterion.23 The eigenfre-
quency of the resonant mode �G is in general complex. If its
imaginary part �Gi is larger than �i

0, the F contour corre-
sponding to an L contour with Im���=�i

0 passes through the
saddle and separates spatial modes with frequencies corre-
sponding to �i=�Gi into generalized k− and k+ branches. For
�Gi lower than �i

0, the resonance conditions are identical to
Eq. �5�, except that they are not restricted to k+ and k− waves
since they cannot be defined anymore. In this case, all
couples of resonant waves are valid. This means that the
addition of boundaries to a flow produces resonant modes
with modified �real� frequencies and growth rates compared
to the unbounded absolute mode. As we will see, in the case
of twisted pinch points, the growth rate of resonant modes
may be larger than that of the absolute mode.

Together with the dispersion relation, the first and third
conditions of Eq. �5� describe two continuous curves through
the four-dimensional space �kr ,ki ,�r ,�i� which meet at a
saddle point k0, as shown by the heavy black curves in Fig.
2. These two branches map through the dispersion relation
onto a single curve in the complex � plane, which ends at
�0. Along the continuous curve described by the first and
third conditions, the second condition of Eq. �5� is satisfied
only at discrete locations. This results in a discrete spectrum
of resonant modes each corresponding to a different branch
of the complex logarithm function implicit in Eq. �4�.

As previously mentioned, a lifted flame may be modeled
by a Neumann boundary condition f��l , t�=0 to the region of
parallel flow just upstream. Taking the derivative of Eq. �3�

(b)

k+

k−

F

k−

k+

F

(a)

FIG. 3. �a� Normal pinch point with Im��kk
0 ��0. �b� Twisted pinch point for

the case of the variable-density jet �Im��kk
0 ��0�.

k+R− R+

k−
x = lx = 0

FIG. 4. Schematic adapted from Ref. 5 of a resonant mode composed of a
downstream k+ wave superimposed with an upstream k− wave coupled
through reflections R− and R+ at the upstream and downstream boundaries,
respectively.
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gives the following condition for a resonant mode satisfying
a Dirichlet upstream boundary and a Neumann downstream
boundary:

exp�i�k+ − k−�l� =
k−

k+ . �6�

While similar to Eq. �4�, this condition is transcendental and
must be solved numerically. Like Eq. �4�, however, it still
yields a discrete spectrum of modes associated with the
branches of the logarithm function. Note also that as k−

→k+ �when l→�� the two conditions �4� and �6� become
increasingly similar, as do the solutions. Therefore, since the
behaviors of the two families of solutions are similar in the
region near the pinch point, we choose to use condition �4�
for simplicity.

We note here that condition �4� assumes perfect reflec-
tion at the upstream and downstream boundaries. This result
may be generalized by introducing reflection coefficients R−

and R+ at the upstream and downstream boundaries such that
	+�0�=R−	−�0� and 	−�l�=R+	+�l�. R− specifies how much
of the upstream propagating wave is reflected into the down-
stream propagating wave at the upstream boundary. Like-
wise, R+ gives the amount of the downstream propagating
wave that is reflected into the upstream propagating wave at
the downstream boundary. Taking into account the reflection
coefficients, the resonant condition becomes

exp�i�k+ − k−�l� =
1

R+R− . �7�

In the case of perfect reflection with R−=R+=−1, this condi-
tion reduces to the previous result in Eq. �4�.

Condition �7� may be rearranged as

�ki
+ − ki

−� =
Re�ln�R+R−��

2
n − Im�ln�R+R−��
�kr

+ − kr
−� , �8�

where n is the discrete mode number, and we have elimi-
nated l. To study stabilization, we consider only n=1, since
this is the last mode to disappear, as we shall see.

C. Resonant modes near a pinch point

As discussed in the previous section, the discrete spec-
trum of resonant modes lies along a continuous curve, the
discrete locations depending on the domain size l. As l→�,
the discrete spectrum becomes increasingly dense along the
curve, although when l=�, we may only observe the abso-
lute mode at �k0 ,�0� with zero group velocity. Since the two
branches of the locus of solutions meet at the pinch point
�k0 ,�0�, we consider its behavior in the immediate vicinity
of a generic pinch point described to lowest order by the
dispersion relation �1�. If we apply the first condition of Eq.
�5� to this dispersion relation, we find that

�k+ − k0�2 = �k− − k0�2. �9�

This can be expressed in terms of its real and imaginary
parts,

kr
+�kr

+ − 2kr
0� = kr

−�kr
− − 2kr

0� , �10�

kr
+�ki

+ − ki
0� = kr

−�ki
− − ki

0� . �11�

From the second equation, assuming kr
+�kr

− and noting that
�ki

+−ki
0�= �ki

−−ki
0�, we find

ki
+ = ki

− = ki
0, �12�

which means that in the complex k plane, all of the resonant
modes appear on the horizontal line Im�k�=ki

0. Note that this
condition does not depend on �kk

0 so no matter how the pinch
point is twisted, the resonant modes always align on this
horizontal line. �kk

0 does affect the locus of solutions in the �
plane, however. Since the factor �k−k0�2 on the right hand
side of Eq. �1� is always real and positive along the line
Im�k�=ki

0, the two branches of the locus of solutions in the
complex k plane map onto a single line beginning at �0 in
the complex � plane, as shown by the sloping dashed line in
Fig. 5�a�. The orientation of this line is given simply by the
argument of �kk

0 .
If the pinch point is twisted, Im��kk

0 ��0 and the solution
curve is directed into the upper half � plane. Supposing that
dispersion relation �1� was valid over the entire � plane, this
would lead to a sequence of resonant modes with increas-

(a)

ωG,r

ωG,i

ω0
i

ω0
r

ω1

ω2

ω3

ω4

1 1.1 1.2 1.3
0.26

0.28

0.3

0.32

0.34

(b)

ωG,r

∆kr

2π/l

1 1.1 1.2 1.3
0

1

2

3

FIG. 5. �Color� �a� Resonant modes in the complex � plane. The three
curves represent the locus of solutions computed from the LGL model
�black dashed line�, the full dispersion relation assuming perfect reflection
�blue�, and the full dispersion relation using the overlap integral to find
reflection coefficients �red�. All three curves begin at the absolute frequency
shown by the �. Circles �1 , . . . ,�4 are a discrete set of perfectly reflecting
resonant modes, corresponding to those shown in Fig. 2. �b� Resonant
modes in the ��r ,�kr� plane. The discrete modes �circles� are equidistant in
the vertical direction. This determines the spacing along the �r axis, which
is then used in �a�.
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ingly strong growth rates. A Laplace contour integral, closed
in the upper half-plane, would always contain at least one
resonant mode in this case, violating causality �as already
noted�. Therefore, we retain the paradox introduced in Sec.
III A up to this point. In the next section, however, we re-
solve this paradox by considering the behavior of resonating
modes under the full dispersion relation and show that the
LGL model does indeed give the correct behavior close to
the pinch point.

IV. FULL DISPERSION RELATION

To find resonant modes under the full dispersion relation
satisfying Eq. �4� we apply the following numerical proce-
dure. Starting at the absolute frequency �0, we gradually
increase �r. For each �r above �0,r, a Newton iteration is
used to adjust �i so that ki

+=ki
−. This defines a curve along

which the first and third conditions of Eq. �5� are satisfied, as
shown by the blue curve in Fig. 2. As predicted by the analy-
sis of the previous section, this curve passes horizontally
through the pinch point. Once it is sufficiently far from the
pinch point, however, it curves to take into account the over-
all shape of the full dispersion relation. The remaining dis-
crete condition of Eq. �5� may then be satisfied along this
curve, defining a discrete set of resonating modes for a given
system length l. Shown by the black circles in Fig. 2, this
discrete set is divided by the magenta line into downstream
propagating modes k1

+ , . . . ,k4
+ and upstream propagating

modes k1
− , . . . ,k4

−.
The two branches of solutions in the complex k plane

map through the dispersion relation onto a single curve in the
complex � plane, shown in blue in Fig. 5�a�. In the complex
� plane, this solution curve begins at �0 and is initially ori-
ented in the direction arg��kk

0 � represented by the sloped
dashed line. In this case, the initial direction is toward the
upper half-plane since Im��kk

0 ��0. This means that there
exists a range of resonant modes with growth rates larger
than that of the absolute mode.

In order to satisfy the remaining, discrete condition of
Eq. �5�, we first draw the solution curve in the ��r ,�kr�
plane as shown in Fig. 5�b�, where �kr=Re�k+−k−� may be
understood graphically in Fig. 2 as the horizontal separation
between two resonating modes on either side of the magenta
line. At the pinch point, �kr=0 and then increases as �r is
increased and the modes move away from the pinch point. In
Fig. 5�b�, the discrete condition is satisfied along regularly
spaced horizontal lines where �kr=2n
 / l. These horizontal
lines intersect the curve shown in Fig. 5�b� at the circles,
where we have taken 2
 / l=0.8 for illustration. These points
define a discrete spectrum of �r values at which the discrete
condition is satisfied. Note that the slope of curve in the
��r ,�kr� plane determines the spacing of the �r values,
which cluster near �r

0 since the slope of the curve is steepest
at this point. The �i values corresponding to this spectrum
are shown by the circles in Fig. 5�a�.

V. DISCUSSION

As l decreases, 2
 / l increases and the spacing of the
discrete resonant modes along the solution curve increases.
For small enough l, the spacing 2
 / l between horizontal
lines in Fig. 5�b� is large enough so that none of them inter-
sects the solution curve. In this case, no unstable resonant
mode exists and the system is rendered stable. This restabi-
lization of the flow with strong streamwise confinement
agrees with results of numerical simulations of a lifted flame.
In the simulations, lifted flames with sufficiently low lift-off
heights were observed to be stable while their counterparts
with greater lift-off heights supported self-sustaining
instabilities.3

In Fig. 5�a�, the termination of the solution curve at a
finite growth rate is somewhat perplexing. After all, the lo-
cation of this end point was fixed by a numerical conver-
gence criterion, and thus should not be related to the under-
lying physics. This artifact can be explained, however, by
considering reflection coefficients at the upstream and down-
stream boundaries. Up to this point, we have assumed perfect
reflection of the k+ and k− waves. Near the end point of the
solution curve, this assumption breaks down. Recall that the
radial attenuation of the eigenmode associated with each
wave depends on the axial wavenumber kr as 	�r�
��
 / �2krr�exp�−krr�. Figure 6 shows the radial attenuation
for the k− and k+ waves, taken near the end point of the
solution curve. At this point, kr

− is small so most of the en-
ergy of the k− wave is contained in the free stream. At the
same time, kr

+ is large, which means that most of the energy
of the downstream wave is concentrated near the jet core. In
this case, we expect the radial separation of energy carrying
regions to yield poor reflection coefficients, so that we must
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FIG. 6. Normalized radial profiles of the resonating �a� k− and �b� k+ waves.
The modulus �heavy solid line�, real �thin solid line�, and imaginary �thin
dashed line� parts of the radial velocity v are displayed. This example was
taken for k− approaching the imaginary k axis, so that the difference of radial
attenuation between the two modes is apparent. In this case, the total reflec-
tion was measured to be �R+R−�=0.7.
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use condition �7� when solving for resonant modes instead of
Eq. �4�.

To quantify this effect, we resort to the overlap integral
taken from the theory of optics.24 The downstream reflection
coefficient R+ is given by

R+ = −
		+�r��	−�r���rdr

		+�r��	+�r���rdr
, �13�

where the � denotes the adjoint. A similar formula holds for
R−, with all of the + and � superscripts exchanged. In the
numerator, we take the adjoint with respect to the basis
formed by all upstream propagating 	− waves, whereas in
the denominator, the adjoint is formed with respect to the
basis formed by all downstream propagating 	+ waves.
These two different adjoint operators are a consequence of
the fact that while we match the values of the state variables
at the boundaries, we do not specify their axial derivatives.
Therefore, only one-half of the state information is used in
forming each boundary condition. Simply put, the reflection
coefficient R+ is found by projecting the normalized resonant
wave 	+ onto the basis of all upstream propagating waves
and then finding the component of the projection in the di-
rection corresponding to the upstream propagating resonant
wave. R− is derived in a similar manner. Note that the reflec-
tion coefficients derived from the overlap integral method
may in general be complex, taking into account a possible
phase shift between the upstream and downstream propagat-
ing waves. Also, since the system considered at present is
non-normal, the modulus of the reflection coefficients may
be greater than unity.

The red curves of Figs. 2 and 5 represent the modified
solution curve using the overlap integral method to calculate
reflection coefficients. The numerical method proceeds in
much the same manner as before: for each �r, we search for
an �i such that Eq. �7� is satisfied. Note, however, that this
means that new sets of adjoint modes must be computed at
each step in addition to the direct modes, since the reflection
coefficients depend on �i. Numerically, this is accomplished
using a linear least-squares algorithm to find the optimal pro-
jection of the resonant 	+ wave onto a basis of 	− waves and
vice versa.

Near the pinch point, the modified solution curve fol-
lows the original solution curve. Since �R+R−�
1 in this re-
gion, conditions �4� and �7� are nearly equivalent. As the k−

resonant wave approaches the imaginary axis, however, the
reflection coefficient decreases rapidly and the two solution
curves diverge. This corresponds to a sharp damping of the
resonant mode as shown by the red curve in Fig. 5�a�. There-
fore, we interpret the disappearance of perfectly reflecting
resonant modes past the end of the blue curve to be a model
for the rapid stabilization of these modes owing to the dete-
rioration of the reflection coefficients as the imaginary k axis
is approached.

We end our discussion by noting that when l is large
enough, two or more resonant modes are predicted with
growth rates larger than that of the absolute mode. Further-
more, these modes occur at slightly different frequencies and
thus may interact nonlinearly via wave triad interactions,25

forcing harmonics at multiples of the frequency differences.
This suggests that the low-frequency component observed in
the simulations of lifted flames may arise from a beating
between two resonant modes with closely spaced
frequencies.

VI. CONCLUSIONS

In this paper, we have investigated the behavior of reso-
nant modes arising from streamwise confinement. In particu-
lar, we have demonstrated that systems containing twisted
pinch points with Im��kk

0 ��0, such as the variable-density
jet, may be destabilized by streamwise confinement, contrary
to previous results.4,5 The source of this destabilization may
be understood by modeling the dispersion relation at the
pinch point by a LGL equation. Although the resulting LGL
equation with Im��kk

0 ��0 is noncausal, we have shown that
it still predicts the correct behavior of resonant modes near
the pinch point. This has been demonstrated by applying the
general resonance condition �4� to both the LGL model equa-
tion and the full dispersion relation, the results of which are
shown in Fig. 5�a� by the black dashed and blue lines, re-
spectively. Near the absolute frequency, the blue curve
converges to that predicted by the LGL equation. Further-
more, since this line is oriented toward the upper half-plane
there exists a range of frequencies �r in which resonant
modes have larger growth rates �i than that of the absolute
mode �i

0.
While this type of destabilization is of interest to physi-

cal systems such as the lifted flame, it may also be an im-
portant consideration for numerical simulations. In a simula-
tion of a system containing a twisted pinch point, reflections
from inflow and outflow numerical boundary conditions
would in this case lead to oscillations at a frequency corre-
sponding to the resonant mode with largest �i, perhaps over-
shadowing the desired absolute mode. Note that increasing
the system length l would actually make the situation worse
in this case, since the solution curve would become increas-
ingly populated with unstable resonant modes.

The upward trend of the solution curves shown in Fig. 5
cannot continue indefinitely, however. If this were the case,
we could not find a contour L closing the integral �2� in the
upper half-plane. Instead, the paradox of the noncausality of
the LGL equation is resolved by considering that it is only a
model valid close to the pinch point. Taking into account the
overall shape of the full dispersion relation reveals a differ-
ent behavior of resonant modes far away from the pinch
point. In the case of perfectly reflecting boundaries, the blue
solution curve appears to terminate at a finite growth rate.
When reflection coefficients are considered, this termination
is replaced by a rapid damping of the resonant modes as
shown by the red curve in Fig. 5. This damping is caused by
a deterioration of the reflection coefficients as the imaginary
k axis is approached. In either case, this leads to an eventual
stabilization as the system length l is decreased. Just before
stabilization, however, the remaining resonant mode has the
strongest growth rate. Therefore, the final stabilization for
short l may be viewed as a sudden, catastrophic transition. In
summary, for large l, the system is destabilized by resonant
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modes with growth rates larger than the absolute growth rate.
As l decreases, the destabilization becomes stronger until no
resonant modes remain along the solution curve, at which
point the system is rendered catastrophically stable.

The theory discussed in this paper agrees with results of
DNS of lifted flames on variable-density jets.3 In the simu-
lations, a critical lift-off height was found, below which the
system was rendered stable. Although the linear growth rates
were not obtained from the nonlinear simulations, the fre-
quency of the instability was observed to increase as the
lift-off height was decreased toward this critical lift-off
height. This agrees well with the results presented in Fig. 5,
where �r of all resonant modes increases as l is decreased.
Finally, because there may be more than one resonant mode
present along the solution curve, each with a slightly differ-
ent frequency, this suggests that the low-frequency fluctua-
tion observed in the DNS may be caused by a beating be-
tween two different modes. Near the critical lift-off height,
however, we suspect that strong nonlinear effects may also
play a role in sustaining this low-frequency phenomenon,
since our model predicts an extremely rapid transition be-
tween stability and instability at this point.
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