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Abstract

We consider the stability of the steady, axisymmetric wake of a disk and a sphere as a function of the Reynolds

number. Both the direct and adjoint eigenvalue problems are solved. The threshold Reynolds numbers and char-

acteristics of the destabilizing modes agree with that documented in previous studies: for both configurations, the

first destabilization occurs for a stationary mode of azimuthal wavenumber m = 1, and the second destabilization

for an oscillating mode of same azimuthal wavenumber. For both geometries, the adjoint mode computation al-

lows us to determine the receptivity of each mode to particular initial conditions or forcing and to define control

strategies. We show that the adjoint global mode reaches a maximum amplitude within the recirculating bubble

and downstream of the separation point for both the disk and the sphere. In the case of the sphere, the optimal

forcing corresponds to a displacement of the separation point along the sphere surface with no tilt of the sepa-

ration line. However, in the case of the disk, its blunt shape does not allow such displacement and the optimal

forcing corresponds to a tilt of the separation line with no displacement of the separation point. As a result, the

magnitudes of the adjoint global modes are larger for the sphere than for the disk, showing that the wake of the

sphere is more receptive to forcing than the disk. In the case of active control at the boundary through blowing

and suction at the body wall, the actuator should be placed close to the separation point, where the magnitude

of adjoint pressure reaches its maximum in the four cases. In the case of passive control, we show that the region

of the wake that is most sensitive to local modifications of the linearized Navier-Stokes operator, including base
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flow alterations, is limited to the recirculating bubble for both geometries and both instability modes. This region

may therefore be identified as the intrinsical wavemaker.

c© 2009 Elsevier Ltd. All rights reserved.
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PACS:

1. Introduction

A large body of works has been devoted to the wake of axisymmetric bodies in the last decades. For differ-

ent objects, such as spheres, disks or bullet-shaped bodies (Achenbach, 1974; Fuchs et al., 1979; Berger et al.,

1990; Sevilla and Mart́ınez-Bazàn, 2004), the dynamics bears similarities: at low Reynolds numbers, the steady

separated flow field is axisymmetric and consists of a toroidal recirculation eddy past the body. Increasing the

Reynolds number, a stationary bifurcation first occurs and breaks the axisymmetry, the entire wake being shifted

in one direction. The series of bifurcation that follows is complex and body’s shape dependent (Fabre et al.,

2008), but eventually, for large enough Reynolds numbers, the flow is dominated by helical modes of azimuthal

wavenumbers m = ±1, resulting in the low frequency shedding of large-scale coherent structures. These vortex

shedding phenomena are characterized by low Strouhal numbers based on the body diameter of order 0.1− 0.2.

Natarajan and Acrivos (1993) have carried out a global stability analysis of the axisymmetric wake past a

circular flat disk set normal to the flow and a sphere. In both cases, they have shown that the axisymmetric base

flow presents several successive destabilizations. The first instability is stationary and involves a global eigenmode

of azimuthal wavenumber m = 1. The associated bifurcation, breaking the axisymmetry but preserving the time

invariance, leads to a 3-D steady state. Above the threshold of instability, these authors have not studied the

stability of this 3-D state but that of the axisymmetric wake. They have shown that a second instability occurs

at a larger Reynolds number, for m = ±1 oscillating global eigenmodes that breaks the time invariance. From

direct numerical simulations (DNS) and experimental observations, it turns out that this second instability mode

dominates the dynamics of the fully 3-D flow at large Reynolds numbers, hence explaining the occurrence of a

fully 3-D periodic state (Ormières and Provansal, 1998). Such a domination of the periodic instability mode over

the stationary mode, despite the fact that the latter is the first to destabilize the axisymmetric base flow has

recently been explained using slow manifold theory and normal forms (Fabre et al., 2008). To be more specific, the

sequence of bifurcation undergone by the real flow involves the destabilization of the steady tridimensional branch
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by an antisymmetric or a symmetric perturbation made of the superposition of two counter-rotating oscillating

modes with different phases. In the case of the sphere, this second bifurcation has also been studied by Pier (2008)

using the concepts of convective and absolute instability. His finding that the most absolutely unstable mode is

symmetric is consistent with the symmetry properties of the solution after the threshold of instability (Fabre

et al., 2008; Gumowski et al., 2008). Though, this competition between modes is not the scope of the present

study that focuses instead on the respective sensitivity and receptivity properties of these unstable global modes

in two model geometries of blunt and bluff bodies, namely the disk and the sphere.

This study extends the work of Natarajan and Acrivos (1993) by carrying out an adjoint analysis of the wake

past a circular flat disk and a sphere. We compute the direct and adjoint global modes associated to the first

two instabilities. We discuss the non-normality of the flow and point out the role of the so-called convective

non-normality (Chomaz et al., 1990; Chomaz, 2005; Marquet et al., 2009) associated to the transport of the

perturbations by the base flow. The paper is organized as follows. The problems of direct and adjoint global

modes are presented in Section 2, where we discuss the physical origin of the non-normality of the linearized

Navier-Stokes equations. Section 3 presents the numerical method and the results of the direct and adjoint global

stability analysis. We finally discuss physical interpretations of the adjoint global mode in terms of receptivity

of the global mode to initial perturbations and forcing and, following Giannetti and Luchini (2007), we identify

the ‘wavemaker’ region as the region of the flow where the instability is sensitive to local modification of the

linearized evolution operator. These properties are crucial when control or, for instance, departure from the ideal

axisymmetry owing to imperfect experimental set-ups are concerned.

2. Problem formulation

We investigate the stability of the axisymmetric flow developing past an axisymmetric body, that can be a flat

circular disk normal to the incoming flow, or a sphere. Standard cylindrical coordinates r, θ and z with origin

taken at the center of the body are used. The configuration is shown in Fig. 1 for the flow past a sphere. The body

of boundary ∂Ωbod is located on the axis of an enclosing cylinder of radius r∞ = 25 defining the computational

domain Ω, with boundaries ∂Ωax and ∂Ωext representing respectively the revolution axis of the base flow and the

boundary of the enclosing cylinder. The inlet ∂Ωin and outlet ∂Ωout are located respectively at z−∞ = −100 and

z∞ = 200.

All quantities are made nondimensional using the diameter of the body D and the free-stream velocity U∞.

The state vector q stands for the flow field (u, p)T, where T designates the transpose, u = (u, v, w)T is the fluid

velocity where u, v and w are the radial, azimuthal and streamwise components, and p is the pressure. The fluid
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motion is governed by the incompressible Navier-Stokes equations that read

∇ · u = 0 , ∂tu + ∇u · u + ∇p− 1

Re
∇2u = 0 , (1)

where Re is the Reynolds number based on D and U∞. We use the inlet condition u = (0, 0, 1)T on ∂Ωin, no-slip

conditions u = 0 on the body wall ∂Ωbod and no-stress conditions −pn + Re−1∇u · n = 0 on the outlet ∂Ωout.

On the external boundary ∂Ωext, we impose a free slip boundary condition u = v = ∂rw = 0, so that the body

surface ∂Ωbod is the only source of vorticity, as it would be the case without this artificial boundary.

2.1. Base flow

For Reynolds numbers below the threshold of the first instability, the flow can be searched as a steady, ax-

isymmetric solution q0 = (u0, 0, w0, p0)T satisfying equations

∇ · u0 = 0 , ∇u0 · u0 + ∇p0 − 1

Re
∇2u0 = 0 . (2)

On the axis ∂Ωax, we impose u0 = ∂rw
0 = 0, a condition given by mass and momentum conservation as r → 0

for axisymmetric solutions.

2.2. Global mode analysis

The stability of the steady axisymmetric base flow is examined by considering small-amplitude three-dimensional

perturbations q1 = (u1, v1, w1, p1)T which satisfy the unsteady equations linearized about q0

∇ · u1 = 0 , ∂tu
1 + C(u1, u0) + ∇p1 − 1

Re
∇2u1 = 0 , (3)

where C(a, b) = ∇a ·b+∇b ·a is the advection operator. Note that C is symmetrical, i.e. C(a, b) = C(b, a). When

considering the perturbation and base flow velocity fields u1 and u0, this operator accounts for the advection of
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the perturbation by the base flow via the term ∇u1 ·u0 and for the advection of the base flow by the perturbation

via the term ∇u0 · u1 . Since the base flow is axisymmetric, all perturbations are chosen in the form of normal

eigenmodes of azimuthal wavenumber m and complex pulsation σ + iω, σ and ω being respectively the growth

rate and pulsation of the eigenmode (σ > 0 for an unstable eigenmode):

q1 = q̂1(r, z)e(σ+iω)t+imθ + c.c. , (4)

where q̂1 = (û1, v̂1, ŵ1, p̂1)T is the so-called global mode, herein referred to as the direct global mode, for which

both the cross-stream and streamwise directions (r, z) are eigendirections. Substitution of decomposition (4) in

equations (3) leads to a generalized eigenvalue problem for σ + iω and q̂1 that reads

(σ + iω)Bq̂1 +Amq̂1 = 0 , (5)

where Am and B are the linear operators defined by

Am =



Cm(·, u0)− 1

Re
∇m

2 ∇m

∇m
T 0


 , B =



I 0

0 0


 . (6)

For a normal mode â of azimuthal wavenumber m, the gradient operator and the velocity gradient tensor read

∇m =




∂r

im

r

∂z




, ∇mâ =




∂rû
im

r
û− 1

r
v̂ ∂zû

∂r v̂
im

r
v̂ +

1

r
û ∂z v̂

∂rŵ
im

r
ŵ ∂zŵ




. (7)

The complex advection operator Cm in (6) is then defined as Cm(û1, u0) = ∇mû1 ·u0 + ∇0u0 · û1 and accounts

for the specific azimuthal periodicity of the normal mode. In the following, we restrict to the case of |m| = 1

disturbances. The associated global modes satisfy the following boundary conditions

∂rû
1 = ∂r v̂

1 = ŵ1 = p̂1 = 0 on ∂Ωax (axis), (8a)

û1 = 0 on ∂Ωin ∪ ∂Ωbod (inlet and body), (8b)

−p̂1n + Re−1∇1û1 · n = 0 (no-stress) on ∂Ωout (outlet), (8c)

û1 = ∂r v̂
1 = ∂rŵ

1 = 0 (free slip) on ∂Ωext (external boundary), (8d)

the condition at the axis ∂Ωax being specific to the azimuthal wavenumbers |m| = 1. In the following, all quantities

of interest will be presented using the representation used in Fig. 1, which corresponds to the azimuthal plane

θ = 0. For a given quantity whose normal mode expansion has been carried out, the knowledge of this particular

distribution and of the azimuthal wavenumber m thus allows to deduce the corresponding distribution in all other

azimuthal planes by rotation.
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2.3. Adjoint global modes

The adjoint evolution operator A†m is defined so that for any vectors q̂1 fulfilling boundary conditions (8) and

q̂1† fulfilling boundary conditions to be determined,

〈
q̂1†,Amq̂1

〉
=

〈
A†mq̂1†, q̂1

〉
, (9)

with 〈, 〉 the inner product on Ω defined by 〈â, b̂〉 =
∫
Ω

â∗ · b̂ rdrdz, where â and b̂ belong to Cn, the superscript

∗ stands for the complex conjugate, and · refers to the canonic hermitian scalar product in Cn. The adjoint

equations are obtained using integration by parts of equations (3) (Schmid and Henningson, 2002). The boundary

conditions to be fulfilled by adjoint perturbations are such that all boundary terms arising during the integration

are zero. For |m| = 1 disturbances, we obtain:

∂rû
1† = ∂r v̂

1† = ŵ1† = p̂1† = 0 on ∂Ωax, (10a)

û1† = 0 on ∂Ωin ∪ ∂Ωbod, (10b)

(u0.n)û1† + p̂1†n + Re−1∇1û1† · n = 0 on ∂Ωout, (10c)

û1† = ∂r v̂
1† = ∂rŵ

1† = 0 on ∂Ωext. (10d)

With our notation, q̂1† is then solution of an eigenvalue problem that reads

(σ − iω)Bq̂1† +A†mq̂1† = 0 , (11)

where A†m is the complex evolution operator defined as

A†m =



C†m(·, u0)− 1

Re
∇m

2 −∇m

∇m
T 0


 , (12)

and C†m(û1†, u0) = ∇0u0
T

·û1†−∇mû1† ·u0 is the adjoint advection operator. Comparing Am and A†m, we note

that the non-normality comes only from the advection operator and can be split in two complementary effects.

The lift-up type non-normality is due to the advection of the base flow by the perturbation, given by ∇0u0 · û1

for the direct operator Am and ∇0u0
T

· û1† for the adjoint operator A†m. When the flow is a simple parallel

shear, this term gives rise to the so-called lift-up effect, linked to the generation of strong streamwise velocity

perturbations by small displacements along the direction of the base flow gradient. The lift-up non-normality is

then associated to direct and adjoint global modes that tend to be orthogonal one to the other because con-

centrated on different components of the velocity vector (Marquet et al., 2009). The convective non-normality

(Chomaz et al., 1990; Chomaz, 2005; Marquet et al., 2009) is due to the transport of disturbances by the base

flow, given by ∇mû1 ·u0 for the direct operator Am and −∇mû1† ·u0 for the adjoint operator A†m, which have
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opposite signs. Physically, this indicates that direct perturbations are convected downstream and that adjoint

perturbations are convected upstream (Chomaz, 2005). As noticed in Chomaz et al. (1990) in the case of the

Ginzburg Landau model equation, this non-normality is specific to open flows and tends to spatially separate the

perturbation velocity fields, downstream for the direct perturbations and upstream for the adjoint perturbations.

The convective non-normality is then associated to direct and adjoint global modes that tend to be orthogonal

one to the other because localized in different regions of the flow. Of course, for real nonparallel flows, such as

those considered here, both mechanisms act and the spatial structures of the direct and adjoint global modes

result from their interactions (see Section 3).

As discussed in Chomaz (2005), the adjoint global mode may receive different physical interpretations. For an

unstable flow, it defines the most dangerous initial perturbation of unit norm, i.e. that maximizes the large-time

amplitude of the direct global mode (Schmid and Henningson, 2002; Chomaz, 2005). Presently, we will discuss

only the physics of the initial perturbation but not its time evolution, that may lead to possibly energetic transient

regimes before the large-time dynamics is reached.

For a marginally stable global mode, of growth rate σ < 0 (|σ| ¿ 1) and of frequency ω, the adjoint global

mode also characterizes the receptivity of the global mode to near-resonance harmonic forcing. This point is

crucial in the perspective of active control, where the idea is to produce a large effect in the flow by introducing a

small amount of energy, either by periodic blowing and suction at the wall, or by use of a volumic force. If forcing

occurs through a body force f̂ = (f̂r, f̂θ, f̂z)
T of frequency ωf close to ω and of same azimuthal wavenumber as

the global mode, the receptivity of the global mode, i.e. the amplitude of the forced global mode, is given by

α =
1

σ + i(ω − ωf )

〈
q̂1†, (f̂ , 0)T

〉

〈q̂1†,Bq̂1〉 , (13)

In the case of boundary forcing, for instance by periodic blowing and suction at the body wall ∂Ωbod, also with

the frequency ω and the same azimuthal wavenumber than that of the global mode, Giannetti and Luchini (2007)

have computed the global mode amplitude as a function of the velocity ûw imposed at the wall by modyfing

equation (8b) on ∂Ωbod into û1 = ûw:

α =
1

i(ω − ωf )

1

〈q̂1†,Bq̂1〉

∫

∂Ωbod

(
p̂1†n +

1

Re
∇mû1† · n

)
· ûwdl . (14)

The term arising from the Reynolds stresses is the only term sensitive to wall velocities that are tangential to

the wall. It has been argued in previous studies that for sufficiently large Reynolds numbers (Marquet et al.,

2009), this term can be neglected compared to the wall pressure p̂1†, implying that the flow is receptive only to

the wall-normal component of the velocity, and that the forcing is efficient only in regions of the wall where the

magnitude of the adjoint wall pressure |p̂1†| is large. However, for transitional Reynolds numbers, the Reynolds



8 Philippe Meliga et al. / Journal of Fluids and Structures 25 (2009) 1–37

stress contribution to the receptivity cannot be neglected. Indeed, it will be shown that this viscous contribution

does remain negligible for wall-normal velocities but is significant for tangential forcing. Note that relations (13)

and (14) are valid only for near-resonance forcing, when ω − ωf is small. They can be generalized to the case of

off-resonance forcing by solving for the norm of the resolvent operator (ωfB+iAm)−1 when a body force is added

to the momentum equations (Schmid and Henningson, 2001).

The adjoint analysis is also useful to identify the region of the flow which acts as the ‘wavemaker’. By considering

small modifications of the evolution operatorAm with the form of a ‘force-velocity’ coupling, Giannetti and Luchini

(2007) have argued that the sensitivity of the eigenvalue to such a local feedback is maximum in the region where

the product of the modulus of the direct and adjoint global modes is not zero, and that this overlapping region

therefore identifies the wavemaker. This concept of sensitivity has been extended recently to assess how imposed

steady base flow modifications or addition of a steady volumic force may alter the stability properties of flows,

leading to the definition of the so-called sensitivity to base flow modifications or sensitivity to a steady force,

respectively (Marquet et al., 2008). In the present paper, as in the study of Giannetti and Luchini (2007), we

present only results pertaining to the sensitivity to a ‘force-velocity’ coupling that represents a straightforward

identification of the wavemaker region, and can be also viewed as a feedback induced by an actuator located at

the same station as the sensor.

3. Results

The FreeFem++ software (http://www.freefem.org) is used to generate the triangulation with the Delaunay-

Voronoi algorithm. The mesh refinement is controlled by the vertex densities on both external and internal

boundaries. A schematic of the mesh structure is depicted in Fig. 1 in the case of the sphere, the mesh structure

being similar in the case of the disk, except that for computational reasons, the width of the disk L can not be

chosen strictly equal to zero, so that we have used the smallest possible value, corresponding to an aspect ratio

L/D = 10−3. To avoid any computational difficulty, a zone of width 0.05 and high vertex density (250 vertex

per unit length) is defined at the axis r = 0 and around the body, corresponding to the shaded area shown in

Fig. 1. The base flow equations, as well as the direct (5) and adjoint (11) generalized eigenvalue problems are

numerically solved by a finite-element method, using the same mesh. The unknown velocity and pressure fields

are spatially discretized using a basis of Taylor-Hood elements, i.e. P2 elements for velocities and P1 elements

for pressure. All equations are first multiplied by r to avoid the singularity on the r = 0 axis. The associated

variational formulation is then derived and spatially discretized on the mesh composed of triangular elements.

The sparse matrices resulting from the projection of the variational formulations onto the basis of finite elements

are built with the FreeFem++ software. The matrix inverses are then computed using the UMFPACK library,
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which consists in a sparse direct LU solver (Davis and Duff, 1997; Davis, 2004).

3.1. Base flow

For all the Reynolds numbers Re considered in this study, the base flow is stable to axisymmetric stationary

perturbations, and time-marching a direct numerical simulation of equations (1), with imposed axisymmetry and

required boundary conditions provides us with an approximate guess solution of the steady base flow q0. The

steady base flow q0 solution of the nonlinear equations (2) is then obtained using an iterative Newton method

involving the resolution of simple linear problems. Details of the numerical method may be found in Barkley et al.

(2002) and Sipp and Lebedev (2007). In the present study, the iterative process is carried out until the L2-norm of

the residual of the governing equations for q0 becomes smaller than 10−12. Fig. 2(a) shows iso contours of the base

flow streamwise velocity w0 computed for the disk at Re = 116.9. Note that since the base flow is axisymmetric,

the spatial distribution of w0 is identical in all other azimuthal planes. The solid line is the streamline linking the

separation point to the stagnation point on the r = 0 axis, it defines the separatrix delimiting the recirculation

bubble behind the disk. The negative values of the streamwise velocity close to the axis reaches 60% of the

free-stream velocity, whereas in the case of the sphere, shown in Fig. 2(b) for Re = 212.6, this value does not

exceed 40 %. In the case of the disk, the pressure component of the base flow is expected to be singular at the

edge of the disk, as predicted by Moffatt (1964). In the present numerical study, the thickness of the disk is

small but finite, and the pressure singularity is smoothed out at the very scale of the disk. In order to assess the

accuracy of the numerical method, the drag coefficient Cd and recirculation length L were computed for the sphere

wake. The values obtained at Re = 100 (L = 1.369, Cd = 1.087) and Re = 200 (L = 1.934, Cd = 0.770) show

excellent agreement with the calculations obtained by Fornberg (1988) using finite-difference methods (L = 1.373,

Cd = 1.085 at Re = 100 and L = 1.934, Cd = 0.768 at Re = 200, respectively).
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3.2. Stability analysis

To compute the leading eigenvalues of operatorsA1 andA†1, which are responsible for the successive instabilities,

we use a shift and invert strategy (Ehrenstein and Gallaire, 2005). The generalized eigenvalue problems are solved

using the ‘Implicitly Restarted Arnoldi method’ of the ARPACK library.

Since the adjoint problem (11) has been formulated for continuous operators with associated adjoint boundary

conditions, the spatial discretization of operators A1 and A†1 leads to discrete operators that are not hermitian one

to the other because the operator B involved in the right-hand side of problems (5) and (11) does not correspond

to the scalar product in cylindrical coordinates. We check a posteriori that the adjoint eigenvalues are complex

conjugate with the direct eigenvalues and that a bi-orthogonality relation (Chomaz, 2005), is satisfied for the

10 leading global modes (i.e. that the scalar product of one of the 10 leading adjoint modes with any of the 10

leading direct global modes associated to a different eigenvalue is less that 10−7) , and conclude that our numerical

procedure accurately estimates the direct and adjoint global modes.

Direct global modes are normalized by imposing the phase of the radial velocity to be zero at a particular

location, i.e. û1(0, 1) must be real positive. The eigenmode energy is then normalized to unity in a fixed domain

Ωin defined arbitrarily as z ∈ [−2.5, 5.25] and r < 2 and corresponding to the inner box in Fig. 1:
〈
q̂1, δinBq̂1

〉
=

1 with δin the function defined by δin(r, z) = 1 if (r, z) ∈ Ωin and 0 otherwise. The adjoint global modes are

then normalized so that
〈
q̂1†,Bq̂1

〉
= 1. Note that owing to the symmetries of the problem, equations (5) and

(12) remain invariant under the transformation (û1, v̂1, ŵ1, p̂1, m) → (û1,−v̂1, ŵ1, p̂1,−m), so that we need to

investigated only the case m = 1.

3.3. Stationary global mode

When the Reynolds number is increased from small values, a first stationary mode (ω = 0) destabilizes the

axisymmetric base flow at ReA, both for the disk and the sphere. In the following, this mode is named mode A

and the corresponding eigenvector is referred to q̂1
A. The critical Reynolds number is ReA = 116.9 for the disk and

ReA = 212.6 for the sphere. Fig. 3(a) shows the spatial structure of the streamwise velocity component ŵ1
A for the

disk. Since the azimuthal wavenumber is m = 1, the associated spatial distribution of w1
A for an angle θ is obtained

as w1
A(r, θ, z) = ŵ1

A(r, z)eiθ. In particular for θ = π, we have simply w1
A(r, π, z) = −ŵ1

A(r, z). The global mode

is dominated by axially extended streamwise velocity disturbances located downstream of the disk, that induce

an off-axis displacement of the wake (Johnson and Patel, 1999; Thompson et al., 2001). The associated adjoint

global mode q̂1†
A is presented in Fig. 3(b). The adjoint global mode presents high magnitudes of adjoint streamwise

velocity ŵ1†
A within the recirculating bubble and close to the body, and low magnitude disturbances upstream of

the disk. The downstream and upstream localizations of the direct and adjoint global modes resulting from the
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convective non-normality of the linearized Navier-Stokes operator are further evidenced on Figs. 3(c) and 3(d).

Fig. 3(c) shows the streamwise evolution of the amplitude of the direct global modes, computed as the density

energy integrated over a vertical cross-section for each streamwise position, i.e. EA(z) =
∫ r∞
0

|û1
A(r, z)|2rdr, as

well as the contribution of the streamwise velocity to this amplitude EA(z), i.e. SA(z) =
∫ r∞
0

|ŵ1
A(r, z)|2rdr. The

direct mode is nil upstream of the body, reaches a maximum in the recirculating bubble, and decreases slowly

downstream of the body. The contribution of the streamwise velocity to the direct global mode dominates the

entire field. Fig. 3(d) shows similarly the streamwise distribution of energy density for the adjoint global mode,

i.e. E†
A(z) =

∫ r∞
0

|ŵ1†
A (r, z)|2rdr, as well as the contribution of the cross-stream velocity components to this

amplitude E†
A(z), i.e. C†A(z) =

∫ r∞
0

(|û1†
A |2 + |v̂1†

A |2)rdr. The adjoint global mode vanishes downstream of the

body, and reaches a maximum in the recirculating area. Upstream of the body, its energy density is two orders

of magnitude smaller than in the recirculation bubble and decreases exponentially. In regions of the flow where
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the amplitude of the adjoint global mode is larger than 10−1, in particular in the whole recirculating bubble,

the contribution of the cross-stream velocity components to the adjoint global mode dominates the adjoint field.

For this first unstable mode A, the direct and adjoint global modes are concentrated on different components of

the velocity vector, the streamwise and cross-stream velocity components, respectively, suggesting that the lift-up

mechanism plays a significant role in the dynamics of the stationary mode. Furthermore, the direct and adjoint

global modes are mainly localized in the recirculation, with respectively downstream and upstream tails showing

the influence of the convective non-normality which, for the present flow, is moderate since the amplitude are

small away from the recirculation bubble. The non-normality may be quantified by the angle θA defined as

cos
(

π

2
− θA

)
=

〈q̂1†
A ,Bq̂1

A〉
〈q̂1†

A ,Bq̂1†
A 〉 × 〈q̂1

A,Bq̂1
A〉

, (15)

with 〈q̂1†
A ,Bq̂1

A〉 = 1 by convention here. The non-normality is thus measured by the departure θA to π/2 of the

angle between the direct and adjoint global modes, i.e. the larger the non-normality, the smaller θA. Note that

it is also possible to measure the non-normality of the global mode as the inverse of the scalar product of the

normalized direct and adjoint eigenmodes. In this case, a large non-normality is associated to small values of the

scalar product. It is worthwhile noting that both measures are closely connected, since the latter measure then

simply corresponds to the inverse of sin θA.

We define the streamwise amplitude of a complex velocity fields û(r, z) as the norm ||û||2L(z) =
∫ r∞
0

|û|2rdr. We

propose to quantify the contribution of the convective non-normality to the overall non-normality by considering

the parameter γ defined by

γ = 1−
∫ z∞

z−∞
||û1||L × ||û1†||Ldz

(∫ z∞
z−∞

||û1||2Ldz
)1/2

×
(∫ z∞

z−∞
||û1†||2Ldz

)1/2
= 1−

∫ z∞
z−∞

||û1||L × ||û1†||Ldz

〈q̂1†
A ,Bq̂1†

A 〉1/2 × 〈q̂1
A,Bq̂1

A〉1/2
. (16)

Using a standard Cauchy-Schwartz inequality, it can be shown that 0 ≤ γ ≤ 1. A value of γ close to 0 is reached if

||û1
A||L = β||û1†

A ||L meaning that the direct and adjoint global modes have the same spatial distribution of energy.

In that case, the convective non-normality is not active since it would imply a dissymmetry in the distribution of

the direct and adjoint modes. On the contrary , a value of γ close to 1 means that the direct and adjoint global

modes are spatially separated. For the disk, we find presently that θA = 0.17 (10◦) and γA = 0.40, meaning

that the non-normality of mode A is moderate and due to the convective non-normality at most at 40%, which

confirms the importance of the lift-up mechanism.

Fig. 4 shows the marginally stable stationary mode A and its adjoint global mode for the sphere. The general

dynamics is identical to that described on Fig. 3 in the case of the disk, indicating that the instability results

from similar physical mechanisms in both flows. The direct mode is led by the streamwise velocity component

downstream of the sphere and the adjoint global mode is even more concentrated in the recirculation bubble,

reaching a maximum just downstream of the separation point marked by the vertical grey line in Figs. 4(c) and



Philippe Meliga et al. / Journal of Fluids and Structures 25 (2009) 1–37 13

4(d). The cross-stream velocity components dominate in the recirculating area. In the case of the sphere, the

energy density of the direct global mode decays downstream slower than in the case of the disk and the adjoint

mode presents a weaker upstream energy density. At the separation point, the adjoint global mode exhibits an

energy density larger by one order of magnitude than that found for the disk. The non-normality of the sphere,

as quantified by θA = 0.07 (4◦), is significantly larger than that of the disk. The contribution of the convective

non-normality evaluated by γA is 0.76, and is also more important than in the case of the disk. This shows that

the wake of the sphere is more receptive to initial perturbation or forcing (both being m = 1 stationary), in

particular close to the separation line.

The magnitude of the product between the modulus of the direct and adjoint global modes is shown for the disk

and the sphere in Figs. 5(a) and 5(b), where the white solid lines stand for the separation lines. For both bodies, the

product is almost nil everywhere in the flow, except close to the body, along the separation line, and in the center

of the recirculation bubble where the largest values are reached. This specific spatial localization results from

the convective non-normality that induces the downstream and upstream localizations of the direct and adjoint

global modes. The similarity in the results for the disk and the sphere suggests the existence of a single wavemaker

for this instability for both shapes of bodies, located in the core of the recirculation. Following the argument of

Giannetti and Luchini (2007), passive control of the stationary m = 1 eigenmode should induce modifications of
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the base flow close to the core of the recirculation to achieve a maximum stabilizing or destabilizing effect. As

already commented, the sensitivity quantified on Fig. 5 is rigorously for a local ‘force-velocity’ coupling (Giannetti

and Luchini, 2007), i.e. the effect of a local body force actuation proportional to the signal of a velocity sensor

located at the exact same station. By extrapolation, it describes the effect of a steady base flow modification but

only qualitatively since the modified advection operator involves also the gradients of the perturbation velocity.

Note that in the recirculating bubble, the sphere exhibits a ‘force-velocity’ sensitivity larger than that of the disk,

suggesting that the wake of the sphere would be more controlable through the use of passive devices.

The solid lines in Figs. 6(a) and 6(b) present the distributions of the magnitude of adjoint pressure p̂1†
A on the

body walls, which, following relation (14), quantifies the receptivity to a stationary m = 1 blowing and suction.

For the disk, results are presented as a function of the radial position r, on the upstream and downstream walls of

the body. The upstream wall exhibits significantly larger receptivity to blowing and suction than the downstream

wall. Moreover, the upstream adjoint pressure distribution increases significantly close to the separation point,

where the maximum value is reached. The dashed lines present the normal component of the receptivity term

arising from the Reynolds stress contribution in (14), i.e. Re−1
A

(
∇1û1†

A · n
)
· n. It can be seen that for both
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body shapes, the magnitude of this viscous correction remains negligible compared to the maximum magnitude of

adjoint pressure, even at the moderately high Reynolds number under consideration. In the case of active control

by blowing and suction, an actuator that imposes a stationary m = 1 normal wall velocity will achieve maximum

efficiency if placed at the edge of the forward facing side of the disk. One may note that a small permanent tilt

of the disk corresponds to a small m = 1 wall displacement that may be modelled as an equivalent blowing and

suction of magnitude proportional to the distance to the axis, and may therefore force efficiently the stationary

mode A.

For the sphere, results are presented as a function of the azimuthal position ϕ, the origin of ϕ being taken at

the leading stagnation point (−0.5, 0). The vertical grey line is located at the separation point, corresponding to

ϕs = 116◦. The adjoint pressure p̂1†
A is zero on the axis, owing to the boundary conditions. The magnitude of

adjoint pressure reaches a maximum for ϕ = 102◦, upstream from the separation point. The level then decreases

slowly as one moves away from this optimal position, the magnitude of adjoint pressure remaining significant in the

range ϕ ∈ [80◦, 130◦]. The adjoint pressure level decreases upstream and becomes zero at the leading stagnation

point. The main difference with the disk is that the region where the m = 1 blowing and suction is efficient is

extremely extended with large receptivity values everywhere, except close to the stagnation points. Therefore, for

the sphere, the actuator would be slightly more efficient if placed just upstream from the separation (and not at

the separation) but its precise location is less important. In contrast, controlling the disk wake will be efficient

solely if the actuator is precisely positioned.

Normal to the wall blowing and suction is not the only way to control the flow at the wall. Active control can

also be achieved by imposing a tangential velocity, for which the relevant receptivity is given by the tangential

components of the viscous stress tensor, i.e. Re−1
A

(
∇1û1†

A · n
)
· ti, where ti(i = 1, 2) are the tangential vectors

oriented along the azimuthal and orthoradial directions. The maximum magnitude of this contribution represents

less than 8% of the maximum adjoint pressure in the case of the disk but 25% in the case of the sphere. A

convenient and efficient way of realizing such a control by tangential forcing would then be to rotate the sphere.

However, this receptivity, predicted at the critical Reynolds number, should decrease as the Reynolds number

increases.

As mentioned previously, the adjoint global mode also represents the most dangerous initial velocity pertur-

bation, since for a fixed initial energy of the perturbation, it maximizes the large-time amplitude of the direct

mode A. The effect of the optimal initial perturbation may be physically interpreted by considering the flow

reconstructed as the linear superposition of the base flow q0 and the adjoint global mode q̂1†
A with a finite am-

plitude ε. For the disk, ε is chosen equal to 2.4 × 10−2 so that the maximum streamwise velocity perturbation

represents 10 % of the maximum streamwise velocity w0
max. Figs. 7(a) and 7(c) show the streamlines of the adjoint

global mode in the region of the separation point in the azimuthal planes θ = 0 and θ = π. The solid and dashed
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lines stand for the separation line of the base flow and of the total flow q0 + εq̂1†
A , respectively. The levels of

adjoint velocity amplitude are indicated by the color shading, where dark regions stand for high perturbation

velocities. Close to the separation point, the streamlines are normal to the separation line, and oriented upstream

(resp. downstream) for θ = 0 (resp. θ = π). Consequently, the separation line is tilted upstream and downstream

as we move along in the azimuthal direction, the extremity of the line remaining pinned at the disk rime. The

optimal initial perturbation corresponds therefore to a stationary azimuthal modulation of the separation angle

with respect to that of the base flow. In the case of the sphere, owing to the larger receptivity of the wake, ε

is chosen much smaller (ε = 9.3 × 10−4) so that the maximum streamwise velocity perturbation represents 1 %

of the maximum streamwise velocity w0
max. Figs. 7(b) and 7(d) show that the streamlines of the optimal initial

perturbation are parallel to the sphere surface, and induce a displacement with no tilt of the separation line, in

agreement with the physical intuition that the separation line is no more pinned by the bluff geometry of the body.

The separation point is hence displaced upstream and downstream, so that the optimal initial perturbation, given

by the adjoint global mode, corresponds to a stationary displacement of the separation point in the streamwise

direction which ondulates in the azimuthal direction.
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3.4. Oscillating global mode

The second instability occurs at ReB for an oscillating mode of frequency ω = ω0. The associated mode is named

mode B and the corresponding eigenvector is referred to as q̂1
B . The critical Reynolds numbers and frequency are
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ReB = 125.3, ω0 = 0.760 for the disk and ReB = 280.7, ω0 = 0.699 for the sphere, the corresponding Strouhal

numbers St = ω0D/(2πU∞) being 0.121 and 0.111, respectively. Figs. 8(a) and 9(a) show the spatial structure

of the streamwise velocity ŵ1
B at the instability threshold for the disk and the sphere. Since the frequency is not

zero, the eigenmode q̂1
B is complex but we restrict the description to the real part q̂1

Br of the eigenvector, as its

imaginary part displays a similar structure, but approximately in spatial quadrature, indicating that this global

mode B corresponds to a spiralling perturbation behind the body, which rotates in time at the frequency ω0. Note

that because of the symmetries of the problem, the mirror spiral mode rotating in time at the same frequency but

in the opposite azimuthal direction also destabilizes the base flow. The general dynamics is identical for the disk

and the sphere, the direct modes B exhibiting periodic positive and negative velocity perturbations downstream

of the body. The adjoint global modes B are shown in Figs. 8(b) and 9(b). Again, we discuss only the real part

of the eigenvector q̂1†
Br, as its imaginary part displays a similar structure in spatial quadrature. The localization

of the adjoint global mode B is similar to that of the adjoint global mode A discussed above. For the disk and

the sphere, the oscillating adjoint global modes B exhibit large streamwise velocities ŵ1†
B within the recirculating

area and close to the body. They also display velocity disturbances upstream of the disk and the sphere under

the form of low magnitude periodic structures, visible despite their low amplitude by an appropriate choice of the

color look-up table in Figs. 8(b) and 9(b). Note that the absolute magnitude of these structures is slightly larger

in the case of the sphere compared to the disk. The downstream and upstream localizations of the direct and

adjoint global modes are further evidenced on Figs. 8(c) and 8(d) for the disk and on Figs. 9(c) and 9(d) for the

sphere. Figs. 8(c) and 9(c) show the streamwise distribution of energy density EB(z) of the direct global modes

(solid line), as well as the contribution of the streamwise velocity SB(z) to this energy (dashed line). We find

that the direct mode is evanescent upstream of the body and reaches a maximum in the recirculating area. The

downstream evolution differs between the disk, where the energy density decreases slowly, and the sphere, where

the fluctuations keep increasing downstream. Figs. 8(d) and 9(d) show similarly the streamwise distribution of

energy density E†
B(z) of the adjoint global mode (solid line), as well as the contribution of the cross-stream velocity

components C†B(z) to this energy (dash-dotted line). The adjoint global mode vanishes downstream of the body,

reaches a maximum in the recirculating area and decreases steadily upstream of the body. In the vicinity of the

separation point, the contribution of the cross-stream velocity components to the adjoint global mode dominates.

For both geometries, the contribution of streamwise velocity no more dominates the entire direct field, so that

the contribution of the lift-up mechanism to the structure of the direct global mode B is less important than

for the stationary global mode A. It can be seen comparing Figs. 8(d) and 9(d) that in the case of the sphere,

the oscillating adjoint global mode B exhibits an amplitude close to the separation point larger by almost one

order of magnitude than that found for the disk. The overall non-normality is important as we find here that

θB = 0.07 (4◦) for the disk and 0.02 (1◦) for the sphere. This indicates that the oscillating global modes B are
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more receptive to initial perturbation or forcing than the stationary global modes A, the wake of the sphere being

more receptive than that of the disk. We find for the convective non-normality parameter γB = 0.88 for the disk

and 0.94 for the sphere. These values are significantly more important than in the case of the stationary global

mode A, suggesting that the overall non-normality is almost entirely due to the convective non-normality resulting

in the streamwise separation of the direct and adjoint global modes.

The magnitude of the product between the modulus of the direct and adjoint global modes is shown for the

disk and the sphere in Figs. 10(a) and 10(b). The similarity between both flows suggests, for mode B also, the

existence of a single physical mechanism for the oscillating instability, with the recirculating bubble acting as the

wavemaker. The results are somehow reminiscent of that discussed for the first stationary instability of mode A,

with a product almost nil everywhere in the flow, except within the recirculation. However, comparing to mode

A, the largest values are reached along the separation line and no more in the core of the recirculation. This

suggests that shear instability is the physical mechanism responsible for the development of spiral modes B. In

the case of passive control, the base flow modifications should therefore be induced close to the separation line

to achieve maximum efficiency. Note that in the recirculating area, the sphere exhibits an amplitude significantly

larger than that of the disk, indicating that the wake of the sphere is more sensitive to local modifications of the

evolution operator.

In the case of the control of the oscillating instability via wall-normal blowing and suction, the contribution of

the Reynolds stress Re−1
B ∇1û1†

B · n is weak compared to the maximum level of adjoint pressure, a result similar
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to that evidenced for the stationary instability. Relation (14) thus indicates that only the magnitude of adjoint

pressure |p̂1†
B | determines the receptivity of the global mode, whereas the individual real and imaginary parts p̂1†

Br

and p̂1†
Bi are useful to predict the phase of the response of the forced global mode relative to that of the oscillating

wall forcing. Figs. 11(a) and 11(b) present the distributions of the magnitude of adjoint pressure |p̂1†
B | on the

body walls. The distributions are amazingly similar to that found for the stationary instability. For the disk, the

magnitude is larger on the upstream wall where the adjoint pressure distribution increases significantly at the

edge. For the sphere, the magnitude of adjoint pressure is maximum for ϕ = 86◦, upstream from the separation

point located at ϕs = 112◦. It decreases slowly as one moves away from this optimal position, the magnitude of

adjoint pressure remaining significant in the range ϕ ∈ [75◦, 115◦]. Therefore, in the case of active control, an

actuator that imposes a periodic m = 1 blowing or suction at the frequency ω0 should be placed at the rime

on the forward facing side of the disk, and upstream from the separation in the case of the sphere to be most

efficient. Similarly to the results obtained for the stationary instability of mode A, one may achieve good efficiency

by moving the actuator position around the separation point of the sphere, as the region of receptivity is quite

large. The main difference between both instabilities is that the magnitude of adjoint pressure levels are higher

for the oscillating instability of mode B. Therefore, one may expect that the control of the oscillating instability

will be less expensive than that of the stationary instability, i.e. that one will obtain the same amplitude of forced

global mode by introducing less energy in the flow. In the case of tangential forcing, the maximum magnitude of

this contribution represents less than 5% of the maximum adjoint pressure in the case of the disk but 25% in the

case of the sphere, a value identical to that found for the stationary instability.

Finally, as for the stationary mode A, we investigate the physical interpretation of the oscillating adjoint global
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mode interpreted as the optimal initial perturbation. For a time t = 0, we reconstruct the linear superposition of

the base flow q0 and the adjoint global mode q̂1†
B with a finite amplitude ε. Similar to the stationary instability,

ε = 2.4×10−2 for the disk and ε = 4.9×10−4 for the sphere, so that the maximum streamwise velocity perturbation

represents 10 % of the maximum streamwise velocity w0
max in the case of the disk, and 1% in the case of the sphere.

Fig. 12 shows the streamlines of the adjoint global mode in the region of the separation point in the azimuthal

planes θ = 0 and θ = π at time t = 0. The solid and dashed lines stand for the separation line of the base flow

and of the total initial flow q0 + εq̂1†
Br, respectively. Results are similar to that obtained for mode A. In the case

of the disk, the optimal initial perturbation corresponds to a periodic tilting of the separation line around the

fixed separation point. In the case of the sphere, it corresponds to a displacement of the separation point along

the sphere surface. Finally, it can be seen comparing Figs. 7(a) and 12(a), or Figs. 7(b) and 12(b), for instance,

that for the same amount of perturbation, we obtain a larger deformation of the recirculation in the case of the

oscillating instability, owing to the larger receptivity of the associated global modes.

4. Conclusion

In this study, we have investigated the linear dynamics of the steady axisymmetric flow past an axisymmetric

body. Two cases, the disk and the sphere, modelling characteristic geometries of blunt and bluff bodies, have been

considered. A linear global stability analysis has been carried out, whose results show good agreement with that of

Natarajan and Acrivos (1993). A first instability occurs for a stationary global mode A of azimuthal wavenumber

m = 1. The adjoint global mode A associated to this direct global mode has been computed and the physical

effect of this optimal perturbation on the recirculation area is to modulate the separation angle around the disk

edge or to displace the separation point along the sphere surface with no tilting of the separation line. The spatial

separation of the direct and adjoint global modes has been interpreted as a result of the convective non-normality,

resulting from the transport of the perturbations by the base flow. Downstream from the body, the direct global

mode A is dominated by the streamwise velocity component and in the recirculating bubble, and the adjoint

global mode A by the cross-flow components, which suggests that a lift-up mechanism is involved in the energy

production of the instability. A second instability occurs for an oscillating global mode B of azimuthal wavenumber

m = 1. The associated adjoint global mode B has been computed and the physical effect on the recirculation area

has been shown to be, as for mode A, a periodic rotation of the separation line at the disk edge or a periodic

translation of the separation point along the sphere surface. For both bodies and both instabilities, a detailed

analysis of the adjoint global modes has allowed to identify different regions of the flow that are of particular

interest in the perspective of control. The recirculation, more specifically the vicinity of the separation point, is

where all global modes are most receptive to initial perturbations and forcing of azimuthal wavenumber m = 1. As
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discussed in Giannetti and Luchini (2007), considering the overlapping of the direct and adjoint global modes A

and B, the wavemakers for the stationary and oscillating instabilities have been identified as being located in the

core of the recirculation, and the vicinity of the separation line, respectively. If control is considered, this analysis

suggests different locations of the actuator depending on the control method. In the case of passive control acting

through steady, axisymmetric modifications of the base flow, the actuator should be placed so as to modify the

base flow in the wavemaker region, presently in the recirculating bubble, to obtain a large impact on the dynamics.

In the case of active control by blowing and suction at the body wall, the adjoint pressure distributions show that

maximum efficiency is achieved placing the actuator precisely at the rime on the upstream face of the disk, and

upstream of the separation point for the sphere. However, in the case of the sphere, the receptivity is one order

of magnitude larger and the region of receptivity is broad, so that one may achieve good efficiency by moving the

position of the sphere actuator around the separation point. Finally, the magnitude of the adjoint pressure are

higher for the oscillating mode B than for the stationary mode A. Therefore, one may expect that the control of

the oscillating instability requires less energy to be introduced in the flow to achieve the same efficiency.
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Fig. 1. Schematic of the mesh structure: z−∞, z∞ and r∞ are, respectively, the location of the inlet, outlet and external

boundaries. The inner solid lines delimit regions characterized by different vertex densities. The grey shaded area corresponds

to the region of highest density.

Fig. 2. Base flow at the threshold of the first instability. Iso contours of streamwise velocity w0. The solid line indicates the

separated bubble. (a) Disk at ReA = 116.9. (b) Sphere at ReA = 212.6.

Fig. 3. Steady direct and adjoint global modes A for the disk at threshold - ReA = 116.9. (a) Spatial distribution of

streamwise velocity ŵ1
A. (b) Spatial distribution of adjoint streamwise velocity ŵ1†

A . (c) Streamwise distribution of energy

density EA(z) for the direct global mode. The dashed line shows the contribution SA(z) of the streamwise velocity component

to the energy EA(z). The vertical grey line marks the position of the separation point. (d) Streamwise distribution of energy

density E†A(z) for the adjoint global mode. The dash-dotted line shows the contribution of the adjoint cross-stream velocity

components C†A(z) to the energy E†A(z). The vertical grey line marks the position of the separation point.

Fig. 4. Same as Fig. 3 for the stationary direct and adjoint global modes A of the sphere - ReA = 212.6.

Fig. 5. Receptivity to local modifications of the linearized evolution operator corresponding to a local ‘force-velocity’ coupling

(Giannetti and Luchini, 2007) for the stationary mode A, quantified by the field |û1†
A | × |û1

A|(r, z). (a) Disk at ReA=116.9.

(b) Sphere at ReA = 212.6.

Fig. 6. Receptivity of the global mode A to blowing and suction - (a) as a function of the radius for the disk at ReA = 116.9.

(b) as a function of the angle from the leading stagnation point for the sphere at ReA = 212.6. The solid lines correspond

to the adjoint pressure distribution p̂1†
A and the dashed lines to the normal component of the Reynolds stress contribution

Re−1
A

(
∇1û1†

A · n
)
· n. The vertical grey line marks the position of the separation point.

Fig. 7. Optimal initial perturbation for the stationary instability. The solid and dashed lines stand for the separation line of

the base flow and of the total flow q0 + εq̂1†
A , respectively. (a) Disk at ReA = 116.9: magnified view of the adjoint velocity

field û1†
A close to the separation in the azimuthal plane θ = 0. Blue and white regions correspond respectively to large and

low values of the adjoint velocity magnitude, its orientation being shown by the streamlines. (b) Same as (a) but for the

sphere at ReA = 212.6. (c)-(d) Same as (a)-(b) in the azimuthal plane θ = π.

Fig. 8. Same as Fig. 3 for the oscillating instability of the disk - ReB = 125.3.

Fig. 9. Same as Fig. 3 for the oscillating instability of the sphere - ReB = 280.7.

Fig. 10. Same as Fig. 5 for the oscillating mode B. (a) Disk at ReB = 125.3. (b) Sphere at ReB = 280.7.
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Fig. 11. Same as Fig. 6 for the adjoint pressure distribution of the oscillating mode B. (a) Disk at ReB = 125.3. (b) Sphere

at ReB = 280.7.

Fig. 12. Same as Fig. 7 for the oscillating mode B. (a)-(c) Disk at ReB = 125.3. (b)-(d) Sphere at ReB = 280.7.
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