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Through an extensive and systematic experimental investigation of two geometries of
flexible plates in air, it is shown that a properly defined scaled Cauchy number allows
collapsing all drag measurements of the reconfiguration number. In the asymptotic
regime of large deformation, it is shown that the Vogel exponents that scale the
drag with the flow velocity for different geometries of plates can be predicted with
a simple dimensional analysis reasoning. These predicted Vogel exponents are in
agreement with previously published models of reconfiguration. The mechanisms
responsible for reconfiguration, namely area reduction and streamlining, are studied
with the help of a simple model for flexible plates based on an empirical drag
formulation. The model predicts well the reconfiguration observed in the experiments
and shows that for a rectangular plate, the effect of streamlining is prominent at
the onset of reconfiguration, but area reduction dominates in the regime of large
deformation. Additionally, the model demonstrates for both geometries of plates that
the reconfiguration cannot be described by a single value of the Vogel exponent. The
Vogel exponent asymptotically approaches constant values for small and for very
large scaled Cauchy numbers, but in between both extremes it varies significantly
over a large range of scaled Cauchy number.

1. Introduction
In most traditional engineering applications, structures are designed to be stiff such

that the loads they must bear do not deform them substantially. In nature, it is
quite the contrary (Vogel 1998). Especially when it comes to fluid loading, natural
structures tend to be compliant and flexible whereas man-made structures are rigid
and unyielding.

Plants, which seek to maximize their surface area to capture the most sunlight as
well as to facilitate their exchanges with the surrounding fluid, make use of their
flexibility by changing their shape when they are subjected to a fluid loading, whether
water flow or wind (Harder et al. 2004). By bending and twisting under fluid loading,
on the one hand, plants reduce their projected area perpendicular to the flow, and,
on the other hand, they also become more streamlined (Vogel 1996). Through these
two mechanisms of reconfiguration, the drag load that plants must support does not
grow with the square of the velocity of the flow they are subjected to – as it would
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on a rigid bluff body – but rather more slowly. How much slower is described with
the Vogel exponent V (Vogel 1984, 1996) such that

F ∝ U 2+V, (1.1)

where F is the drag load and U is the flow velocity. For example, the leaf of the tulip
tree studied by Vogel (1989) rolls up in a cone with increasing wind speed, hence
decreasing its cross-sectional area and making itself more streamlined. Whereas if the
leaf were rigid, its drag would increase with the square of the velocity of the flow
(V = 0), Vogel (1989) found that because of its reconfiguration, the drag increases
more or less linearly with flow speed (V ∼ −1).

Experimental measurements on the reconfiguration of plants are abundant in the
literature, and a large interest exists for an understanding of the scaling of drag of
plants with flow velocity. See for example the collections of Vogel exponents and data
on the reconfiguration efficiency of different terrestrial and aquatic plant species by
Vogel (1996, p. 143) and Harder et al. (2004) or the wind tunnel measurements on
different hardwood tree species by Vollsinger et al. (2005). However, little theoretical
interpretation is available.

The issue of drag on flexible systems has obvious implications in biology, agriculture
and forestry for understanding the adaptation of plants to their habitats (Harder et al.
2004; Vogel 2009) as well as for predicting and preventing phenomena of lodging
(Berry et al. 2004) and windthrow (Rudnicki, Mitchell & Novak 2004). In addition,
it could also have an influence on engineering projects that made the paradigm shift
to take advantage of structural flexibility. A few examples of such projects are the
coning concept wind-turbines (Crawford & Platts 2008), flexible wings for micro air
vehicles (Stanford et al. 2008), flapping foil propulsion (Daniel & Combes 2002; Alben
2008) and gas transfer through flexible hollow fibres in sludge wastewater treatment
(Ahmed et al. 1996). See also Jenkins (2005) for more applications of compliant
structures.

To bring a theoretical interpretation to the problem of reconfiguration of a flexible
system in fluid flow, Alben, Shelley & Zhang (2002, 2004) proposed a study combining
experimental measurements along with theoretical predictions. They studied the
deformation of a flexible fibre in a soap film flow with a special interest for the
scaling of the drag with respect to flow velocity. The soap film flow experiment is
especially interesting because it produces a flow that is almost constant across the
thickness of the film and hence can be modelled as two-dimensional. On the basis
of their experimental observations and their two-dimensional potential flow theory
model, they concluded that the drag on the fibre transitions from the classical drag
scaling of rigid bodies (V =0) to a drag law with a Vogel exponent of V = −2/3 as
the fluid forces are increased with respect to the fibre rigidity. Moreover, they found
that a shape self-similarity emerges as the fibre becomes more and more deformed.
In a follow-up study, Zhu & Peskin (2007) and Zhu (2008) extended the analysis of
Alben et al. to consider viscosity through a numerical study.

A three-dimensional configuration was studied by Schouveiler & Boudaoud (2006).
They experimentally reproduced the roll-up of leaves of Vogel (1989) using idealized
leaves each made of a thin circular plastic disk cut along a radius and immersed in
a water flow. Each disk held at its centre rolled up into a cone that became sharper
as the flow speed was increased. Schouveiler & Boudaoud presented a simplified
momentum conservation model which, coupled with the elasticity formulation of the
bending of the disk, predicted surprisingly well the variation of the measured drag.
Through their model, they also predicted that in the limit where deformation is very
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Figure 1. Schematics of the considered (a) flexible rectangular plate and (b) cut disks.

large, the drag on the rolling-up cone obeys a Vogel exponent of V = −4/3. However,
this limit was not reached experimentally.

The purpose of this paper is to present a general approach for studying
and understanding the drag reduction of flexible plates by reconfiguration. More
specifically, our goal is threefold: (i) through an extensive and systematic experimental
investigation on flexible plates in air flow, to find the correct dimensionless parameters
characterizing the problem of reconfiguration; (ii) with a simple dimensional analysis
reasoning, to find the Vogel exponent of the plates studied experimentally as well as
those of the previously studied problems of Alben et al. (2002) and Schouveiler &
Boudaoud (2006); and (iii) to develop a theoretical model as simple as possible for the
deformation of plates with flow to understand the mechanisms behind reconfiguration.

The article is organized as follows. In § 2, the experimental procedure for measuring
the drag on two geometries of flexible plates in a wind tunnel as well as the raw
experimental results is presented. In § 3, a dimensional analysis of the problem of
reconfiguration is performed and the experimental results are shown to collapse on
a single curve for each geometry. The dimensional analysis is extended in § 4 for
the asymptotic regime of large deformation, and Vogel exponents are found. In § 5,
a simple model coupling the Euler–Bernoulli equation for the large deflection of a
beam and an empirical drag formulation is derived, and its predictions are compared
with experimental observations. Concluding remarks are given in § 6.

2. Experiments
2.1. Procedure

Laboratory experiments were conducted using a small horizontal Eiffel wind tunnel
with a square test section of 0.180 m width. The wind stream is produced by a
centrifugal fan with an electric power of 2500 W mounted downstream and exhausting
airflow vertically. The mean velocity in the test section can be varied from 5 to 25 m s−1

with a turbulence level of 1.5 % at 10 m s−1.
Two simple geometries of plates deforming in pure bending were tested: rectangles

and disks cut along many radii. First, thin rectangular plates of length L, width W

and flexural rigidity B were glued at their centre onto the support as depicted in
the schematics of figure 1(a). As the airflow velocity was increased inside the wind
tunnel, the rectangular plate folded more and more as shown in the photograph
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Figure 2. Typical deformation of a rectangular specimen. Top view photographs of the
deforming specimen R16 subjected to flow velocities of 0, 2.4, 3.6, 5, 8.6, 14.2 and 16.6 m s−1.
Note that the picture at 16.6 m s−1 is blurry because of the occurrence of flutter.

Figure 3. Typical deformation of cut disks. Specimen D2 subjected to flow velocities of 0,
3.5, 6.0, 8.3, 14.3 and 19.6 m s−1.

mosaic of figure 2. The maximum velocity reached in the experiment was limited by
the maximum static and fluctuating loads allowable for the load cell. Flutter localized
at the ends of the rectangular plate appeared when the plate was highly deformed
thus causing fluctuating loads. In figure 2, it is possible to see that the most deformed
shape is blurry because of flutter.

The second geometry tested was a thin disk of radius R cut along many radii
constrained by an inner rigid disk of radius Ri and screwed at its centre onto the
support as shown in figure 1(b). When exposed to increasing flow velocity, the cut-out
sectors held at the centre of the disk bend downstream as shown in the photographs
taken at incrementing flow velocity in figure 3. This pattern of deformation is
reminiscent of the petals of the daffodils bending downstream in the wind flow as
studied by Etnier & Vogel (2000).

The 20 rectangular specimens used in the experiments had width W in the range
1.9–7.0 cm and length L in the range 3.7–15.8 cm. Four disks were tested, three had
an external radius R = 3.7 cm and one had a radius R = 5.0 cm. All flexible disks were
constrained by an inner rigid disk of radius Ri = 0.9 cm. A detailed listing of the
tested specimens is given in the Appendix.

The specimens were cut out from sheets of plastic such as transparencies
and document covers. Three types of sheets were used with flexural rigidities of
B = 1.82 × 10−3 Nm, 404 × 10−6 Nm and 91.4 × 10−6 Nm. For each type of sheet, its
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flexural rigidity was obtained by measuring the deflection of a small strip of material
clamped at one end bending under its own weight for varying length.

In order to study the effect of the flexibility on the drag scaling, rigid benchmark
specimens were also tested. The drag of seven rigid rectangular specimens was
measured spanning the range in width and length of all the flexible specimens except
for the three longest ones. For every rigid specimen, a U 2 least-square fit was done
and a reference drag coefficient CD could be inferred from the classical equation

F =
1

2
ρCDAU 2, (2.1)

where F is the drag, ρ is the air density, A is the area of the specimen perpendicular
to the flow and U is the flow velocity. Note that in this paper we consider the drag
coefficient as constant for a given geometry and flow conditions. We do not use
the drag coefficient to characterize the deformation or reconfiguration as it is used
by Alben et al. (2002) and Schouveiler & Boudaoud (2006). Another dimensionless
number is introduced in the next section for this purpose. The value of CD was found
to vary slightly with the aspect ratio but mostly with the blockage ratio of the wind
tunnel cross-section. Because in the next section a rigid reference for every flexible
specimen is required, the variation of the rigid benchmark drag coefficient with the
blockage ratio was fitted by employing the least-square method with a linear function

CD = 1.15 + 7.6
A

Axs

, (2.2)

where the area of the wind tunnel cross-section is Axs = 0.0324 m2. Similarly, as a
benchmark for the circular specimens, measurements on two rigid disks of radius
R = 3.7 cm and R = 5.0 cm led to drag coefficients of CD = 2.24 and CD = 3.96,
respectively. The drag coefficient increases with the area of the rigid specimen due to
an increase of blockage of the test section.

Every specimen tested was positioned at the centre of the test section by mounting it
on a support connected to a five-axis force sensor located under the wind tunnel. The
force sensor measured the drag of the specimen and a Pitot-static system measured
the flow velocity. For every specimen at each flow velocity tested, the 24 bit data
acquisition system collected the measurements of the drag and the flow velocity for
1 min and time averaged the values. The drag on the support alone was measured in
the same way and was subtracted from the drag of each specimen.

2.2. Raw experimental results

Typical results of the measured drag of rectangular plates are shown in figure 4. In
figure 4(a), we show the drag of three specimens of similar size versus flow velocity.
At small flow velocity, the drag of all three specimens is similar, but differs more and
more as the flow velocity is increased. For a rigid plate (�) the drag follows well the
U 2 fit (——), whereas for a flexible plate (�) the drag increases more slowly, and for
a more flexible plate (×) the drag increases more slowly. At high flow velocities, the
influence of flexibility on the drag is tremendous. The drag on the most flexible plate
is an order of magnitude smaller than that on the rigid plate.

The trends observable in figure 4(a) are representative of results obtained for
rectangular and disk-shaped specimens.

In figure 4(b), the variation of drag with flow velocity is shown for three plates
of similar width W and rigidity B but differing length L. At small flow velocities,
where the plates are not significantly deformed, the longest plate (�) and hence the
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Figure 4. Effect of different parameters on the drag of a rectangular plate. (a) Effect of the
flexural rigidity on the variation of drag with flow velocity on 10 cm × 3.8 cm specimens: (×),
R16; (�), R7; (�), rigid; (——), the fit of the drag of the rigid specimen using (2.1). (b) Effect of
the length on the variation of drag with flow velocity: (�) R3; (�), R7; (�), R9. (c) Variation
of the drag per unit of width with the length of the specimen. The drag data were obtained by
linearly interpolating the drag-versus-velocity data for the following flow velocities: (+), 6 m
s−1; (�), 9 m s−1; (�), 12 m s−1; (�), 15 m s−1; (�), 18 m s−1. A detailed listing of the tested
specimens is given in the Appendix.

one with the largest surface area has the largest drag; the second longest (�) has the
second largest drag; and the shortest plate (�) has the least amount of drag. On the
other hand, the drag increases more steeply with flow velocity on shorter plates. So
much so, that at high flow velocities the shortest plate (�) has the largest drag and
the longest plate (�) has the smallest one.

To clarify the role the length L plays on the drag of flexible plates, the drag of
specimens R1–R10 (listed in table 3 in the Appendix) at five reference flow velocities
is normalized by the width of the specimens and plotted against the specimen length
in figure 4(c). For all five velocities, at small length, the normalized drag increases
almost linearly with the increasing length. However, beyond a critical length, the drag
of the plate decreases with increasing length. In other words, beyond a certain length,
a longer plate has less drag than a shorter one.

With the proper dimensionless numbers, it is shown in the next section that all the
results of drag on flexible plates can be collapsed onto a single curve per geometry
of specimens.

3. Dimensional analysis
3.1. Rectangles

In the physical problem of the drag on a thin rectangular and initially flat plate
bending due to the airflow in a wind tunnel, seven quantities are to be taken into
consideration, namely the flexural rigidity, the length and the width of the plate, the
velocity and the density of the fluid, the drag and the cross-sectional area of the wind
tunnel test section:

B [Nm], L [m], W [m], U [m s−1], ρ [kg m−3], F [N], Axs [m2].
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According to the Π theorem of Buckingham (1914), our problem can be described by
four dimensionless numbers, which we pick as the Cauchy number, the reconfiguration
number, the aspect ratio and the blockage ratio:

CY =
ρL3U 2

16B
, R =

F
1
2
ρLWCDU 2

, a =
L

W
, q =

WL

Axs

. (3.1)

The Cauchy number CY characterizes the deformation of an elastic solid under the
effect of flow (Cermak & Isyumov 1998; Chakrabarti 2002; de Langre 2008). It is
defined as the ratio of the force produced by the dynamic pressure of the fluid flow
on the plate surface and the bending rigidity of the rectangular plates. Schouveiler &
Boudaoud (2006) refer to the Cauchy number as the ‘elastohydrodynamical number’
and Alben et al. (2002) use the ‘non-dimensional free stream speed’ which is equivalent
to

√
CY times a constant. Note that in our definition of CY , the factor 1/16 comes

from the facts that the plate is supported at its midpoint and that the fluid pressure
is proportional to ρU 2/2.

The reconfiguration number R emphasizes the effect of flexibility on the drag by
comparing the drag of the flexible plate to that of a rigid one of same geometry. The
drag of a rigid plate is quantified using (2.1). Through the drag coefficient CD , the
drag on the rigid rectangular plate depends on its aspect ratio as well as the blockage
ratio in the wind tunnel, i.e. CD = CD(a, q). Although a and q certainly interfere in
the aerodynamics of a flexible plate bent downstream, as a crude approximation we
can estimate the influence of a and q on the drag of a flexible plate to be the same
as on a rigid plate. From this approximation, the reconfiguration number is solely
a function of the Cauchy number and the constant drag coefficient R = R (CY , CD).
Moreover, the force produced by the dynamic fluid pressure in the numerator of the
Cauchy number must be scaled to lead to an actual drag; it must be scaled by a drag
coefficient. For this, we define the scaled Cauchy number:

C̃Y = CY CD. (3.2)

If all the effects of a and q are accounted for by CD , the reconfiguration number

should only be a function of the scaled Cauchy number, i.e. R = R(C̃Y ). Note that
Reynolds number effects are neglected because in our experiments the Reynolds
number based on the width of the plates varied between 6400 and 54 000 and drag
coefficients of flat plates and other bluff bodies are fairly constant in that range
(Blevins 1984).

The values of CY and R can be calculated from the data collected in the wind tunnel
experiments on 20 rectangular flexible specimens, and the value of CD corresponding
to each specimen is obtained from the linear fit of (2.2). Before presenting the results
of the dimensional analysis, we show how the dimensional analysis developed here
can also be applied to the experimental data on the three flexible fibres tested in a
soap film by Alben et al. (2002). The Cauchy and the reconfiguration numbers can be
related to the non-dimensional free stream speed η and the non-dimensional drag D,
respectively, of Alben et al., i.e. CY = η2/8 and R = D/(η2CD). The value of CD for the
two shortest fibres of length 1.8 and 3.3 cm is found using the least-square method
on the drag data of the rigid fibre of length 2.0 cm also tested by Alben et al. (2002).
However, for the longest fibre which spans 5.2 cm in a soap film of width 9.0 cm,
proximity of the walls becomes much more significant and another value of drag
coefficient is required. We therefore use the value of the ratio D/η2 at the smallest
flow velocity to define a value for CD for this longest fibre.
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Figure 5. Finding the right combination of dimensionless numbers to quantify the effect of
flexibility on the drag of rectangular plates. The reconfiguration number of the 20 rectangular
specimens tested in a wind tunnel (�) and that of fibres in a soap film from the experiments
of Alben et al. (2002) (�) are plotted versus (a) the Cauchy number and versus (b) the scaled
Cauchy number.

In figure 4, the drag of various rectangular plates was shown to vary with flow
velocity, and with specimen size and rigidity. Using the dimensionless parameters

R and C̃Y , all the experimental measurements performed on the 20 rectangular
specimens and the three fibres should collapse onto a single curve. First, the variation
of R with the original Cauchy number CY is plotted in figure 5(a) for wind tunnel
experiments (�) and for soap film experiments (�). A general tendency is discernible
in all the points but the scatter is still very important. This is expected because with
these dimensionless parameters, no correction is made to consider the effects of the
aspect ratio a and the blockage q .

Second, the variation of R with the scaled Cauchy number C̃Y is plotted in
figure 5(b). The points obtained from all the different specimens collapse onto a
single curve, confirming that the problems of drag on a flexible rectangle in a wind
tunnel and that of a flexible fibre in a soap film are essentially the same. Moreover,
from this collapse of the points, we can also conclude that this problem is governed

by the scaled Cauchy number. At low C̃Y , or when the fluid load is small compared
to the structural rigidity of the system, the points align on a horizontal line indicating

that the drag varies on them as it would on a rigid bluff body. At C̃Y between 1
and 10 the reconfiguration number begins to decline as the flexible plate or the fibre

reconfigures. As C̃Y increases further, R appears to decline in a constant logarithmic

slope. The scaling of R with C̃Y is discussed further in § 4. Before understanding the
reconfiguration of rectangular plates further, we apply a similar dimensional analysis
to the case of circular disks cut along many radii.

3.2. Disks cut along many radii

A similar dimensional analysis can be performed on the thin flexible disk cut along
many radii. On the problem of the drag of such a disk in a wind tunnel, seven
quantities are to be taken into consideration, i.e. the flexural rigidity and the radius
of the disk, the radius of the inner rigid support disk, the velocity and the density of
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Figure 6. Finding the right combination of dimensionless numbers to quantify the effect of
flexibility on the aerodynamic drag of circular disks cut along many radii. The white symbols
represent the experimental measurements done in the current study on disks cut along many
radii: (�), D1; (�), D2; (�) D3; (�) D4. The reconfiguration number obtained from the
experimentally measured drag of disks is plotted versus (a) the Cauchy number and versus
(b) the scaled Cauchy number.

the fluid, the drag and the cross-sectional area of the wind tunnel test section:

B [Nm], R [m], Ri [m], U [m s−1], ρ [kg m−3], F [N], Axs [m2].

According to the theorem of Buckingham, this physical system can be defined using
four dimensionless numbers:

β =
R

Ri

, CY =
ρ (R − Ri)

3 U 2β

2B
, R =

F
1
2
ρCDπR2U 2

, q =
πR2

Axs

. (3.3)

The tapering ratio β relates the ratio of the radius of the flexible disk to that of the
inner rigid support. The Cauchy number is based on the flexible cantilevered length
of each disk sector (R − Ri) and must be scaled by the tapering ratio β because the
fluid loading scales with the arclength of the circular sector of the flexible disk of
radius R while the bending moment is maximal at the support where the arclength is
proportional to the radius of the rigid disk Ri . The reconfiguration number and the
blockage ratio are defined similarly as those for the flexible rectangles. In the range of
Reynolds number studied, the drag on a rigid disk perpendicular to the flow is only a
function of the blockage of the tunnel section CD = CD(q), not the Reynolds number
(Blevins 1984). Similarly as for the flexible rectangles, we make the approximation
that the influence of blockage on the drag of a flexible plate is the same as on a
rigid plate. And because the pressure term in the Cauchy number must be scale by a

drag coefficient, we write R = R(C̃Y ), where the scaled Cauchy number is the Cauchy
number multiplied by the drag coefficient as in (3.2).

As previously done for the rectangular plates, we calculate the values of R and CY

for all our experimental points done on the four disk specimens. The variation of
the reconfiguration number versus the Cauchy number as defined in (3.3) is shown in
figure 6(a). For all four specimens, R decreases with CY . However, to obtain a collapse
of all the data points, they must be scaled by their rigid benchmark drag coefficients.
In figure 6(b), the data points of the reconfiguration number of all four specimens
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are collapsed onto a single curve. The few points at values of C̃Y less than 100.7 have
a drag similar to that on a equivalent rigid disk, that is their reconfiguration number

is close to 1. As C̃Y increases past a value of 10, R decreases in an almost constant

logarithmic slope. Note that for the highest values of C̃Y (rightmost six points of D3,
�), the variation differs slightly. This might be due to the appearance of flutter at the
edges of this circular specimen.

The scaling of R with C̃Y in the limit where C̃Y is very large is discussed in the
next section.

4. Vogel exponents by dimensional asymptotic analysis

In figures 5(b) and 6(b), logarithmic slopes of R versus C̃Y are discernible at
high values of scaled Cauchy number. Through simple dimensional analyses, we
are interested in finding the logarithmic slopes and therefore the Vogel exponents
in the limit case where the flexible bodies are highly deformed by the flow they are
subjected to. We consider first the rectangular plates together with the flexible fibres
of Alben et al. (2002), then the disks cut along many radii, and lastly the disks of
Schouveiler & Boudaoud (2006) rolling into cones.

For the rectangular flexible plates, it was shown in figure 4(c) that the drag on
the system depends less and less on the length of the plate in the asymptotic case
where the deformation becomes very large. In figure 2, we see the plate becoming
more and more swept back as the flow velocity is increased. Although these velocities
are not reached in the experiment, we could imagine that at very high flow velocity
the ends of the plate aligning with the flow and thus contributing very little to the
pressure drag of the plate. Thus, the exact length L of the plate becomes irrelevant
as only the centre of the plate close to the support causes drag. Moreover, in the
previous section it was shown that effects of aspect ratio and blockage ratio can be
approximated through the rigid drag coefficient. Doing so, we are effectively left with
a two-dimensional problem of drag per unit width F/W just like the problem of
flexible fibres in soap film. In our effectively two-dimensional problem, if we assume
that the plate is highly deformed and that the length L does not play a role as
discussed above, we are left with a physical problem of only four quantities:

B [Nm], U [m s−1], ρ [kgm−3],
F

W
[Nm−1].

Thus, only one dimensionless number is required to describe the problem:

F

WB1/3ρ2/3U 4/3
. (4.1)

Therefore, we expect the drag to scale with the flow velocity obeying a Vogel exponent
of V = −2/3.

Similarly, for the disk cut along many radii, we can find the Vogel exponent of the
disk when it is highly deformed. We assume for simplicity that the ratio R/Ri is large.
Consistent with the definition of the Cauchy number in (3.3), the radius of the inner
support disk Ri only influences the drag through the product BRi . Then, following a
similar reasoning as for the rectangular plates, we could expect that when the disk
is highly deformed, its radius R does not influence the drag anymore. The higher
the flow velocity, the more the sectors of the disk bend downstream as in figure 3.
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Values of the Vogel exponent V

Dimensional analysis Theoretical modelling Experiments

Rectangular plates and fibres −0.667 −0.667 a −1.4b

Disks cut in sectors −1 N/A −1.3 c

Disks rolling into cones −1.33 −1.33 d −1.1 e

Table 1. Comparison of the Vogel exponents of three systems for the asymptotic case of very
large deformation found by dimensional analysis with theoretical models and experiments.
aValue obtained by Alben et al. (2004). bLeast-square fit of figure 5(b). cLeast-square fit of
figure 6(b). dValue obtained by Schouveiler & Boudaoud (2006). eOur least-square fit of the
data of Schouveiler & Boudaoud (2006).

Neglecting the effects of blockage, there are four quantities to be considered:

BRi [Nm2], U [m s−1], ρ [kg m−3], F [N].

The physical problem is thus governed solely by the following dimensionless number:

F

ρ1/2R
1/2
i B1/2U

. (4.2)

Accordingly, the drag on the flexible disk cut along many radii should vary as F ∝ U

and thus obey a Vogel exponent of V = −1.
Finally, the same analysis can be applied to the problem studied by Schouveiler

& Boudaoud (2006) of disks rolling up into cones when subjected to water flow.
To simplify the analysis, we neglect the effect of small radius at the top of the cone
where the disk is held, as Schouveiler & Boudaoud (2006) mention that its effect is
not so significant. Following the same logic as for the other two geometries, in the
asymptotic regime where the cone is rolled up very tightly, the exact value of the
radius R becomes irrelevant and the problem can be described by four quantities:

B [Nm], U [m s−1], ρ [kg m−3], F [N].

The problem can be described with a single dimensionless number:

F

B2/3ρ1/3U 2/3
. (4.3)

Holding this number constant, we expect the drag on the disk which folds into a
cone to obey a Vogel exponent of V = −4/3.

The Vogel exponents in the limit of large deformation found with the dimensional
analysis for the three geometries of specimens are summarized in table 1. These values
of Vogel exponents are presented along with the values predicted by the theoretical
models of Alben et al. (2004) and Schouveiler & Boudaoud (2006) for fibres in
soap film and disks rolling into cones in water flow. Simply by assuming that the
characteristic size or dimension of the plate becomes irrelevant, we can predict the
same Vogel exponents as those predicted by the theoretical models of Alben et al.
and Schouveiler & Boudaoud.

However, these predictions do not seem to match with experiments: by fitting a
constant logarithmic slope on the data of both the fibres and the rectangular plates

of figure 5(b) using the least-square method, it is estimated that for C̃Y larger than

10, the reconfiguration number varies as R ∝ C̃Y
−0.7 and thus V = −1.4. Similarly,
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for the disks cut along many radii of figure 6(b), we obtain a variation R ∝ C̃Y
−0.65

and equivalently V = −1.3. By applying the same fitting method to the results of

Schouveiler & Boudaoud for the disks rolling into cones, we found R ∝ C̃Y
−0.55

and V = −1.1. In table 1, the dimensional analyses and the theoretical models agree
but fail to predict the Vogel exponents observed in experiments. As pointed out by
Schouveiler & Boudaoud, it seems that the asymptotic regime is simply not reached
in the experiments.

To verify this and to deepen our understanding of reconfiguration, in the next
section we develop a simple empirical model for the deformation of flexible plates
based on the drag coefficient of a similar rigid plate CD .

5. Theoretical modelling
5.1. Derivation

We are interested in developing the simplest model to predict the drag of our two
geometries of specimen at increasing flow velocity in a confined testing section. The
deformation of the rectangular plates is essentially two-dimensional; hence we can
model them as bending beams. Similarly, when considered individually, each sector
that flares out of the centre of the cut disk has a two-dimensional deformation and
behaves as a beam tapered in the direction transverse to the plane of bending.

For both systems, we therefore consider a cantilevered linearly tapered beam of
length L0, with a clamped end of width W0, and a free end of width W1. In the case of
the rectangular plate W0 = W1. The beam has a flexural rigidity B and is held in a wind
tunnel where a fluid of density ρ is flowing at velocity U . In its original undeformed
position, the beam is perpendicular to the flow and blocks the cross-sectional area
of the wind tunnel by a fraction equal to the blockage ratio q0. The Lagrangian
coordinate S is defined along the centreline of the beam from its clamped end to its
free end. The deformation of the beam is given by the angle θ(S) which is everywhere
zero at zero-flow velocity. Neglecting tensioning effects, the bending moment in the
beam is given by the Euler–Bernoulli beam theory (Fertis 1996):

M = BW (S)
∂θ

∂S
, (5.1)

where the width of a beam tapered in the direction transverse to the bending is

W (S) = W0 + (W1 − W0)
S

L0

. (5.2)

The beam is clamped at one end and free at the other

θ |S=0 = 0,
∂θ

∂S

∣∣∣
S=L0

= 0,
∂2θ

∂S2

∣∣∣
S=L0

= 0. (5.3)

By differentiating (5.1), we find the relation for the shear stress in the plate

V =
∂

∂S

(
BW (S)

∂θ

∂S

)
. (5.4)

From Blevins (1984), the skin friction drag on a rigid plate parallel to the flow of
the same dimensions as the flexible specimens considered here is 2 or 3 orders of
magnitude smaller than the pressure drag measured on a rigid plate perpendicular
to the flow. Therefore, we assume that the total drag the fluid exerts on the plate is
dominated by form drag, hence we neglect friction drag.
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Schouveiler, Eloy & Le Gal (2005) and Ahmed et al. (1996) model large static
deformations of slender flexible circular cylinders using the empirical expressions for
fluid loading deduced by Taylor (1952) from drag measurements on yawed smooth
circular cylinders. In a similar fashion, we approximate the pressure drag on a plate
in a potential flow with a conservation of momentum argument as in Schouveiler
& Boudaoud (2006) and Batchelor (2000, p. 392). We assume that at every point
on the plate, a normal force is generated by the deviation of a section of area
W (S) dX = W (S) dS cos(θ) (equal to the projection of the plate element) of the flow by
an angle π/2− θ . Therefore, the flow produces a force proportional to the momentum
it carries in the direction perpendicular to the plate ρ (U cos θ)2 which leads to

∂

∂S

(
BW (S)

∂θ

∂S

)
=

∫ S

0

−1

2
ρW (Si) CB

D (q) (U cos θ)2 dSi, (5.5)

where the drag must be scaled by a factor CB
D (q) to account for the constant pressure

in the wake. We take CB
D (q) to be the drag coefficient of an equivalent rigid flat

plate perpendicular to the flow with blockage q in the testing section. Although
we neglected the effect of reconfiguration on the blockage in § 3, for the present
analytical model we approximate the effect reconfiguration has on blockage by
correcting the initial blockage ratio q0 by using the projection of the deformed beam
in the testing section to calculate the instantaneous value of q , i.e.

q = q0

1

L0

∫ L0

0

cos θ dS. (5.6)

The integro-differential equation (5.5) can be made into an ordinary differential
equation by differentiating both sides by S:

BW0

∂3θ

∂S3
+

2BW0

L0

W1 − W0

W0 + (W1 − W0)
S

L0

∂2θ

∂S2
= −1

2
ρW0C

B
D (q) (U cos θ)2 , (5.7)

where (5.2) has been used. The total drag exerted on the beam is the integral over the
length of the beam of the component of the fluid force that is in the direction of the
flow

F =

∫ L0

0

−1

2
ρW (S) CB

D (q) (U cos θ)2 cos θ dS. (5.8)

In order to write (5.6)–(5.8) dimensionless, we define the dimensionless length, the
taper ratio, the reconfiguration number and the Cauchy number

s =
S

L0

, β =
W1

W0

, R =
F

1
2
ρACDU 2

, CY =
ρL3

0U
2β

2B
, (5.9)

where A and CD are the area and the constant drag coefficient, respectively, of the
rigid benchmark plate, which are equal to those of the initially undeformed flexible
system. In the Cauchy number definition of (5.9), if we take L0 =L/2 and β = 1, we
find the definition we had in (3.1) for the rectangular plates, and if we take L0 = R−Ri ,
we find the definition of (3.3) for the disk cut on many radii. In dimensionless form,
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(5.6)–(5.8) can be written as

q = q0

∫ 1

0

cos θ ds, (5.10)

∂3θ

∂s3
=

2 (1 − β)

1 − (1 − β) s

∂2θ

∂s2
− CY CB

D (q)

β
cos2θ, (5.11)

R =

∫ 1

0

2
CB

D (q)

CD

1 + (β − 1) s

β + 1
cos3 θ ds. (5.12)

To make another parallel with the previous dimensionless analysis, we note in (5.11)
that the deformation and the drag of the plate is governed by the product CY CB

D (q),
which is equivalent to the scaled Cauchy number of (3.2). For the model, the scaled
Cauchy number corrected for blockage reads as C̃Y = CY CB

D (q).
Although some exact solutions exist for the large deformation of Euler–Bernoulli

beams under some simple loading cases (Bisshopp & Drucker 1945), no analytical
solution could be found for (5.11) even in the simpler case without taper (β =1) and
without blockage (CB

D (q) = CD). On the other hand, (5.11) can be solved numerically
using the shooting method and guessing the angle of the beam at the free end to allow
integrating it numerically using the Runge–Kutta algorithm. The Müller algorithm is
used to iteratively converge to the correct end angle. Once the deformed shape of the
beam θ(s) is known, the reconfiguration number of (5.12) can be integrated.

5.2. Comparison of theory and experiments

The effect of flexibility on the reconfiguration number calculated from the
experimental results on flexible plates is represented in figure 7(a) with white circles
(�).

To model the variation of R with C̃Y in (5.11) and (5.12), the variation of the drag
coefficient with blockage is needed. The fit of the variation of the drag coefficient
with surface area from our experimental measurements on rigid plates (see(2.2)) is
used to model the rectangular specimen with the largest surface area (specimen R10
in table 2 of the Appendix). The variation of the blockage with the deformation of
the specimen of (5.10) leads to the following variation of the drag coefficient:

CB
D = 1.15 + 1.41

∫ 1

0

cos θ ds. (5.13)

With this variation of the drag coefficient, the predicted variation of R versus C̃Y

of the empirical model for the beam without taper (β =1) is shown in figure 7(a)
(——). The curve of the reconfiguration number predicted by the model has the

same general trend as that traced with the experimental points. At low C̃Y the line
is horizontal, the drag on the flexible body is similar to that of a rigid body, and

the reconfiguration number is invariant with the scaled Cauchy number. As C̃Y is
increased past 1, the reconfiguration number starts do decline. For high values of
the scaled Cauchy number, the model, in agreement with the dimensionless analysis
of § 4, predicts that the drag obeys a Vogel exponent of V = −2/3. However, this
regime is not reached in the experiments due to the occurrence of flutter. Note that
the data of Alben et al. (2002) were not included in figure 7(a) as shown in figure 5
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Figure 7. Comparison between model and experiments of the effect of the flexibility on the (a)
drag of rectangular specimens and (b) disks cut along many radii. In (a), the reconfiguration
number predicted by our model with a value of β =1 and a variation of drag because
of the blockage given by (5.13) (——) is compared with that calculated from wind tunnel
measurements of 20 rectangular specimens (�). In (b), the reconfiguration number predicted
by our model with a value of β = 5.6 and no correction for the blockage as CB

D (q) = CD (——)
is compared with that calculated from wind tunnel measurement on disks cut along many
radii: (�), D1; (�), D2; (�) D3; (�) D4.

because the quantitative effect of blockage or confinement on the drag measured in
their experiment is not known.

For the disks cut along many radii, in figure 7(b) are shown with various
symbols, the reconfiguration numbers computed from the measurements done on
four specimens along with the predicted R versus C̃Y curve of the model for a taper
of β = 5.6 corresponding to the tapering ratio (β = R/Ri) of the specimen D4 (�). The
curve for β = 4.1 corresponding to the other three specimens differs only slightly from
the one shown. For this plot, the variation of the drag coefficient with the blockage
was neglected as it is not of great amplitude and because the exact variation of CB

D

with q was not studied as thoroughly as for rectangular specimens. Nevertheless,
the agreement between the model and the experimental data is good. The general
trend is the same. However, the model seems to overestimate the drag to some extent.
Phenomena not considered in the model could explain this discrepancy: flow can leak
between the cuts to the wake and decrease the pressure jump across the disk; the
different sectors shadow one another (in figure 3, as the sectors of the disk bend with
the flow, they partially cover each other); blockage decreases as the sectors deform.
From figure 7(b), it seems that the asymptotic regime of high values of C̃Y is not
reached in the experiments and thus the scaling of R in the asymptotic limit of very
large deformation is untested. Moreover, the model predicts a Vogel exponent of
V = −2/3 which differs from the dimensional analysis of § 4 predicting V = −1. One
possible reason for this discrepancy is again the shadowing that is not included in the
model, whereas it is implicitly included in the dimensional analysis.

To highlight the significance of the deformation pattern of a plate on the
reconfiguration, we now compare the reconfiguration observed in our experiments on
disks cut in sectors that bend down in the flow to that of Schouveiler & Boudaoud
(2006) with disks cut along one radius that roll up into cones. To plot the data of
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Figure 8. Effect of the flexibility on the aerodynamic drag of circular specimens. The white
symbols represent the experimental measurements done in the current study on disks cut along
many radii: (�), D1; (�), D2; (�) D3; (�) D4. The black symbols represent our interpretation of
the experimental data of Schouveiler & Boudaoud (2006) on two disks of radius r = 10 cm cut
along one radius and folding into a cone when exposed to water flow: (�), B =3.03 × 10−3Nm;
(	), B = 1.92 × 10−3 Nm. The drag predicted by our model with a value of β = 5.6 (——); the
drag predicted by the model of Schouveiler & Boudaoud (2006) (– – –).

Schouveiler & Boudaoud, we use their definition of the elastohydrodynamic number
to define a Cauchy number

CY =
ρU 2R3

2B log
R

Ro

, (5.14)

where Ro is the small radius of the hole at the centre of the disk that allows the
disk to roll into a cone without a singularity. The experimental data points of two
disks rolling into cones of Schouveiler & Boudaoud are shown by black in figure 8
along with our experimental results in white for disks cut along many radii. The basic
model of Schouveiler & Boudaoud, which assumes the drag on the cone to be equal
to the force required to deviate the incoming flow on an area equal to the base of the
cone by an angle equal to the opening angle of the cone, is plotted in figure 8 (– – –)
along with our model (——) with β = 5.6 and CB

D = CD .
The main point in figure 8 is that two disks, which would have identical drag if

they were rigid, have significantly different reconfiguration-number variation with the
Cauchy number because of the way they deform. More specifically, in the very large
deformation asymptotic regime, the disk cut in sectors and the disk folding into a
cone have different Vogel exponents. A possible explanation is that the sectors of the
disk cut along many radii bend in one dimension along the radial direction, while
the cone bends in two dimensions and as it bends in the circumferential direction,
it inclines it radial dimension away from the flow. From the asymptotic dimensional
analysis, there is possibly a link between the number of dimensions that intervene in
the bending and reconfiguration of the structure and the scaling of the drag of that
flexible structure.
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Figure 9. Comparison of the drag reduction predicted by the model of § 5.1 coupling a
Euler–Bernoulli beam without taper (β = 1) to an empirical fluid force formulation (——)
with that of the model of Alben et al. (2002, 2004) coupling a Euler–Bernoulli beam to a
free-streamline solution flow solution corrected by an empirical factor (−·−·−·−).

5.3. Further theoretical results

For a rectangular specimen (β = 1) without blockage (CB
D (q) = CD), the model based

on an empirical formulation of the fluid force developed in § 5.1 reduces to the
following two equations:

∂3θ

∂s3
= −C̃Y cos2θ, (5.15)

R =

∫ 1

0

cos3 θ ds, (5.16)

and the boundary conditions on the beam. For this simplified case, which corresponds
to a rectangular flexible plate or a flexible fibre in an unconfined flow, the model
predicts the variation of drag shown in figure 9 by the solid line. Also shown is the
model of Alben et al. (2002, 2004) by the dotted solid line.

This model of Alben et al. (2002) has a similar structural formulation based on a
Euler–Bernoulli beam theory as that of (5.15) but rather than approximating the fluid
force through an empirical drag formulation as we do here, they rigorously solve the
potential flow around the beam. The two-dimensional inviscid free-streamline flow
field around a guessed deformed shape of the beam is solved analytically. Then, the
pressure drop across the beam in the flow solution is integrated to give the fluid
force on the beam. The elastic force balance leads back to a corrected beam shape.
A quasi-Newton method is used to iterate to the converged shape. Moreover, the
fluid force found by solving the free-streamline flow field must be corrected by an
empirical factor to account for the wake pressure loss.

The theoretical results of Alben et al. can be rewritten with the same dimensionless
numbers used here by using the equivalences CY = η2/8 and R = D/(η2CD), where D

and η are variables of Alben et al. for the drag and the ratio of fluid kinetic energy
to elastic potential energy respectively. We also need to define a constant value of CD

such that R = 1 at low C̃Y . This amounts to picking the empirical factor such that
the free-streamline solution correctly predicts the drag on a rigid beam.

In figure 9, the variation of the reconfiguration number with the scaled Cauchy
number of both models is very similar. Both curves are flat at R = 1 for small C̃Y

and begin their decline at C̃Y =1. Also, they have an identical logarithmic slope at
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(a) (b) (c)

Figure 10. Deformed shape of a modelled rectangular plate (β =1) without confinement for

values of the product C̃Y of 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000, 10 000, 30 000, 100 000,
300 000 and 1 000 000. In (a), the lengths are made dimensionless by scaling by the length

of the plate L; in (b) the dimensionless plate shapes are dilated by C̃Y
1/3 which makes them

coalesce on a universal shape. In (c) is shown the top 10 % of what appears in (b). Note that
in each subfigure, the vertical and horizontal axes are scaled equally.

values of C̃Y greater than 100. The simple empirical drag relation of the model of
(5.15)–(5.16) approximates well the calculated streamlines of Alben et al.

Also, similar to Alben et al., the force balance of (5.15) can be rewritten independent

of C̃Y by using a scaled dimension ζ = SC̃Y
1/3:

∂3θ

∂ζ 3
= −cos2θ. (5.17)

The boundary conditions are thus applied at ζ = 0 and ζ = C̃Y
1/3. This scaled

coordinate ζ allows collapsing the shapes the computed beam takes for increasing

values of C̃Y . In figure 10(a), we plot the shapes of the beam at 15 different values of

C̃Y between 10−1 and 106 in the regular coordinate s; while in figures 10(b) and 10(c)
these shapes are plotted with the dilated coordinate ζ . Figure 10(c) shows a zoom
of the top 10 % of the shapes shown in figure 10(b). In figure 10(a), it can be seen
that the higher the value of the scaled Cauchy number, the more the beam bends
downstream and aligns with the flow. For the highest values of C̃Y , the trailing edges
of the plate are fully aligned with the flow and thus the drag on them is nil. This is
in agreement with the assumption made in § 4 that the exact value of the length of

the plate becomes irrelevant at high enough C̃Y .
Moreover, in figures 10(b) and 10(c), we can see that all the plotted curves collapse

onto a single universal shape. The collapse is better and better as C̃Y is increased.
Alben et al. (2002) also found a universal shape. However, they found a quasiparabolic
shape while the universal curve in figure 10(b) is definitely not parabolic. The trailing
ends of the beam are parallel with the flow which makes the projected length of the
beam perpendicular to the flow constant in the ζ coordinate. Also, in the ζ coordinate,

for higher and higher values of C̃Y , the curved tip at the top does not change, it is only
the trailing ends parallel to the flow that become longer. The universal shape reached

at high values of C̃Y has important implications on area reduction and streamlining
but before digging into the mechanisms of reconfiguration we first compare the
predicted shapes of the model with experimental observations.
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(c) (d)

(a) (b)

Figure 11. Typical deformation of a rectangular specimen. In (a), superimposed top view
photographs of the deforming specimen R16 subjected to flow velocities of 0, 2.4, 3.6, 5, 8.6,
14.2 and 16.6 m s−1. Note that the shape of the specimen at 16.6 m s−1 is blurry because
of the occurrence of flutter. In (b), the photographs taken at the five medium-most velocities
in (a) were stretched by a factor of C̃Y

1/3 and later superimposed. In (c) and (d ), the same
rectangular plate deformations as in (a) and (b) are modelled using values of C̃Y of 0.001, 2.0,
4.7, 9.0, 27, 72 and 99.

Superimposed photographs of the deformation of a rectangular specimen in the
wind tunnel at increasing flow velocity are shown in figure 11(a), and the shapes of
an equivalent modelled beam without taper or confinement are shown in figure 11(c)
for the same velocities. The agreement is good. In figures 11(b) and 11(d ), dilated
versions of the photographs and plots are shown. The images are dilated by a factor
of C̃Y

1/3 using the ζ coordinate of (5.17). We see that the shape of the rectangular
plate in the experiment tends towards that of the universal shape discussed in the
previous section. However, the values of C̃Y reached for the photographed specimen
are relatively low. In the experiments, it was not possible to reach high enough flow
speeds to cause the trailing ends of the plate to become parallel with the flow as
predicted by the model in figure 10 because flutter would occur.

Knowing how the modelled beam deforms, we want to understand where the drag
reduction comes from. The reduction of projected area and the streamlining are the
two mechanisms by which the flexible beam accomplishes drag reduction. The area
reduction is proportional to the projection of the dimensionless length of the beam
perpendicular to the flow which can be calculated from the known shape of the

beam as 	 =
∫ 1

0
cos θ ds. We define the effect of streamlining as the reduction of drag

occurring on a body with a constant projected area perpendicular to the flow, thus as
the ratio Rs = R/	. The scaling of the drag, the area reduction and the streamlining
with the Cauchy number predicted by the model can be found by calculating the
logarithmic slope of R, 	 and Rs , i.e.

α =
∂ log R
∂ log C̃Y

, γ =
∂ log 	

∂ log C̃Y

, κ =
∂ log Rs

∂ log C̃Y

. (5.18)
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Figure 12. Quantification of the two mechanisms of drag reduction with increasing scaled
Cauchy number: total drag reduction, α (——); area reduction, γ (– · – ·); streamlining, κ
(– – –).

The addition of both components γ + κ =α gives the total drag reduction, which is
related to the Vogel exponent as V = 2α.

The logarithmic slopes α, γ and κ found by finite difference are plotted in figure 12.
The scaling of the drag with the scaled Cauchy number, α, is nil at low values of
C̃Y and steeply becomes negative beyond C̃Y =1. It peaks at α = −0.51 for C̃Y = 101.1

and approaches a constant value of α = −1/3 for large C̃Y . The contribution of

area reduction γ in the total drag reduction becomes non-negligible past C̃Y = 1 to
asymptotically approach a value of γ = −1/3. The variation of the area of the beam
can be explained from the constant projection of the universal shape of the beam in

figure 10(b). A constant length in ζ translates into an area varying with C̃Y
−1/3 in

s. At high C̃Y , the entire drag reduction is due to area reduction. The streamlining

component κ is most important in the range of C̃Y between 1 and 100. Outside this

range, its influence rapidly diminishes. The streamlining is nil at high values of C̃Y

because as the ends of the beam are parallel to the flow, the only part of the beam
which creates drag is the curved tip represented in figure 10(c). Since the shape of
the tip of the beam does not change, only its projected area does, its drag could be

described with a constant drag coefficient. Therefore, at high C̃Y the drag reduction
is solely due to area reduction.

6. Concluding remarks
The important findings of this study are the following: (a) The reconfiguration

number and the scaled Cauchy number collapse all the experimental point onto a
single curve. (b) The reconfiguration of a rectangular flat plate in a wind tunnel is
shown to be identical to that of a flexible fibre in a soap film flow. (c) Based on the
assumption that the characteristic length of an undeformed plate becomes irrelevant
when the plate is strongly deformed, dimensional analysis reveals the Vogel exponent
in the large deformation regime. (d ) A reconfiguration model based on an empirical
drag formulation approximates well the more rigorous solution of the flow of Alben
et al. (2004) and predicts well the reconfiguration of both rectangular plates and
circular plates cut along many radii observed in the experiments.

An interesting question arises from the asymptotic dimensional analysis of § 4. In the
analysis, all that is assumed about the modes of deformation of the considered plate is
that they are bending modes, and that the deformation is such that the characteristic
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Flexural rigidity Length Width
Specimen B (10−6 N m) L (10−2 m) W (10−2 m)

R1 1824 3.7 4.0
R2 1824 5.0 3.8
R3 1824 6.0 3.8
R4 1824 7.0 3.8
R5 1824 7.9 3.8
R6 1824 8.9 3.8
R7 1824 9.9 3.8
R8 1824 11.9 3.9
R9 1824 14.0 3.9
R10 1824 15.8 3.8
R11 1824 5.0 4.7
R12 1824 9.9 4.7
R13 1824 9.9 1.9
R14 404 7.0 3.5
R15 404 7.0 5.0
R16 404 10.0 3.5
R17 91.4 7.0 3.5
R18 91.4 5.0 7.0
R19 91.4 7.0 5.0
R20 91.4 5.0 3.6

Table 2. Rectangular specimens used in the experiments.

Flexural rigidity Radius Rigid inner radius
Specimen B (10−6 N m) R (10−3 m) Ri (10−3 m) Number of radius cuts

D1 1824 3.7 0.9 18
D2 404 3.7 0.9 36
D3 91.4 3.7 0.9 36
D4 1824 5.0 0.9 18

Table 3. Circular specimens used in the experiments.

length is irrelevant. The exact form of the bending mode is not specified. In the case of
the disk studied by Schouveiler & Boudaoud (2006), the conical mode of deformation
is favoured by the radial cut. If different initial conditions were imposed or if external
perturbations were applied, some forms of azimuthal or longitudinal buckling could
be observable upon applying a fluid loading. Although the mode of deformation
would be different, its rigidity would still be dictated by the flexural rigidity B . It is
true that if the cone rolls up ever more tightly, the small radius at the top of the cone
where it is held will become significant or another length scale could emerge possibly
because of plasticity, crumpling or the thickness of the sheet. However, supposing a
regime of large deformation where the initial characteristic length becomes irrelevant,
and no other length scale is significant, would the drag scaling be the same irrespective
of the exact mode of deformation? Further experiments testing different modes of
deformation for the same structure are necessary to answer this question.

To conclude, because of its simplicity, the model developed in § 5.1 could easily
be adapted to other geometries. For example, using the empirical relations of
Taylor (1952), it could be adapted to model the reconfiguration of a cylinder in
a three-dimensional flow and serve as the basis to study the reconfiguration of more
complex systems composed of collections of plates and beams as an approximation
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to the geometry of a real plant. As pointed out by de Langre (2008), a poroelastic
system averaged in space could allow building a homogenized model to take into
consideration the complexity of vegetation in the study the reconfiguration.
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Appendix. Experimental specimens
Tables 2 and 3 give detailed listings of information about the flexible rectangular

and circular experimental specimens tested.

REFERENCES

Ahmed, T., Oakley, B. T., Semmens, M. J. & Gulliver, J. S. 1996 Nonlinear deflection of
polypropylene hollow fibre membranes in transverse flow. Water Res. 30, 431–439.

Alben, S. 2008 Optimal flexibility of a flapping appendage in an inviscid fluid. J. Fluid Mech. 614,
355–380.

Alben, S., Shelley, M. & Zhang, J. 2002 Drag reduction through self-similar bending of a flexible
body. Nature 420, 479–481.

Alben, S., Shelley, M. & Zhang, J. 2004 How flexibility induces streamlining in a two-dimensional
flow. Phys. Fluids 16, 1694–1713.

Batchelor, G. K. 2000 An Introduction to Fluid Dynamics . Cambridge University Press.

Berry, P. M., Sterling, M., Spink, J. H., Baker, C. J., Sylvester-Bradley, R., Mooney, S. J.,

Tams, A. R. & Ennos, A. R. 2004 Understanding and reducing lodging in cereals. Adv. Agron.
84, 217–271.

Bisshopp, K. E. & Drucker, D. C. 1945 Large deflection of cantilever beams. Quart. Appl. Math.
3, 272–275.

Blevins, R. D. 1984 Applied Fluid Dynamics Handbook . Van Nostrand Reinhold.

Buckingham, E. 1914 On physically similar systems: illustrations of the use of dimensional
equations. Phys. Rev. 4 (4), 345.

Cermak, J. E. & Isyumov, N. 1998 Wind Tunnel Studies of Buildings and Structures . American
Society of Civil Engineers.

Chakrabarti, S. 2002 The Theory and Practice of Hydrodynamics and Vibration . World Scientific.

Crawford, C. & Platts, J. 2008 Updating and optimization of a coning rotor concept. J. Solar
Energy Engng 130 (3), 031002-8.

Daniel, T. L. & Combes, S. A. 2002 Flexible wings and fins: bending by inertial or fluid-dynamic
forces? Integ. Comp. Biol. 42 (5), 1044–1049.

Etnier, S. A. & Vogel, S. 2000 Reorientation of daffodil (narcissus: Amaryllidaceae) flowers in
wind: drag reduction and torsional flexibility. Am. J. Bot. 87 (1), 29–32.

Fertis, D. G. 1996 Advanced Mechanics of Structures . CRC Press.

Harder, D., Speck, O., Hurd, C. & Speck, T. 2004 Reconfiguration as a prerequisite for survival
in highly unstable flow-dominated habitats. J. Plant Growth Regul. 23, 98–107.

Jenkins, C. H. M. 2005 Compliant Structures in Nature and Engineering . WIT Press.

de Langre, E. 2008 Effects of wind on plants. Annu. Rev. Fluid Mech. 40, 141–168.

Rudnicki, M., Mitchell, S. J. & Novak, M. D. 2004 Wind tunnel measurements of crown
streamlining and drag relationships for three conifer species. Can. J. Forest Res. 34, 666–676.

Schouveiler, L. & Boudaoud, A. 2006 The rolling up of sheets in a steady flow. J. Fluid Mech.
563, 71–80.

Schouveiler, L., Eloy, C. & Le Gal, P. 2005 Flow-induced vibrations of high mass ratio flexible
filaments freely hanging in a flow. Phys. Fluids 17 (4), 047104-8.



Drag reduction of flexible plates by reconfiguration 341

Stanford, B., Ifju, P., Albertani, R. & Shyy, W. 2008 Fixed membrane wings for micro air vehicles:
experimental characterization, numerical modelling, and tailoring. Prog. Aerosp. Sci. 44 (4),
258–294.

Taylor, G. 1952 Analysis of the swimming of long and narrow animals. Proc. R. Soc. Lond. A,
Math. Phys. Sci. 214 (1117), 158–183.

Vogel, S. 1984 Drag and flexibility in sessile organisms. Am. Zoologist 24 (1), 37–44.

Vogel, S. 1989 Drag and reconfiguration of broad leaves in high winds. J. Exper. Bot. 40, 941–948.

Vogel, S. 1996 Life in Moving Fluids , 2nd edn. Princeton University Press.

Vogel, S. 1998 Cats’ Paws and Catapults: Mechanical Worlds of Nature and People. W. W. Norton.

Vogel, S. 2009 Leaves in the lowest and highest winds: temperature, force and shape. New Phytol.
183 (1), 13–26.

Vollsinger, S., Mitchell, S. J., Byrne, K. E., Novak, M. D. & Rudnicki, M. 2005 Wind tunnel
measurements of crown streamlining and drag relationships for several hardwood species.
Can. J. Forest Res. 35, 1238–1249.

Zhu, L. 2008 Scaling laws for drag of a compliant body in an incompressible viscous flow. J. Fluid
Mech. 607, 387–400.

Zhu, L. & Peskin, C. S. 2007 Drag of a flexible fibre in a two-dimensional moving viscous fluid.
Comput. Fluids 36 (2), 398–406.


