
HAL Id: hal-01020654
https://polytechnique.hal.science/hal-01020654v1

Submitted on 9 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic mode decomposition of numerical and
experimental data

Peter J. Schmid

To cite this version:
Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid
Mechanics, 2010, 656 (August), pp.5-28. �10.1017/s0022112010001217�. �hal-01020654�

https://polytechnique.hal.science/hal-01020654v1
https://hal.archives-ouvertes.fr


J. Fluid Mech. (2010), vol. 656, pp. 5–28. c© Cambridge University Press 2010

doi:10.1017/S0022112010001217

5

Dynamic mode decomposition of numerical
and experimental data

PETER J. SCHMID†
Laboratoire d’Hydrodynamique (LadHyX), CNRS-École Polytechnique, 91128 Palaiseau, France
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The description of coherent features of fluid flow is essential to our understanding
of fluid-dynamical and transport processes. A method is introduced that is able to
extract dynamic information from flow fields that are either generated by a (direct)
numerical simulation or visualized/measured in a physical experiment. The extracted
dynamic modes, which can be interpreted as a generalization of global stability
modes, can be used to describe the underlying physical mechanisms captured in
the data sequence or to project large-scale problems onto a dynamical system of
significantly fewer degrees of freedom. The concentration on subdomains of the flow
field where relevant dynamics is expected allows the dissection of a complex flow
into regions of localized instability phenomena and further illustrates the flexibility
of the method, as does the description of the dynamics within a spatial framework.
Demonstrations of the method are presented consisting of a plane channel flow,
flow over a two-dimensional cavity, wake flow behind a flexible membrane and a jet
passing between two cylinders.

1. Introduction and motivation
The accurate description of the disturbance behaviour in complex geometries poses

a great challenge to numerical simulations and physical experiments, as well as to
the computational algorithms that extract and quantify this behaviour. At the same
time, many industrial applications, such as flow in a combustion chamber, could
greatly benefit from a more thorough understanding of the underlying transition and
instability mechanisms.

Global stability analyses for flows in complex geometries are becoming more
commonplace, but the resulting large stability matrix sizes have put considerable
strain on computational resources. Direct methods, the method of choice for
simple problems, become prohibitively expensive, and iterative schemes have thus
to be employed to extract the global stability modes. The Arnoldi scheme (see
Edwards et al. 1994) has been particularly successful in this respect. It is based
on an approximation of the high-dimensional system matrix by projecting it onto
a lower-dimensional Krylov subspace. In this way, the dominant eigenvalues (and
corresponding eigenvectors) of the full system can be computed rather efficiently.
Convergence can be improved in various ways by shifting, mapping, restarting,
locking and purging techniques (Lehoucq & Scott 1997), but in most cases this
is accomplished at the expense of computational efficiency due to the necessity of
additional matrix inversions.
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6 P. J. Schmid

The extraction of dynamical features by a global stability analysis has remained a
tool that is nearly exclusively applied to numerical simulations. This is because the
respective algorithms require the system matrix of the underlying flow in order to
build a sequence of (artificial) flow fields upon which the convergence of the numerical
method relies. In physical experiments this system matrix is not available, and
whereas a subroutine call of the right-hand side is straightforward to accommodate in
a numerical simulation, the same is not true for experiments. Rather, in experimental
set-ups, the only input that is readily available are the flow fields themselves, either in
form of particle image velocimetry (PIV) measurements or in form of visualizations of
a passive tracer. As a consequence, if coherent structures are to be identified from ex-
perimental data, algorithms need to be designed that rely on these measurements only.

A common technique for identifying coherent structures is the proper orthogonal
decomposition (POD) method (Lumley 1970; Sirovich 1987; Berkooz, Holmes &
Lumley 1993). This method is capable of extracting information from snapshots of
the flow field and is thus applicable to experimental data (see Herzog 1986; Bonnet
et al. 1994; Noack et al. 2003). The method determines the most energetic structures by
diagonalizing the spatial correlation matrix computed from the snapshots. Two major
drawbacks that are tacitly acknowledged by employing this method are associated
with this technique: (i) the energy may not in all circumstances be the correct
measure to rank the flow structures, and (ii) due to the choice of second-order
statistics as a basis for the decomposition, valuable phase information is lost. The
first shortcoming has been widely recognized, and an explanation for the existence of
dynamically highly relevant but zero-energy modes has been presented by Noack et al.
(2008). Choosing weight functions that put more emphasis on specific components
of the flow field or more active regions of the flow can ameliorate the focus on
the total kinetic perturbation energy. The second shortcoming is more difficult to
overcome. The bi-orthogonal decomposition (BOD; see Aubry 1991; Hemon &
Santi 2007) simultaneously produces temporal and spatial structures, referred to as
‘chronos’ and ‘topos’, via a singular value decomposition of the snapshot matrix;
the same result can also be obtained by choosing a temporal or spatial average
when computing the correlation tensor, or by using the classical POD (Lumley 1970)
or snapshot POD (Sirovich 1987), respectively. The temporal structures (chronos)
represent the eigenvectors of the spatially averaged temporal correlation matrix, while
the spatial structures (topos) constitute the eigenvectors of the temporally averaged
spatial correlation matrix. In either case, the averaging process that produces second-
order statistics causes the loss of information that might be important when classifying
the dynamic processes contained in the snapshots.

In this article we will propose a decomposition method that is based on snapshots
of the flow only (see Schmid & Sesterhenn 2008), but that will still yield fluid
structures that accurately describe the motion of the flow. In the case of a linearized
flow (i.e. a flow of small perturbation about a steady base flow), the extracted modes
are equivalent to the result of a global stability analysis; for a nonlinear flow, the
results produce structures of a linear tangent approximation to the underlying flow
and describe fluid elements that express the dominant dynamic behaviour captured
in the data sequence. To delineate ourselves from a classical linear global stability
analysis, we will refer to the extracted flow structures as ‘dynamic modes’ and to
the decomposition technique as the ‘dynamic mode decomposition’. This technique is
at the basis of a Koopman analysis of nonlinear dynamical systems (see Lasota &
Mackey 1994; Mezić 2005), which has recently been applied to large-scale simulations
of a jet in crossflow by Rowley et al. (2009). Connections and differences to commonly
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applied decompositions will be pointed out that will help put the new method into
perspective with familiar techniques of describing coherent structures. We will then
validate and apply this method to three different flow cases: one of them based on
data generated numerically by a Navier–Stokes code, the last two based on data
extracted from experimental flow measurements. We stress that in each case only the
flow fields will be used in extracting relevant dynamic information.

2. Dynamic mode decomposition using flow field data
The derivation of the dynamic mode decomposition (DMD) will closely

follow arguments used in iterative methods for computing solutions to linear
eigenvalue or other linear algebra problems. Furthermore, readers familiar with the
techniques of proper orthogonal (Lumley 1970; Sirovich 1987) or bi-orthogonal
decompositions (Aubry 1991; Hemon & Santi 2007) will notice commonalities;
important differences, however, do exist and will be pointed out below.

As mentioned previously, we aim at a method that is equally applicable to
experimental and numerical flow field data; we thus attempt a ‘matrix-free’
formulation relying only on the gathered input data and ignoring any information
about the underlying system matrix. In effect, we avoid a model-based approach to
extracting dynamic information and, instead, concentrate on a data-based procedure.

2.1. General description

We will start with a general description of flow fields collected by sampling either direct
numerical simulations or experimental data. Preprocessing the data may be necessary
for experimental data in order to eliminate inherent measurement noise. The data
shall be represented in the form of a snapshot sequence, given by a matrix VN

1 ,

VN
1 = {v1, v2, v3, . . . , vN} , (2.1)

where vi stands for the ith flow field. In the above definition, the subscript 1 denotes
the first member of the sequence, while the superscript N denotes the last entry in
the sequence, i.e. the first and last columns of the matrix VN

1 , respectively. We further
assume an ordered sequence of data separated by a constant sampling time �t; the
choice of the time step �t between two consecutive snapshots will be further discussed
in § 2.6.

In the first step, we assume that a linear mapping A connects the flow field vi to
the subsequent flow field vi+1, that is,

vi+1 = Avi , (2.2)

and that this mapping is approximately the same over the full sampling interval
[0, (N − 1)�t]. If the flow fields stem from a nonlinear process, this assumption
amounts to a linear tangent approximation. For slowly varying systems, a multiple-
scale argument can provide a foundation for the above assumption. In the special
case of a purely linear process, no approximation is invoked by assuming a constant
mapping. In any case, the assumption of a constant mapping between the snapshots
vi will allow us to formulate our sequence of flow fields as a Krylov sequence (see e.g.
Greenbaum 1997; Trefethen & Bau 1997).

VN
1 = {v1, Av1, A

2v1, . . . , A
N−1v1}. (2.3)

Our goal then is the extraction of the dynamic characteristics (eigenvalues,
eigenvectors, pseudoeigenvalues, energy amplification, resonance behaviour, etc.) of
the dynamical process described by A based on the sequence VN

1 .
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As the number of snapshots increases and the data sequence given by VN
1 captures

the dominant features of the underlying physical process, it is reasonable to assume
that, beyond a critical number of snapshots, the vectors given by (2.2) become linearly
dependent. In other words, adding further flow fields vi to the data sequence will not
improve the vector space spanned by VN

1 . When this limit is reached, we can express
the vector vN as a linear combination of the previous, and linearly independent,
vectors vi , i = 1, . . . , N − 1 according to

vN = a1v1 + a2v2 + · · · + aN−1vN−1 + r (2.4)

or in matrix form

vN = VN−1
1 a + r (2.5)

with aT = {a1, a2, . . . , aN−1} and r as the residual vector. We continue by following
Ruhe (1984) and write

A{v1, v2, v3, . . . , vN−1} = {v2, v3, v4, . . . , vN} =
{
v2, v3, v4, . . . , V

N−1
1 a

}
+ reT

N−1 (2.6)

or in matrix form

AVN−1
1 = VN

2 = VN−1
1 S + reT

N−1 (2.7)

with eN−1 ∈ �N−1 as the (N − 1)th unit vector.
A simple calculation shows that the matrix S is of companion type with

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 a1

1 0 a2

. . .
. . .

...

1 0 aN−2

1 aN−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.8)

whose subdiagonal entries reflect the fact that, by design, the vector in the ith column
of VN

2 is identical to the vector in the (i + 1)th column of VN−1
1 for i = 1, . . . , N − 2.

The only unknowns in S are the coefficients {a1, a2, . . . , aN−1} which constitute the
above-mentioned (N − 1)-component linear representation of the last sample vN in
terms of the previous samples {v1, v2, v3, . . . , vN−1}.

The eigenvalues of S then approximate some of the eigenvalues of A. The well-
known Arnoldi method (see e.g. Greenbaum 1997; Trefethen & Bau 1997) is closely
related to the decomposition above but successively orthogonalizes the vectors of VN

1

resulting in a decomposition of the form AQ ≈ QH with VN−1
1 = QR and H = RSR−1 as

a Hessenberg matrix. Again, the eigenvalues of H approximate some of the eigenvalues
of A. In practice, the reduction of A to Hessenberg form by the Arnoldi method is
not accomplished by a simple QR-decomposition of VN−1

1 , but rather by a sequence
of projections onto successive Krylov subspaces. This yields a more stable algorithm,
but for these projections the matrix A has to be available which makes the classical
Arnoldi method unattractive for our purposes. Rather, we shall contend with less
favourable stability (and convergence) properties of our algorithm in order to gain
a numerical technique that is exclusively based on flow fields and is thus equally
applicable to experimental data and large-scale numerical simulations.

The computation of S then proceeds as follows: the last element of a given data
sequence vN is expressed as a linear combination of the previous elements of the
sequence as stated in (2.5) whose least-squares solution, for a full-rank matrix VN−1

1 ,
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is given by

a = R−1QHvN, (2.9)

with QR = VN−1
1 as the economy-size QR-decomposition of the data sequence VN−1

1 .

The (N − 1)-component vector a then forms the last column of the companion
matrix S.

Even though the above decomposition based on a companion matrix S is
mathematically correct and is often used to prove convergence properties of the
full Arnoldi method (Ruhe 1984), a practical implementation yields an ill-conditioned
algorithm that is often not capable of extracting more than the first or first two
dominant dynamic modes. This is particularly true when the data stem from an
experiment and are contaminated with noise and other uncertainties. For this reason,
we choose a more robust implementation that results in a ‘full’ matrix S̃ – related to S
via a similarity transformation. Robustness is achieved by a preprocessing step using
a singular value decomposition of the data sequence VN−1

1 = UΣWH . Substituting
the singular value decomposition UΣWH into (2.7) and rearranging the resulting
expression we obtain UHAU = UHVN

2 WΣ−1 ≡ S̃. By recognizing that the matrix U
contains the proper orthogonal modes of the data sequence VN−1

1 , the above operation
amounts to a projection of the linear operator A onto a POD basis (more details
about this connection will be given in § 2.2). A further advantage of this operation,
besides a more robust calculation of the low-dimensional representation of A, is
the opportunity to account for a rank-deficiency in the data sequence VN−1

1 via a
restriction to a limited projection basis U given by the non-zero singular values of Σ

(or by singular values above a prescribed threshold). The implementation based on S̃
has been used throughout to obtain the results in this paper.

The modal structures are extracted from the matrix S̃ in a manner analogous to
recovering the global modes from the eigenvectors of the Hessenberg matrix H of
the standard Arnoldi method. In our case we have the following expression for the
dynamic modes Φi:

Φi = U yi , (2.10)

with yi as the ith eigenvector of S̃, i.e. S̃ yi = µi yi , and U as the right singular
vectors of the snapshot sequence VN−1

1 . The above decomposition method, whether in
its mathematical form based on a companion matrix or in its implementation based
on a full matrix, is able to extract coherent structure from a sequence of data fields
only.

2.2. Relation to other decompositions

Expression (2.7) clearly shows relations to other commonly applied decomposition
techniques. As mentioned previously, the Arnoldi method accomplishes the reduction
of a matrix A to a smaller Hessenberg matrix by successive projections onto an
orthonormalized Krylov sequence. In our case no orthogonalization step is taken;
instead, a smaller system matrix is generated from the snapshots directly. This feature
comes at the expense of reduced algorithmic stability and convergence properties but,
in return, allows a ‘model-free’ application.

A method commonly applied in the analysis of atmospheric or oceanographic data
is the decomposition into principal interaction patterns (PIPs) or principal oscillation
patterns (POPs), a statistical method that recovers coherent patterns from the ratio of
a temporal cross-correlation over one time step to the auto-correlation of the original
field (Hasselmann 1988; von Storch et al. 1995). Starting with the hypothesis that the
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data x(t) are generated by a linear process of the form

x(t + �t) = Ax(t) + noise, (2.11)

multiplication from the right by the transpose data vector xH (t) and averaging in
time yields an expression for the matrix A according to

A = x(t + �t)x(t)H (x(t)x(t)H )−1. (2.12)

The first term on the right-hand side represents the temporal cross-correlation over
a characteristic time interval �t, while the second term denotes the inverse of the
auto-correlation of the data field. The eigenvectors of A are referred to as POPs.
A variant of this techniques is known as linear inverse modelling (LIM; see e.g.
Penland & Magoriam 1993; DelSole & Hou 1999). It is based on a common system
identification approach borrowed from signal processing where the ratio of the cross-
correlation of two signals and the autocorrelation of one of the signals produces a
mapping P between the two signals. In our notation, we have

S =
[(

VN−1
1

)H
VN−1

1

]−1(
VN−1

1

)H
VN

2 . (2.13)

Even though related to POPs, the above expression does not attempt to recover A
from AVN−1

1 = VN
2 by using correlation techniques but, rather, it tries to extract S from

VN
2 = VN−1

1 S by a left multiplication with the transpose data matrix (VN−1
1 )H . In this

sense, LIM can be thought of as a POP analysis, performed in the space of the data
snapshots. In addition, the solution of S is not accomplished by a QR-decomposition,
but is based on the formulation of a normal equation. The expression in (2.13)
[(VN−1

1 )HVN−1
1 ]−1(VN−1

1 )H is recognized as the pseudo-inverse of the data matrix VN−1
1 .

The resulting matrix S is of companion type for a full-rank matrix VN−1
1 .

As mentioned earlier, a popular method for the extraction of coherent fluid
structures from a sequence of snapshots is the POD (e.g. Lumley 1970; Sirovich
1987), which is also known under the names empirical orthogonal eigenfunction
(EOF) analysis, principal component analysis (PCA) or Karhunen–Loève (KL)
decomposition. It is based on an energy ranking of orthogonal structures computed
from a correlation matrix of the snapshots. In terms of the notation above, the
POD modes are contained in the singular value decomposition of the matrix
VN−1

1 = UΣWH , where the matrix U contains the spatial structures (referred to as
topos) and the matrix W contains the temporal structures (referred to as chronos) (see
Aubry 1991; Hemon & Santi 2007). The energy ranking is given by the singular values
contained in Σ. A simple analysis, given previously, shows the relation between the
dynamic mode decomposition (2.7) and the POD modes (in this case the topos
modes). We have

S̃ = UHAU, (2.14)

which demonstrates that the low-dimensional system matrix S̃ is obtained by
correlating the POD modes U with the structures shifted over one time step �t,

expressed as AU. This relation also demonstrates that the matrix S̃ contains more
information about the temporal evolution of the underlying process than the time-
averaged POD modes given by U. The computation of the matrix S̃ by the above
expression (2.14) is only feasible for numerical simulations where arbitrary initial
conditions can be evolved over one time-step using the system matrix A; for
experiments, the above expression cannot be put into practice. Instead, the matrix S̃
has to be computed from the data sequence directly as outlined above.



Dynamic mode decomposition of numerical and experimental data 11

2.3. Application to subdomains and low-dimensional representations

A great advantage of the dynamic mode decomposition is its detachment from an
underlying model in the form of a system matrix A. This feature also allows the
processing of subdomains, i.e. the forming of a vector sequence VN

1 which contains
only data from a smaller part of the full computational or experimental domain.
In this manner one can focus on smaller regions where dynamically interesting
phenomena are expected or observed. This advantage is also shared by the POD
method; a standard global mode analysis, on the other hand, has difficulties with
processing subdomains because boundary conditions have to be imposed on the
subdomains (e.g. Åkervik et al. 2007) which, when carelessly chosen, can contaminate
the computed global modes.

A rather extreme example of subdomains which is common in experiments
are lower-dimensional slices of a higher-dimensional flow field. For example, in
experiments it is commonplace to visualize and measure three-dimensional flow fields
by extracting two-dimensional slices. If the projection from three-dimensional to two-
dimensional flow fields is denoted by P3D→2D we have the following sequence of
snapshots

P3D→2D

{
v0, A3Dv0, A

2
3Dv0, . . .

}
, (2.15)

where the operator A3D denotes the three-dimensional propagator from one three-
dimensional data field to the next over a time interval �t. Proceeding with the dynamic
mode decomposition, we observe that the projector P3D→2D is only influencing
the spatial structure of the flow fields and the spatial structure of the dynamic
modes, but not their temporal dynamics. The temporal dynamics (frequencies)
of the three-dimensional fluid flow can thus be captured by processing the two-
dimensional data slices, provided that the two-dimensional data fields contain a
non-zero projection of the dynamically dominant three-dimensional structure. The
associated dynamic modes, which will necessarily be two-dimensional in accordance
with the two-dimensional input data, approximate the projection of a three-
dimensional dynamic structure onto the slicing plane. Other examples of subdomain
decomposition are signals extracted by a rake of hot-wire probes or the extraction
of near- or far-field processes in open flows; in these cases the treatment of
subdomains may bring significant advantages over a decomposition of the entire flow
field.

2.4. Spatial stability analysis

In hydrodynamic stability theory we distinguish between a temporal and a spatial
analysis (see e.g. Schmid & Henningson 2001). Whereas the temporal analysis
treats the evolution in time of spatially wave-like solutions, the spatial approach is
concerned with the growth or decay of time-harmonic (or generally time-dependent)
perturbations up- and downstream of their location of origin. The spatial growth of
disturbances shedding from a localized roughness element would be a typical flow
configuration where a spatial stability analysis would be appropriate. The distinction
between a temporal and spatial framework conceptually carries over to a global
stability analysis, even though it has yet to be explored more fully for complex two-
and three-dimensional flows.

Because a system matrix A, the mapping from one snapshot to the next, is neither
assumed nor formed for the dynamic mode decomposition, a spatial analysis of the
sampled flow fields should be equally feasible. In this case we reorganize the flow
fields such that they present a snapshot sequence in space. In effect, this procedure
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Figure 1. Sketch of the snapshot sequence for a temporal (a) and spatial (b) stability
analyses.

amounts to slicing differently through a spatio-temporal data set (see figure 1). The
low-dimensional full-rank matrix S̃, extracted from a spatially ordered data sequence
in the same above-described manner, then represents the mapping from a flow field
at one spatial location to a flow field at the next spatial location. The eigenvalues of
S̃ consequently give information about the spatial dynamics of the underlying flow.

2.5. Convergence behaviour and validation

For the case of a linear process, as the number of flow fields in our sequence is
increased, we expect convergence of the eigenvalue values of S̃ towards some of the
eigenvalues of A. As is typical for iterative eigenvalue algorithms, the eigenvalues
at the extreme ends of the spectrum of A are isolated first. The overall convergence
can be monitored by evaluating the residual defined in (2.7) as the iterations proceed
and plotting its L2-norm. A demonstration of the convergence of the dynamic mode
decomposition based on the residual measure is given in the next section.

Another interesting and more graphical convergence measure for iterative
techniques are the convergence lemniscates (Trefethen & Bau 1997). The lemniscates
are defined as the contour levels of the matrix polynomial P(A) representing the true
system dynamics given by matrix A and represented in the data sequence (2.3) (see
Trefethen & Bau 1997, for more details). In our case, the polynomial coefficients
are given by the coefficient vector a using (2.9); taking advantage of the companion
shape of S, the zeros of this polynomial coincide with the eigenvalues of S or S̃.

As the number of snapshots, and thus the degree of the approximating polynomial
P, increases, the contours of P(z) in the complex z-plane will tightly encircle the
eigenvalues of A. These contours therefore present a graphical way of monitoring
the convergence towards the global spectrum for a linear process. We can also
observe the above-mentioned convergence characteristic towards extreme eigenvalues.
To demonstrate the convergence behaviour of the dynamic mode decomposition, we
use a numerically generated sequence of snapshots from a spectral discretization of
the two-dimensional linearized Navier–Stokes equations for plane Poiseuille flow. The
governing equations have been formulated as an evolution equation for the wall-
normal velocity v, and 150 Chebyshev polynomials have been used to discretize the
wall-normal direction; a matrix exponential has been used to advance the flow fields
over a fixed time interval �t = 0.1. After a transient period of ten time-steps, v-flow
fields are sampled at intervals of �t = 0.1. For demonstration purposes, we choose a
Reynolds number of Re = 10 000, based on the centreline velocity and half-channel
height (Orszag 1971; Schmid & Henningson 2001). Furthermore, we take an initial
perturbation that has a unit streamwise wavenumber α = 1. This flow configuration
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Figure 2. (a) Eigenvalues µi of S̃ for plane Poiseuille flow with Re = 10000 and α = 1.
Because of the time-stepper format, unstable eigenvalues lie outside the unit circle. (b–d )
Convergence lemniscates for a sequence of 5, 20, 40 snapshots. Contour levels range
logarithmically from 10−30 to 1.

is often used as a benchmark problem for stability calculations and shall in our case
give a first impression of the accuracy and convergence behaviour of the dynamic
mode decomposition.

The results are displayed in figure 2. In figure 2(a), one recognizes the typical Y -
shaped spectrum displaying the A-, P- and S-branches, but in the maybe less familiar
time-stepper format. In this format, unstable eigenvalues fall outside the unit disk
(marked by a black dashed circle); the closer the eigenvalues are to the origin the
more damped they are. The remaining subfigures show the convergence behaviour
of the dynamic mode decomposition as the number of snapshots is increased from
N = 5 to N = 20 to N = 40. A characteristic tightening of the contours about the
exact eigenvalues (marked by blue symbols) is clearly visible. The most unstable
eigenvalues are identified for even a modest number of snapshots, after which
the algorithm converges towards more damped modes. Saturation is reached when
additional snapshots do not add information that is significantly different from the
current representation. At this stage the characteristic polynomial displays a number
of zeros that show no further improvement as additional snapshots are added; the
algorithm then terminates.

These results can easily be contrasted to the full Arnoldi iteration by using a
given number N of snapshots for the dynamic mode decomposition and by using a
Krylov subspace of equal dimension N . Two cases have been considered, with N = 50
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Figure 3. Convergence of Arnoldi (b, d ) and dynamic mode decomposition (a, c) for a Krylov
subspace/snapshot basis of N = 50 components (a, b) and N = 100 components (c, d ) from
a numerical simulation of plane Poiseuille flow at Re = 10 000. The approximate eigenvalues
(Ritz values) of the two methods are shown in red; the exact eigenvalues are displayed in blue.

and N = 100, and the results are displayed in figure 3. In this figure, the more
familiar display of the stable (left) and unstable (right) complex half-plane has been
chosen. This is accomplished by the logarithmic mapping of the eigenvalues according
to λ = log(µ)/�t with �t as the temporal separation between two consecutive
snapshots. The approximate eigenvalues (also referred to as Ritz values) from the
full Arnoldi method show a similar convergence pattern that is commonplace for
iterative eigenvalue methods: eigenvalues at the extreme ends of the spectrum are
identified by the iterative method. The number and quality of identified eigenvalues
is rather similar for our case; by continuing the iterations, however, the full Arnoldi
method eventually identifies the remaining eigenvalues of the problem (figure 3d ),
whereas the dynamic mode decomposition will saturate at a specific number of
processed snapshots (figure 3c). This should not come as a surprise given the fact
that the Arnoldi method can take advantage of the system matrix A to construct
an orthonormal basis, whereas the dynamic mode decomposition only relies on the
(nonorthogonal) snapshot sequence to accomplish the same goal. Nevertheless, the
structures (and eigenvalues) identified by the dynamic mode decomposition correctly
and accurately capture the temporal behaviour contained in the processed data
sequence.
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2.6. Miscellaneous

A crucial parameter in the dynamic mode decomposition is the temporal (or spatial)
separation of the snapshots in the input data sequence. It is apparent that in order for
the dynamic mode decomposition to extract pertinent flow processes, these processes
must be sampled at a sufficiently high frequency. The lower bound for this sampling
frequency is given by the Nyquist criterion which states that only processes can be
identified that are sampled with at least twice their inherent frequency. Experience
however has shown that a sampling frequency of about three times the Nyquist cutoff
produces satisfactory results. By tuning the sampling frequency of our data sequence,
we are able to concentrate on fast or slow processes. For slow sampling frequencies,
fast processes will be sampled at near-random amplitudes and thus interpreted as
incoherent noise. For high sampling rates, slow processes will be quasi-steady and be
reflected in the mean mode (with no growth/decay nor any oscillatory component)
or a very slow drift mode. If the sampling frequency is tuned to the frequency of an
oscillatory flow, the mapping from period to period will identify the Floquet matrix
whose eigenvalues represent the Floquet multipliers.

3. Applications and results
The above algorithm for extracting dynamic information from numerically

generated or experimentally measured data will now be illustrated by considering
three problems: the flow over a square cavity, the wake behind a flexible membrane
and the instabilities observed in experiments of a jet passing between two cylinders.
The first example is based on data from numerical simulations and is intended to
further validate the method and demonstrate specific aspects of the dynamic mode
decomposition, such as convergence behaviour and subdomain analysis. The second
and third examples rely on experimental data and have been included to illustrate the
dynamic mode decomposition on typical set-ups from experimental fluid dynamics,
such as high-speed flow visualizations and time-resolved PIV measurements. A spatial
DMD analysis is demonstrated on the second example, and a comparison with results
from a POD analysis is included in the third example.

3.1. Example 1: flow over a square cavity

First, we consider the flow over a square cavity (see figure 4a). The computational
domain consists of the rectangle (x, y) ∈ [0, 1] × [−1, 1] whose lower half represents
the cavity. On the left side of the upper half, a uniform flow enters the domain; on the
right side of the upper half, outflow boundary conditions are imposed. At sufficiently
large Reynolds numbers this flow exhibits self-sustained oscillations of the shear layer
that forms on top of the cavity (Sipp & Lebedev 2007; Barbagallo, Sipp & Schmid
2009). The ensuing unsteadiness also has an influence on the vortical flow inside the
cavity and drives the shear layer that forms and detaches near the right wall of the
cavity. This type of flow configuration is often taken as a model of the unsteady
behaviour that is observed in separation bubbles.

Conceptually, we proceed as in the previous example by sampling a two-dimensional
linearized Navier–Stokes programme based on finite differences and a fractional-step
method (see Schmid 2007) at equidistant time intervals. The stored two-dimensional
flow fields then comprise the columnar entries in the snapshot matrix VN

1 which is then
processed according to the dynamic mode decomposition algorithm. As the number
of snapshots is increased we observe convergence and saturation for the algorithm.
The residual for this process, based on (2.7), is given in figure 4(b) as a function
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Figure 4. (a) Sketch of cavity geometry with subdomain indicated by the blue dashed line.
(b) Residual history of the dynamic mode decomposition for cavity flow.
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Figure 5. DMD spectrum for cavity flow at a Reynolds number Re = 4500. The colour and
symbol size of the eigenvalues indicate the coherence of the associated dynamic modes.

of the number of included snapshots. Rapid convergence is observed; only about
20 snapshots are needed to determine the growth rates and phase velocities with
sufficient accuracy. The extracted spectrum (i.e. the spectrum of S̃) is displayed in
figure 5. The spectrum appears symmetric with respect to the imaginary axis λi = 0,

which is a consequence of processing real-valued data. If general complex-valued data
are processed (e.g. after a Fourier transformation along a homogeneous or periodic
direction), the spectrum will generally appear asymmetric with respect to λi = 0.

For the chosen parameters (Re = 4500 based on the uniform inflow velocity and the
cavity length), a pair of unstable modes has been identified. In addition, we observe a
typical spectrum for a cavity, consisting of a parabolic branch containing the unstable
eigenvalues (the unstable branches) and a parabolic branch describing the dynamics
inside the cavity (the stable branch). This type of spectrum should be compared
with spectra from a global stability analysis for similar flow configurations (see e.g.
Åkervik et al. 2007 for a shallow cavity, and Sipp & Lebedev 2007 and Barbagallo
et al. 2009 for a square cavity). The symbol size and colouring of the eigenvalues
in figure 5 indicates a coherence measure of the associated modes and is intended
to separate large-scale energetic structures (in red) from smaller-scale less-energetic
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Representative dynamic modes, visualized by the streamwise velocity component,
for flow over a cavity at Re = 4500. (a) Most unstable dynamic mode, (b–d ) dynamic mode
from the unstable branch, (e, f ) dynamic modes from the stable branch. Because data from
linearized Navier–Stokes simulations have been processes, the dynamic modes are equivalent
to global modes.

structures. The criterion is given by a projection of a specific dynamic modes Φi

onto the POD basis U, computed from the data sequence VN−1
1 ; the modulus of the

coefficients of this projection measures the presence of various POD modes and thus
gives a measure of coherence. It is important to realize, however, that modes with
a moderate to small projection onto a POD basis (blue symbols) can still play a
significant dynamic role within the snapshot sequence.

Representative dynamic modes are displayed in figure 6 using the streamwise
velocity component; their respective eigenvalues are given in table 1 (second and third
columns). The unstable mode (figure 6a) is clearly located in the shear layer of the
flow and shows the characteristic streamwise wavelength of the observed instability.
Other modes from the unstable branch (figure 6b–d ) have significant components in
the shear layer, but also show features inside the cavity. These features are related
to the instability of the shear layer detaching from the right edge of the cavity.
Dynamic modes from the stable branch (figure 6e, f ) contain similar characteristics:
vortical structures coincidental with the mean shear layer on top of the cavity and
features linked to the vortex inside the cavity. Modes from the stable branch show
increasingly more small-scale features inside the cavity, as the frequency λi increases,
which is consistent with observations of Barbagallo et al. (2009).
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Mode λr λi λr λi

(a) 0.31705 7.79004 0.31705 7.79004
(b) −0.13154 10.00141 −0.12997 10.00307
(c) −1.86194 11.38202 −1.32688 11.81210
(d) −0.29688 4.56283 −0.25238 4.63178
(e) −0.66418 3.50959 −0.91428 3.81468
(f ) −1.72888 9.74711 −1.58432 9.00429

Table 1. Comparison of extracted eigenvalues via dynamic mode decomposition using data
from the full domain (second and third columns) or from the subdomain (fourth and fifth
columns) for the dynamic modes depicted in figures 6 and 7, respectively.

The composite characteristics of the dynamic modes, i.e. the separation of
dominant shear layer and dominant cavity modes, suggest the demonstration of
the decomposition technique by subdomains. For this reason, we generate snapshots
that only take flow field information from a subset of the entire domain. In particular,
we extract fluid velocity data from the L-shaped domain indicated by the dashed line
in figure 4(a). These data are then processed as before. Table 1 lists the dominant
eigenvalues from a full domain and a subdomain decomposition of the flow fields
taking an identical number of snapshots. We observe that the dynamic modes that
have their support within the subdomain are particularly well approximated, whereas
moderate but noticeable differences occur for modes that are only captured partially
by the subdomain. The dynamic modes from the subdomain analysis are given in
figure 7 for the eigenvalues equivalent to the ones selected for figure 6. Very good
agreement for the unstable modes can be observed; the agreement for the stable
modes is still remarkable.

These results are rather encouraging and illustrate the potential of approximating
the prevalent dynamics from snapshots even though the full extent of the instability
mode is only partially (but sufficiently) captured by the measurements.

3.2. Example 2: flow in the wake of a flexible membrane

After having gained confidence in the capability of the DMD technique to extract
coherent structures from snapshot sequences of temporally evolving data, we now
apply this technique to data sequences from experimental measurements based on
time-resolved PIV measurements of the wake flow at the edge of a flexible membrane.
The geometry of the experimental set-up is displayed in figure 8, both as a conceptual
sketch (figure 8a) and as a top view on the experiment (figure 8b). A uniform flow
passes over a U -shaped thin steel frame that holds a flexible latex membrane. The
wake flow of this membrane is affected by the rigid steel frame as well as the fluid–
structure interaction between the membrane and the boundary layer that passes over
it. Interest in this type of configuration comes from its relevance for micro air vehicle
(µAV) performance and from a desire to better understand unsteady thrust and lift
generation by using a flexible flapping membrane (see e.g. Schmit & Glauser 2009).

The dimensions of the latex membrane have been chosen as 32 mm × 66 mm with
a thickness of 0.15 mm. The upstream and lateral edges of the latex membrane have
been attached to a 0.2 mm thin U -shaped steel frame, and the free-stream velocity
in the wind tunnel has been set to 14 m s−1. The flow features in the wake have
been captured by a time-resolved PIV system that has been placed in the plane of
the steel frame at a distance of 38 mm downstream of (but laterally shifted to) the
trailing edge of the membrane. Data have been acquired from an interrogation area of
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Representative dynamic modes for flow over a cavity at Re = 4500 sampled only
in the L-shaped domain indicated in figure 4(a). The modes are associated with the selection
given in figure 6.

(a)
(b)

Steel frame 0.2 mm thin

Latex membrane mounted 
on stell frame

Figure 8. (a) Sketch of the experimental set-up. (b) Top view of the set-up for measurements
in the wake of a flexible membrane; the steel frame and the PIV interrogation window are not
to scale (true dimensions are given in the text). The green area on the right shows a typical
snapshot from the time-resolved PIV measurements.
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Figure 9. (a) DMD spectrum of wake flow behind a flexible membrane. (b–d ) Three
representative dynamic modes corresponding to dominant eigenvalues in the spectrum,
visualized by vector plots (left) and contours of the transverse velocity component (right).

164 mm × 84 mm. The time-resolved camera acquired raw particle images at 2000 Hz,
which were subsequently processed using an adaptive cross-correlation algorithm. The
initial interrogation area size has been resolved by 64 px×64 px. In a second and final
step, measurements have been taken with a resolution of 32 px × 32 px and a 50 %
overlap. An intermediate local mean validation used a 3×3 neighbourhood. Included
in figure 8 is a typical snapshot of the flow (green area) which appears rather uniform,
even though small organized and coherent fluctuations about this uniform flow are
already discernible by inspection alone.

The time-resolved two-component velocity measurements on the 64 × 64 grid have
then been processed to form a snapshot sequence capturing the flow evolution over
a characteristic time interval. A total of 500 snapshots have been processed. A low-
dimensional mapping S̃ between these snapshots (assumed constant over the sampling
interval) has then been computed and further processed to extract a DMD spectrum
together with the dynamic modes of the flow. The spectrum extracted from the data
is shown in figure 9(a), where the eigenvalues µi of S̃ have been mapped according
to λi = log(µi)/�t with �t = 5 × 10−4 s.
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Besides the time-invariant mode at the origin of the spectrum, it identifies two
dominant frequencies for the flow with the higher frequency associated with smaller
scales. The corresponding dynamic modes, visualized by vector plots and by contours
of the streamwise velocity component, are displayed in figure 9(b–d ) for three of
the eigenvalues. The most dominant and coherent dynamic mode is characterized by
large-scale vortical structures with approximately two and a half oscillatory periods
over the streamwise extent of the interrogation window. Nearly the same scaling is
evident from the second dynamic mode. The third dynamic mode plotted in figure 9
corresponds to the larger-frequency eigenvalue λ = (−40.749, 4967.79) s−1 which is
nearly double the frequency of the previous two modes. The spatial scale associated
with this mode is correspondingly smaller. In fact, five periods are observed in the
streamwise direction. In addition, a monotonic decay of the amplitude of this pattern
in the streamwise direction is clearly visible.

These observations motivate the treatment of the spatial problem based on the
data we have gathered by PIV. As mentioned earlier, because a low-dimensional
representation of the mapping from snapshot to snapshot is one of the outputs of
the dynamic mode decomposition, it is inconsequential to the algorithm whether the
snapshots are aligned in time or in space. All that is required is the extraction of
(t − y)-planes at the given streamwise x-locations. Note, however, that the spatial
resolution in the x-direction has to be sufficient to resolve and detect coherent
structures in space. Processes that progress faster in space than the spatial Nyquist
wavenumber will not be captured by the method.

The spatial spectrum for flow in the wake of a flexible membrane is shown in
figure 10 where a streamwise distance of �x = 2.5 mm between the snapshots has
been used. It displays one dominant mode, besides the eigenvalue at the origin. This
mode has a spatial eigenvalue of α ≈ (−0.0035, 0.09486) mm−1. The imaginary part of
this eigenvalue describes the harmonic structure in the streamwise direction. Over the
streamwise extent of the interrogation window (164 mm), this spatial wavenumber
corresponds to a structure with 2.47 periods. Furthermore, an estimate of the
temporal frequency from the oscillatory pattern shown in the corresponding subfigure
in figure 10 reveals a value of about f ≈ 2356 Hz. These values, i.e. the spatial
wavenumber and temporal frequency, can be linked to the ones that the temporal
DMD analysis produced: a dominant structure with a frequency of 2481 Hz and
a spatially harmonic shape with 2.5 periods inside the interrogation window (see
figure 9). In addition, the noticeable slow decay in amplitude of the dominant
temporal dynamic mode (shown in figure 9 for λ = (−7.733, 2481.25) s−1) can be
determined by fitting an exponential function to the peaks of the streamwise velocity
component; the resulting decay rate is γ = −0.003355 mm−1, in very good agreement
with the real part of the identified spatial eigenvalue α = (−0.00351, 0.09486) mm−1.

A correspondence between the two types of analysis has thus been established that
gives further confidence in the capability of the dynamic mode decomposition to
capture the relevant processes, be it in the temporal or spatial framework. A higher
temporal frequency is noticeable for a higher spatial mode (with αi = 0.19851 mm−1),
but the limited resolution in the streamwise coordinate direction translates into a
poor representation of the time-harmonic component in the associated spatial DMD
mode.

3.3. Example 3: experiment of a jet between two cylinders

The final example is again based on data from experimental measurements using
time-resolved PIV. In this case, the flow through an array of cylinders is studied. This
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Figure 10. (a) Spatial DMD spectrum and (b–e) spatial dynamic modes for flow in the wake
of a flexible membrane. The dynamic modes are visualized by contours of the streamwise
velocity component.

flow configuration arises in many industrial settings and is of particular interest in
fluid devices for energy conversion, e.g. heat exchangers.

In our setting, the flow of a jet passing between two cylinders is investigated.
A sketch of the geometric set-up is displayed in figure 11(a), together with the
interrogation window where PIV measurements of the flow are taken. An interrogation
window of 40.36 mm in the streamwise and 32.08 mm in the transverse directions has
been used, which has been resolved by a 63 × 79 measurement grid on which two
velocity components have been recorded. The flow has been sampled in a time-resolved
manner with 4 ms between two consecutive PIV measurements. The jet has a width of
10.7 mm and a mean velocity of 0.663 m s−1. The cylinders have a diameter of 12 mm,

and the Reynolds number, based on the volume flux velocity (with Q̇ = 18 m3 h−1)
and the cylinder diameter, is Re = 3000. In the same figure, five snapshots of raw
PIV data are depicted to give a first impression of the flow field. The strong jet, forced
through the gap of the two cylinders, interacts with the cylinder wakes and produces
a complex flow pattern consisting of intermittent coherent vortices.

An identification of relevant structures for this type of flows has traditionally relied
on the POD which forms the (temporally averaged) spatial correlation tensor which
is in turn diagonalized by an eigenvalue decomposition. The latter step decorrelates
the extracted structures and provides a hierarchy of coherent fluid elements ranked
by their energy (or autocorrelation) content. Alternative to forming the correlation
tensor, a singular value decomposition of the snapshot sequence can be taken. The
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t = 0.4 s t = 0.8 s
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Figure 11. Sketch of the experimental set-up (a) and representative raw PIV data from
time-resolved measurements (b–f ). Data courtesy of EdF.

right singular vectors then contain the POD modes, while the singular values produce
the energy content of each associated structure.

For the above experimental data and for comparison purposes, a POD analysis
using 500 snapshots has been performed, which is displayed in figure 12. The singular
values, shown in figure 12(a), show a rather weak decay after the first initial drop. The
first POD mode, corresponding to the largest singular value, reproduces the mean
flow and displays a strong jet, together with two weak lateral vortices and an outer
entrainment flow. The second POD mode, already with a substantially reduced energy
content, shows an antisymmetric pair of vortices located near the lateral shear layers
of the jet. The third and fourth POD modes, still (anti)symmetric with respect to the
jet axis, contain four and two major vortices, respectively. Starting with the fifth POD
mode, at 15 % of the mean energy, first signs of an asymmetric structure appear.
Despite this breakdown of the flow into energetic coherent structures, no information
can be gained about the ‘dynamics’ of these structures. This is a consequence of
the time-averaging process to obtain the spatial correlation tensor. Techniques exist,
however, to recover phase information from the data set (see Lumley 1970).

In contrast, the dynamic mode decomposition does not extract flow information
based on the energy content of the identified flow structures; instead, it approximates
the temporal ‘dynamics’ of the flow by a linear evolution operator – expressed in the
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Figure 12. (a) Singular values of the snapshot sequence for flow through an array of
cylinders; (b–f ) POD modes. The background colour contours visualize the streamwise velocity
component.

snapshot basis – whose dominant eigenfunctions form a set of dynamically relevant
modal structures. Temporal information is thus contained. Results from this type of
analysis (using N = 200 snapshots) are shown in figure 13. The temporal spectrum
shows eigenvalues that approximately fall on parabolic curves, a feature that is often
observed in global stability analyses and that reflects the presence of advective and
diffusive flow phenomena. In a local stability analysis, each parabolic arc would
correspond to a specific characteristic disturbance wavelength in the streamwise
direction; in a global stability analysis, no such separation of scales in the streamwise
direction is assumed, and the parabolic arcs for each scale appear simultaneously. The
eigenvalues near the apex of these parabolic arcs correspond to the most dominant
structure of the respective family of coherent elements. They are displayed, for the
three arcs indicated in the spectrum, in figure 13 together with the mean flow. It is
interesting to note that the identified mean flow is not strictly symmetric with respect
to the jet axis. This asymmetry is even more visible in the first (and most dominant)
dynamic mode, associated with the eigenvalue λ = (0.210, 50.254) s−1. Two strong
vortices are present on either side of the jet, similar to the second POD mode, but
the upper side of the jet has been identified as a region of increased vortical activity
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Figure 13. (a) DMD spectrum and (b–e) four dynamic modes representing the mean flow
and three dominant modes from the apex of the parabolic arcs indicated in the spectrum.
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(which can be confirmed by inspecting the raw PIV fields). The preference of one
side of the jet over the other is even more pronounced in the dominant dynamic
mode of the second parabolic arc (λ = (−0.466, 85.627) s−1). In this case, a strong
side jet caused by a pair of counter-rotating vortices is observable at the lower side of
the jet. The upper side also contains a side jet, however, with a substantially weaker
amplitude. A similar flow feature appears in the fifth POD mode (see figure 12), but
the marked difference between both sides of the jet appears to have been lost in the
averaging process, in addition to any information about its dynamic behaviour. The
dominant dynamic mode of the third parabolic arc (with λ = (−4.844, 159.189) s−1)
displays vortical structures of a smaller scale, consistent with its higher associated
frequency and decay rate. Nevertheless, coherent oblique side jets are discernible with
a preferred appearance on the lower jet shear layer.

The dynamic mode decomposition appears capable of extracting dominant flow
features from the snapshot basis. It does so by approximating the linear mapping
between the snapshots and subsequently detecting the pertinent frequencies. In
contrast, POD uses a second-order statistics of the flow fields and produces a hierarchy
of coherent structures that diagonalize their correlation tensor. One can say that, while
POD concentrates on a representation based on spatial orthogonality, DMD focuses
on a representation based on temporal orthogonality (frequencies). For the above case
of the flow between two cylinders, the latter decomposition produces a more accurate
and complete description of the ‘dynamic’ flow behaviour for the experimentalist,
capable of identifying dynamic features of the flow directly, rather than through its
second-order statistics.

4. Summary and conclusions
The search for physical mechanisms underlying fluid flow relies on the

decomposition of flow fields into coherent structures and flow patterns whose
dynamics provide a more compact and instructive manner of describing the
fluid process. For numerical simulations the Arnoldi method and various other
decomposition techniques provide the tools to extract this desired information. For
experimental data, on the other hand, no such decomposition exists that could provide
temporal dynamic characteristics together with spatially coherent structures.

The dynamic mode decomposition offers a tool for extracting dynamic information
from a sequence of uniformly sampled flow measurements. The resulting modes
represent the relevant flow structures that contribute most to the overall ‘evolution’
captured in the measurement sequence. The technique is flexible enough to equally
deal with simple flow visualizations (as demonstrated by decomposing Schlieren
images in Schmid et al. 2010) and with time-resolved PIV measurements. Subdomains
within the flow configurations can be analysed in isolation to focus on particular
flow features and instability mechanisms. This is of particular advantage for flows
containing a multitude of instability mechanisms or multiphysics phenomena (e.g.
shear instabilities and acoustic radiation). In fact, the flow fields vi may even contain
data from different regions and/or contain different flow variables. For example,
the simultaneous processing of PIV velocity measurements and of acoustic pressure
signals from an array of microphones is conceivable.

Spatially evolving flows are as simple to decompose as temporally evolving ones.
A simple reorganization of the measured data and an alignment of the snapshot
basis along a spatial, rather than temporal, dimension yield a snapshot-to-snapshot
mapping that contains information about the spatial evolution of coherent structures.
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This type of analysis is of particular importance, e.g. for flows shedding from blunt
bodies or localized roughness elements.

The dynamic mode decomposition is different from the proper orthogonal
decomposition where the former attempts to represent a data sequence by
orthogonalizing it in time (i.e. isolating distinct frequencies in the data), while the
latter attempts a decomposition based on orthogonality in space. Furthermore, the
dynamic mode decomposition applies directly to the data, while a POD analysis
processes second-order statistics of the data.

When applied to a linear process, the dynamic modes recover the global stability
modes of the flow. When decomposing a nonlinear process, the eigenvalues of the
matrix S (or S̃) approach the unit circle in the limit of an infinite (or a sufficiently
large) number of snapshots (see e.g. Rowley et al. 2009). In this limit, the dynamic
mode decomposition identifies the dominant frequencies and their associated spatial
structures. In this manner, even turbulent flows can be analysed as to the existence
of cyclical coherent events, following the suggestions of Hussain (1986).

The dynamic mode decomposition has been illustrated on a variety of examples
ranging from plane Poiseuille flow (for validation purposes) to flow over a cavity,
from wake flow behind a flexible membrane measured by time-resolved PIV to
flow of a jet passing between two cylinders. During these tests, and many more
not included in this paper, the dynamic mode decomposition has proven itself as
a robust and reliable algorithm to extract spatio-temporal coherent structures from
the data. Further potential applications of this decomposition include, among others,
the recovery of flow fields from gappy data sequences, the model reduction of high
degrees-of-freedom systems, and an image-based quantitative analysis when combined
with optical flow techniques. In closing, it is hoped that this type of decomposition
will join the current arsenal of tools for experimentalists (and computational fluid
dynamicists) and will help them in their efforts to quantify fluid-dynamical processes
by their dominant spatio-temporal behaviour.

The author wishes to thank the Alexander-von-Humboldt Foundation and the
ANR chaires d’excellence program for their generous and flexible support of this
research endeavor. In addition, the support and encouragement of Dantec Dynamics
Inc., in particular O. Pust, P. Gjelstrup and Ch. Tanguy, are greatly appreciated.
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